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Abstract

Weanvestigate the use of Naive Bavesian classifiers for cor-

refuted Gaussian feature spaces and derive crror estimates for

these classifiers. The error analysis 1s done by developing an
exect expression for the error performance of a binary clas-
sifier with Gaussian features while using any quadratic deci-
s103 boundary. Therefore, the analysis is not restricted to Naive
Bayvesian classificrs alone and can, for instance, be used to cal-
culate the Bayes crror performance. We compare the analyt-
weal error rate to that obtained when Monte-Carlo simulations
are performed for a 2 and 12 dimensional binary classification
prcblem. Finallv. we illustrate the robust performances ob-
tated with Nane Bayesian classifiers (as apposed to a maxi-
mum hkelihood classifier) for high dimensional problems when
data sparsity becomes an issue.

1. Introduction

Uhe popularity of Naive Bayesian (NB) classifiers has increased
inecent years {1, 2], among others due to exceptional classi-
fication performance n high dimensional feature spaces. NB
classtliers ignore all correlation between features and are in-
expensive to use in high dimensional spaces where it becomes
pracucally infeasible to estimate accurate correlation parame-
ters. A attempt 1o estimate correlations can often lead to over
fitt ng and decrease the performance (both eiliciency and accu-
racyy of the classitier. Empirical evidence and an intuitive ex-
planation on why NI classifiers perform so well in high dimen-
stoaal feature spaces (in terms of the bias-variance problem) can
be found 1n [3]

The increase m popularity of NB classifiers has not been
malched by a similar growth in theoretical understanding (such
as proper error alalysis and feature selection). In one of our
previous papers [2], we developed analytical tools for estimat-
ing crror rates and used them as similarity measures for feature
selxction in diserete environments (all features were assumed to
be multinomial).

In this paper, we focus on developing an exact expression
tor the error rates of binary (two-class) NB classifiers where all
features are continuous, correlated multivariate Gaussian distri-
butions.

There have been a few misunderstandings in the past re-
garding NI3 class fiers. One good example as pointed out by [3]
15 the contusion tetween NB classificrs and linear classificrs in
{41 Consider, tor example, a parametric classifier where all fea-
turzs are assumed to be Gaussian. The only way that one can
obtain a piccewise linear boundary, is if all classes have identi-
cal covariance matrices, which is clearly not the casc for general
Nb classifiers. Therefore. later on in this paper, we discuss the
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different decision boundaries that can be obtained in a binary
NB classification problem with Gaussian features and discuss
their intuitive meaning.

[n order to calculate the error performance of a binary NB
classifier we turn to basic decision theory were we calculate an
NB decision boundary that separates two hyperspace partitions
€ and ;. Whenever an observed feature vector falls within
region €2 or s, we classify the pattern to come from class w,
or wy respectively. Therefore we can calculate the classification
error rate by computing eq. 1[5]

p(xlwz)dx, (1)

1

¢ = plw) /ﬂz p(x|wr)dx +1’(“‘2)/

where ¢ is the classification error rate, x is the input vector
and p(w1) and p(wy) are the prior probabilities for classes w;
and wy respectively. Therefore, the very specific challenge ad-
dressed in this paper, is to calculate the integral parts in eq. 1,
where p(x|w:) and p(x|ws2) are correlated Gaussian distribu-
tions of arbitrary dimensionality. Since we are working with NB
classificrs, the decision boundary will generally be a quadratic
surface.

There exist many upper bounds on the Bayes error rate for
Gaussian classification problems. Some popular loose bounds
that can be calculated efficiently include the Chernoff bound [6]
and the Bhattacharyya bound [7]. Some tighter upper bounds
include the cquivocation bound [§8], Bayesian distance bound
[9], sinusoidal bound [10} and exponential bound [11]. Un-
fortunately, none of these bounds are useful for the analysis of
NB classifiers, since they obtain bounds for the Bayes error rate
which do not allow us to investigate the effects of the assump-
tion of uncorrelatedness. In order to investigate these effects, we
choose to calculate an asymptotically exact error rate. The cas-
iest way to do this, is to do Monte-Carlo simulations where we
generate samples from the class distributions and simply count
the errors; this is a time-consuming exercise, but does asymp-
totically converge to the true error rate. Instead, we derive an
exact analytical expression similar to work done in [12, 13]. In
our derivation, we first transform the integral problems in eq. |
into a problem of finding the cumulative distribution (cdf) of a
linear combination of chi-square variates.

