able energy (i.e. mean temperature) and human visitation frequency. Over 470 indigenous plant species have been recorded for the SOI and another 350 have been identified as alien. Plant invasion far outweighs plant extinctions. We determined how alien plants impact the flora of the SOI. Homogenisation processes were investigated at different spatial scales. We examined smaller islands groups, based on regional proximity (Southern Indian Ocean, Southern Pacific, etc). Homogenisation and differentiation were calculated as a change in percentage of Jaccard's index of island floras, resulting from invasion.

At the biogeographic scale we found that alien plant species have differentiated the flora of the SOI (-1.86%). Previous studies found that indigenous plants of the SOI showed significant nestedness. Supporting this, we found that homogenisation of island floras increased with distance between islands, due to the decreasing similarity of indigenous plants with island distance.

Homogenisation processes varied between island groups (or archipelagos). Due to plant invasion, the flora of the Southern Indian Ocean group has been highly differentiated (-22.95%) while Southern Atlantic group flora became homogenised (0.733%). These results highlight that homogenisation is driven by the initial similarity of biota.

The most widespread SOI aliens have a taxonomic affinity with globally widespread aliens. Many common alien plant species across the SOI are also common in very climatically different ecosystems. Our results highlight the impacts of aliens at a biogeographic scale, and how they influence biodiversity.

Acknowledgements: This work was supported by a South African Student Travel Grant provided by the Regional Section for Southern Africa of the IAVS.

Will a decreasing winter rainfall cause a shift in Succulent Karoo boundaries? Evidence from competition and vegetation-change analyses

N.N. Shiponeni¹, N. Allsopp², P.J. Carrick³, M. Vogel⁴, M.T. Hoffman³ & M. Keil⁵

1) Dept. of Biological Sciences, University of Namibia, Private Bag 13301, Windhoek 1000, Namibia; Email: nshiponeni@unam.na
2) SAEON, South African National Biodiversity Institute, Private Bag X7, Claremont, 7735, Cape Town, South Africa
3) Dept. of Botany, University of Cape Town, Private Bag X3, Rondebosch, 7701, Cape Town, South Africa
4) CSIR, P.O. Box 395, Pretoria, 0001, South Africa
The ecotone between the Namaqualand shrublands (Succulent Karoo biome) and Bushmanland Arid Grassland (Nama-Karoo biome) is characterised by transitional (ecotonal) physiognomy (grassland-shrubland mosaic, and grass and shrubs intermingling in arid communities). We discuss findings from studies of vegetation distribution patterns and processes at the ecotone, in the context of climate change and ecotone dynamic.

A reciprocal seedling transplant field experiment revealed that established grass vegetation competitively prevents the establishment of succulent shrub seedlings in grass communities. In communities where grass and succulent shrubs co-occur, a nearest-neighbour analysis technique revealed a stronger competitive impact from grass on the succulent shrubs. Higher competitive pressure from grasses on the succulent shrubs is important to grass-shrubs dynamics at the ecotone, particularly given the observed and predicted decline in winter rainfall, to which the succulents in Namaqualand are well adapted. It is inferred that the stronger competition from grass on the succulent shrubs reflects a reduction in water availability in the upper soil layer, where most of the root mass for succulent shrubs is concentrated. Furthermore, multi-temporal analyses of LANDSAT data between 1986 and 2006 revealed areas showing persistent signs of increasing grass cover, but not signs of a persistent increase in shrub cover.

We propose that changes brought about by a shift in seasonality of rainfall may already be manifest in the vegetation, as indicated from evidence of increasing grassiness. Such changes may be ascribed to competition for water and interactions between the different root morphologies at the ecotone.

Acknowledgements: This work was supported by a South African Student Travel Grant provided by the Regional Section for Southern Africa of the IAVS.

Changes in plant form and function across altitudinal and wetness gradients in wetlands of the Maloti-Drakensberg, South Africa

E.J.J. Sieben¹, C.D. Morris², D.C. Kotze³ & A.M. Muasya⁴

1) Dept. of Plant Sciences, University of the Free State, Qwaqwa Campus, Private Bag X13, Phuthaditjhaba, 9866, South Africa; Email: siebenej@qwa.uofs.ac.za
2) Range & Forage Unit (ARC-RFU), c/o Dept. of Grassland Science, University of KwaZulu-Natal, Pietermaritzburg Campus, Private Bag X01, Scottsville, 3209, Pietermaritzburg, South Africa