Pulsed laser deposition of multiwall carbon nanotube/NiO nanocomposite thin films

Brian Yalisi^{1,2}, Kittessa Roro¹, Ngcali Tile^{1,2} and Andrew Forbes^{1,2,3} ¹CSIR- National Laser Centre, Pretoria, SA ²School of Physics, University of KwaZulu Natal, Durban, SA ³School of Physics, University of Stellenbosch, Cape Town, SA SAIP 2011

Solar energy available in abundance, but....

Fundamentals of solar absorbers

Fundamentals of solar absorbers

Aluminium substrate

Due to their excellent properties CNTs are best candidate to be an absorbing elements in the composite

"stoichiometric transfer" makes PLD a suitable candidate for the composite growth

PLD Experimental set up

Experimental results

MWCNTs are decorated with NiO indicating successful composite formation

MWCNT

+

NiO

 Frage
 Margan
 Margan

MWCNT/NiO

=

The new composite material exhibit new vibrational properties different from the constituents

Typical reflectance spectrum shows better selectivity of our coatings

Nucleation and thin film growth

Ferguson et al.(2009) Phys. Lett rev., 256103

Our samples have shown excellent adhesion to the substrate

No change in solar absorptance suggesting our materials are promising for solar absorber application

THANK YOU!!!