The main contribution of the current paper is that we are
able to derive exact analytic expressions for the Naive Bayesian
crror rate in the gencral case, whereas previous authors were
able to do so only in terms of computationally expensive series
expansions [14] or imprecise approximations [13].

The rest of this paper is organized as follows. In section 2,
we derive the equations needed to transform the classification
problem into one represented as a linear combination of chi-
square variates. In scction 3, we discuss all possible quadratic



deesston boundaies obtained in the context of the work done in
section 2 and we show the exact solution to the cdf for most of
thzse boundaries. In section 4, we run simulations to compare
N3 error rates obtained from both Monte-Carlo simulations and
the analytical exoressions found.

None of the theory developed in sections 2 and 3 is limited
o NI classifiers and applies to quadratic discriminant analysis
(UDA) in generel. To be more specific, Sections 2 and 3 focus
or methods for caleulating [, p(x|wi)dx. It is easy to cal-
culate .)’“1 p{xjwa Jdx by simply reversing the roles of w) and

2. Linear combinations of non-central
chi-square variates

Lctus assume that p(x|ws ) and p(x|ws) are both Gaussian dis-
tributions with means ju; and jio and covariance matrices ¥,
and M. respectively. Therefore

| 1 P
(z,ﬁ)/m“xp( >Q<X—m)’>4; Hx =),
(2)

where £7 15 the dimensionality of the problem. Unfortunately,
the exact values for g and Y, are almost never known and need
1o be estimated. with say ji; and ;. For NB classifiers. 3 is
a diagonal matrix. For simplicity we assume that iy = jup and
jiz = gz - inaccuracy in estimating the sample means is best
reated as a sepalate issue.

We can use taese estimates to calculate the decision bound-
ary for a binary classification problem. [1q.3 is the simplest way
to describe the decision boundary hyperplane in terms of the
estimated parameters.,

pla)p(xlfin, 1) = pluws)p(xfiz, $2) 3)

When we take the logarithm on both sides of eq. 3 and use eq. 2,
wi get the following representation for the decision boundary:

o ixe i) 8y ) Sx=fie) By Hx—fi2) = 1,
(4)
wlere .
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Iy the context of 2q. 1, it is casy to see that

/ pix|w)dx = p(31(x) > 1), (5)

e,

where x -~ N{p; . 28q).
In the rest of this section, we focus our efforts on transform-

ing eq. 4 into a much more usable form,

D
F(db, m.t) = 1)(}2 Gily —nu)” < 1), (6)

(R

wherey ~ N(0. 1), F'(®, m,¢) is a tunction that we can relate
to the error (sce section 3), ¢, and rmn; are variance and bias
constants. We do the transformation in four steps as follows.

2.1. Shift means by jiy

W define 2z = x — py and with a little manipulation (and as-
suaing jin = joq and fiz = p2) we can rewrite eq. 4 as follow.

Ba(z) = 2" Biz—2blz=1
B, = ¥7'-33°
by = (- p2)"850
o = b+ (= p2) 35 (1 — pa2)
z ~ N(0,%;) ©)

Note that By is in general not a positive-definite matrix, but is
symmetric and can be rotated.

2.2. Rotate matrices to Diagonalize 3,

Since z is centered at the origin, we can rotate 31 to be diago-
nal, as long as we rotate the decision boundary too. We define
v = U:fl z, where U, is the eigenvector matrix of 31 satis-
fying

Ul 21U, = A,

AL, =diag(Ao, 1, Aw D),

where Ao, 1, ..., Ay, p are the eigenvalues of 1. From this
we can derive eq. 8.

Ps(v) = viByv - 2bsv = t,
B: = Ul (Z;'-3;HU,,
by = (m - p2)"EM U,
v o~ N(0,Au,) ®)

2.3. Scale dimensions to normalize all variances in 3,

We assume that A, is positive-definite and therefore none of
the eigenvalues are zero. If some of the eigenvalues are zero,
the dimensionality of the problem can cither be reduced or the
classification problem is trivial (if w2 has a variance in this di-
mension or a different mean). (Of course, an NB classifier may
not be responsive to this state of affairs, and therefore perform
sub-optimally. However, we do not consider this degenerate
special case below.)

We define u = AJM?v and derive eq. 9.

Bi(u) = u'Bu-2blv=t,
B = AU (B - 57U, AL2
by = (1 —p2) B3 U, AL
u ~ NI 9)

2.4. Rotate matrices to diagonalize the quadratic boundary

Now that u is normally distributed with mean 0 and covariance
L, it is possible to rotate B until it is diagonal without inducing
any correlation between random variates. Therefore, we define
Us and Ag to be the eigenvector matrix and diagonal eigen-
value matrix of B respectively.

We finally define y = UFu and derive eq. 10.

Ay) = y Ay -2bTy=t,
bY = (1 —p2) 8, UL, AL ?Ug

It is casy to derive the values for €, m and ¢ in eq. 6 using eq.
10. These values are given in equation 11,



<, A, Vi & {l7 1)}
o= b Yie{l, . ...D}
A

(11}

1115 possible for some of the Ay, values 1o be zero in which
vitse some of the 1y, coellicients become infinite or undefined
tthis 15 also the case for t). This happens when some of the
random variates only have a lincar component in cq. 10 orif
the variates make no discriminative difference (in which casc b,
is also zero). These cases are discussed in the next section.

3. Decision boundaries and their solutions

It this section we discuss all possible quadratic boundaries
derivable from the theory developed in section 2. We also give
analytical solutions to the error rate performances associated
with cach decision boundary (except for paraboloidal decision
boundaries discussed later).

3.1 Lincar decision boundaries
I near decision boundarics are the simplest case to solve and

oceur when A = B = 0. From cq. Y it is casy to see that
¥, = ¥, for this to be true and it follows that

/‘ plxfe)dx = p—2bty > t2)
o,
~2bTy o~ N(0.4bTb) (12)
Fromeq. 12t s casy Lo prove that
/. plx|w; dx = ;urﬁ‘(—/g—) (13)
Ja, 2 V8bTh

3.1 Ellipsoidal decision boundaries

Ellipsordal decision boundaries occur when either B or —B is
positve-definite. In other words the cigenvalues A1, ..., A p
are cither all nezative or all positive. This is a special casc
that occurs in NB classifiers when one class consistently has a
larger variance than the other class for all dimensions. Since m
FH) s defined (none of the cigenvalues are 7¢ro), we
canattempt to solve eq. 6. Many solutions have been proposed
for this problem (see, for example [14]), but the one that we
find most efliciertis proposed in [ 13. 15] and is restated here.

(sie ey

Tteorem 1. Fory ~ N(0.1) and £(®, m, 1) as defined in eq.
6. we have

> .
Fibom, oo Z‘(\,l"n.u,{']—l). o0 >0 Vvie (L., D}

it}

whare 7, (o) 1s defined to be the cdl of a central chi-square dis-
tribution with » degrees of freedom, p is any constant satistying

Uop<o Vig

I D}

and o can be calculated with the recurrence relations

1< =
o = ool-3 | [Twe,
j=1 j=1
i—1
1
i = EZ”]Q'“}
7=0
S D
ISR DE ENES
i=1 i1 TF

Also, the « coeflicients above will always converge and

Finally, a bound can be placed on the error from summing only
k terms as follows

k-1
0 S F@m) =Y aFball)
i=0
k-1
< (1= ai)Fpy(t/p)
=1

Proof. The proof can be found in [15].

For optimal convergence in the above series we select p =
nf{d, ..., ¢}, the largest possible value for p.
A useful recurrence relation for calculating F,, (z) is as fol-

lows
x
orf (L ] L
(/3

,5)
(/2)" 212
T'(n/2 F 1)

I’vl (T) =

"

=
)
I

1 —exp(

Fopala) = F.(2) - (14)

We discussed analytical solutions for the casc where all a;’s
are greater than zero. A symmetric statement can be made for
all ax;’s less than zero. Therefore, we conclude that

|

3.3. Hyperboloidal decision boundaries

‘[;22 p(x|wr)dx

F(—® m, —t)
1 - F(®.m,t)

sup{¢1.....¢p} <0

int{o1...é6p} >0 (19

Hyperboloidal decision boundaries occur when B is indefinite
and invertible. Thercfore, some of the eigenvalues of B will be
positive and others negative, but none of them zero. This is the
most frequently occurring case and also the most difficult to
solve. Although much research has been done on solving the
definite quadratic form (as for the elliptic boundary discussed
above). finding an exact analytical expression for the indefinite
quadratic form has been unsuccessful (see [12, 13, 14, 16]).
The cxisting solutions all lead to estimates, bounds or unwieldy
solutions (and unusable for NB error analysis). In contrast, we
propose a solution that is exact and efficient.



Theorem 2. Fory ~ N(0.1) and F(®, m, ) as defined in eq.
nLowe can rewrtie (P, m. ) as follows.

Iy
Fidom,fy = p(}_‘ Oy, — m)? =
il
2
L(’J);(]/'/j LA 7”7)2 f/ /)7
Pl
w/_u/‘ ) Vi e {l ,,(11},\/j © {l, .A.,(lz}’

where di - do = D. From this, we can show that

Frdom ) e |- Z Z “;();Ylix +2,,,1M,+;3_,'(//’[))~ t >0

P00

vhere we caleulate the ) and «; coeflicients by apply-
g theorem b (with common value p) to F(®',m’ t) and
£0b7 " ¢y raspectively. Note that the o and o coeflicients
are independent of ¢, p can be any arbitrary constant satisfying

< p ,‘:f.oj Vie{l .. di},Vje{lL o de}
14,4, (2] can be caleulated using the following recurrence
ralations,

Vool — (172 2/2)
VT '
{ o .z 4 .2 z
o S5 (MG )+ K G())]
Tong(r = 2 kel
Tt = Moy ogg(2) 4 Dy au(2)
Ty agiss Thpky 2{2) = Dy, (2)
where
P O L R TR Uy DU
e SR g Y T g )

F s the gamea funetion and (. ) is the upper incomplete
gemma function. K, (x) is the modified Bessel function of
the second kind and L, (77 is the modified Struve function.
gyt z) s the Tricomi confluent hypergeometric function
taso known as twe {7 {a, b: z) function discussed in [17D.

Finallv. a bound can be placed on the error from summing only
Koand 1 terms.

I Le
e
LR l‘ Lufij./,+g,,,/2+z,(t/p) — F{®,m,¢)
P00
Ko Lo
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Proof. Partial proofs can be found in [12, 13]. Unfortunately,
the tull proof of this theorem is fairly involved and will be
provided in a future paper.

[t becomes impractical to calculate Dy, k, (2) for large val-
ues of k1 and k2 and therefore the following recurrence rela-
tions become useful

1

DA.l‘k.,l(z) = ——-4 — 2/(’,1 [(4 — kl - ]{’2 - 2Z)DA.1 —2,kg (z)
+2 Dk, 4 5, (2)]
1

[)}’lxl\'l (Z) = m[(‘l — k1 — ks + QZ)Dk-lyk-?,z(l)

=20k ky-4(2)]

Diay(2) = %(Dh—z,kq (2) + Dy by —2(2)) (1e)
Although it is theoretically possible to use only the first two re-
currence relations in eq. 16, numerical experiments show that
when combined, quantization noise will increase rapidly with
cach iteration. Therefore we use the first two recurrence rela-
tions independently and fill all the remaining gaps with recur-
rence relation three in eq. 16. Notice that thecorem 2 only applies
for cases where ¢ > 0. A symmetric argument can be expressed
for cases where ¢ < 0. Finally, we conclude that

.

3.4. Cylindrical decision boundarics

.[;22 p{x|wi)dx

F(—®,m, —t)
1 F(®,m,¢)

t<0

£>0 a7

Cylindrical decision boundaries occur when some of the eigen-
values A ; and their corresponding linear parts b; are zcro. It
is fairly casy to see from eq. 10 that these features can simply
be dropped and the dimensionality decreased.

3.5. Paraboloidal decision boundaries

Paraboloidal decision boundaries occur when some of the
eigenvalues Ap; are zero, but their corresponding linear parts
b; are none-zero. In the context of NB classifiers, this only hap-
pens when some of the estimated variances (in a given dimen-
sion) are identical for w1 and ws, but their means differ. Unfor-
tunately, an exact solution for this problem does not yet exist.
Therefore, as a temporary solution, we simply add a small dis-
turbance 6 to eq. 10 to get an approximate hyperboloidal or
ellipsoidal decision boundary.

4. Results

In this section, we compare the error performance of simple bi-
nary classificrs of different dimensionalities for both the Bayes
error rate and that obtained using NB classifiers. These error
rates will be obtained using two methods: Monte-Carlo simu-
lations and the analytical methods proposed above. Qur experi-
mental configurations are similar to those proposed in [13].

4.1. Example 1: A two dimensional classification problem

For this example we will explore the error rates of a two dimen-
sional Gaussian binary classification problem with parameters

1 3 -1
Uy = Yi=a
1 -1 3




Error rate performance of 2 dimensional Gaussian classifiers
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Froare 20 Nanve and maximum likelihood estimate ervor rates
for two dimensional problem in example 2 while increasing the
amber of training samples.

WiHere «v Is a covariance scalar. Figure 1 shows the Bayes and
NB (perfect estimate) error rates obtained with the analytical
madel developed and Monte-Carlo simulations. For this exper-
et plawy) = plue) = 0.5 and 10000 samples in total were
gonerated for the simulations.

Figure 2 shows the analytical results obtained for v = |
wicre we estimate both the Maximum likelihood (ML) and NB
paramerers using a varying number of training samples.

Itis cicar from this experiment that the low dimensional
MU classitier provides superior performance to the NB classi-
lier and that our analytic estimates agree with those obtained
by Monte-Carlo simulation,

4.5 Example 2 A 12 dimensional classification problem

Now e explore a high dimensional problem (12 dimensional)
to tustrate the power of NI3 classifiers. For this cxample we

Error rate performance of 12 dimensional Gaussian classifiers
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Figure 3: Naive and Bayes error rates for 12 dimensional prob-
lem in example 2 with increasing class covariances.

define
17 5 -1 0 ... 0 7
1 -1 5 -1 0
jn = 1=« ,
1 0 -1 5 -1
L 1] L O 0 -1 5 j
[ —17 { -2 0 0 7
-1 -2 4 =2 0
fiz = Yo =aq
-1 0 -2 6 =2
L -1 ] L 0 ... 0 -2 4 |]

where «v is a covariance scalar. Figure 3 shows the Bayes and
NB (perfect estimate) error rates obtained with the analytical
model developed and Monte-Carlo simulations. For this exper-
iment p(w1) = p(w2) = 0.5 and 100600 samples in total were
generated for the simulations.

Figure 4 shows the analytical results obtained for o = 1
where we estimate both the Maximum likelihood (ML) and NB
parameters using a varying number of training samples.

It is clear from figure 4 that for high dimensional prob-
lems, NB classifiers perform better when data sparsity is an is-
suc. This is due to the high variance in the ML estimate. NB
classifiers are robust for sparse problems and for this specific
problem, NB performs relatively well even when more than a
hundred training samples are provided.

5. Conclusion

In this paper, we derived analytical solutions for calculating er-
ror probabilities in correlated Gaussian feature spaces for arbi-
trary quadratic decision boundaries. We applied the theory in
the context of NB classifiers and showed the validity for both a
2 and 12 dimensional problem by comparing the analytical so-
lutions to those obtained with Monte-Carlo simulations. Both
of these case-studies had hyperboloidal Bayes and NB decision



Error ‘or ML and NB estimates: 12 dimensional Gaussian
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Figure 41 Naive and mavimum likelihood estimate error rates
o 12 dimensicnal problem in example 2 while increasing the
aumber of training samples

houndaries, a problem that had not been solved analytically pre-
siously,

We also deronstrated the robust behavior of NB classifiers
i data sparse end gh dimensional environments (see figure
4

Uinfortunately, we still don’t have a proper solution for the
paraboloidal dezision boundaries and we suggested a method
for approximatiag the boundary with a hyperboloidal or cllip-
soidal boundary; this method has also been proposed in [13]. It
should be noted that this method is not without problems, since
the oy terms in heorem 1 take longer to converge when an ex-
ceptionally smail o, value or large m; value is present. From
. (Hy it as clear that a small value for Ap.i will produce a
staalt value for ¢; and a large value for ;.

For luture work, we propose 1o find an exact analytical so-
lation for the crror rates obtained when paraboloidal decision
boundaries occir. Although these boundaries are themselves
degenerate (requiring exactly equal class covariances), the same
cumputational issues arise when the hyperboloidal boundarics
are almost paraboloidal (i.c. when the relevant class covariances
arz close).
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