A Logic for Specifying Partially Observable Stochastic Domains

Gavin Rens1,2 and Thomas Meyer1,2 and Alexander Ferrein3 and Gerhard Lakemeyer3
{grens,tmeyer}@meraka.org.za {ferrein,gerhard}@cs.rwth-aachen.de

1CSIR Meraka Institute, Pretoria, South Africa
2University of KwaZulu-Natal, School of Computer Science, South Africa
3RWTH Aachen University, Informatik, Germany

Abstract

We propose a novel modal logic for specifying agent domains where the agent’s actuators and sensors are noisy, causing uncertainty in action and perception. The logic draws both on POMDP theory and logics of action and change. The development of the logic builds on previous work in which a simple multi-modal logic was augmented with first-class observation objects. These observations can then be used to represent the set of observations in a POMDP model in a natural way. In this paper, a subset of the simple modal logic is taken for the new logic, in which modal operators may not be nested. The modal operators are then extended with notions of probability. It will be shown how stochastic domains can be specified, including new kinds of axioms dealing with perception and a frame solution for the proposed logic.

1 Introduction and Motivation

In the physical real world, or in extremely complex engineered systems, things are not black-and-white. We live in a world where there can be shades of truth and degrees of belief. Part of the problem is that agents’ actuators and sensors are noisy, causing uncertainty in their action and perception. In this paper, we propose a novel logic that draws on partially observable Markov decision process (POMDP) theory and on logics for reasoning about action and change, combining both in a coherent language to model change and uncertainty.

Imagine a robot that is in need of an oil refill. There is an open can of oil on the floor within reach of its gripper. If there is nothing else in the robot’s gripper, it can grab the can (or miss it, or knock it over) and it can drink the oil by lifting the can to its ‘mouth’ and pouring the contents in (or miss its mouth and spill). The robot may also want to confirm whether there is anything left in the can by weighing its contents. And once holding the can, the robot may wish to represent that when ‘grasping’ the oil-can, there is a 5\% chance that it will knock over the oil-can. As another example, if the robot has access to information about the weight of an oil-can, it may want to represent the fact that the can weighs heavy with a 90\% chance in ‘situation A’, but that it is heavy with a 98\% chance in ‘situation B’.

Logic-based artificial intelligence for agent reasoning is well established. In particular, a domain expert choosing to represent domains with a logic can take advantage of the progress made in cognitive robotics [Levesque and Lake- meyer, 2008] to specify domains in a compact and transparent manner. Modal logic is considered to be well suited to reasoning about beliefs and changing situations. POMDP theory has proven to be a good general framework for formalizing dynamic, stochastic systems. A drawback of traditional POMDP models is that they cannot include information about general facts and laws. Moreover, succinct axioms describing the dynamics of a domain cannot be writ-
ten in POMDP theory. In this work, we develop a logic that will further our goal of combining modal logic with POMDP theory. That is, here we design a modal logic that can represent POMDP problems specifically for reasoning tasks in cognitive robotics (with domain axioms). The logic for actual decision-making will be developed in later work. To facilitate the correspondence between POMDPs and an agent logic, we require observation objects in the logic to correspond to the POMDPs’ set of observations. Before the introduction of the Logic of Actions and Observations (LAO) [Rens et al., 2010], no modal logic had explicit observations as first-class elements; sensing was only dealt with via special actions or by treating actions in such a way that they somehow get hold of observations. LAO is also able to accommodate models of nondeterminism in the actions and models of uncertainty in the observations. But in LAO, these notions are non-probabilistic.

In this paper we present the Specification Logic of Actions and Observations with Probability (SLAOP). SLAOP is derived from LAO and thus also considers observations as first-class objects, however, a probabilistic component is added to LAO for expressing uncertainty more finely. We have invented a new knowledge representation framework for our observation objects, based on the established approaches for specifying the behavior of actions.

We continue our motivation with a look at the related work, in Section 2. Section 3 presents the logic and Section 4 provides some of the properties that can be deduced. Section 5 illustrates domain specification with SLAOP, including a solution to the frame problem. Section 6 concludes the paper.

2 Related Work

Although SLAOP uses probability theory, it is not for reasoning about probability; it is for reasoning about (probabilistic) actions and observations. There have been many frameworks for reasoning about probability, but most of them are either not concerned with dynamic environments [Fagin and Halpern, 1994; Halpern, 2003; Shirazi and Amir, 2007] or they are concerned with change, but they are not actually logics [Boutilier et al., 2000; Bonet and Geffner, 2001]. Some probabilistic logics for reasoning about action and change do exist [Bacchus et al., 1999; Iocchi et al., 2009], but they lack some desirable attributes, for example, a solution to the frame problem, nondeterministic actions, or catering for sensing. There are some logics that come closer to what we desire [Weerd et al., 1999; Van Diggelen, 2002; Gabaldon and Lakemeyer, 2007; Van Benthem et al., 2009], that is, they are modal and they incorporate notions of probability, but they were not created with POMDPs in mind and they don’t take observations as first-class objects. One nonlogistical formalism for representing POMDPs [Boutilier and Poole, 1996] exploits structure in the problems for more compact representations. In (logic-based) cognitive robotics, such compact representation is the norm, for example, specifying only local effects of actions, and specifying a value related to a set of states in only one statement.

On the other hand, there are three formalisms for specifying POMDPs that employ logic-based representation [Wang and Schmolze, 2005; Sanner and Kersting, 2010; Poole, 1998]. But for two of these, the frameworks are not logics per se. The first [Wang and Schmolze, 2005] is based on Functional STRIPS, “which is a simplified first-order language that involves constants, functions, and predicate symbols but does not involve variables and quantification”. Their representations of POMDPs are relatively succinct and they have the advantage of using first-order predicates. The STRIPS-like formalism is geared specifically towards planning, though, and their work does not mention reasoning about general facts. Moreover, in their approach, action-nondeterminism is modeled by associating sets of deterministic action-outcomes per nondeterministic action, whereas SLAOP will model nondeterminism via action effects—arguably, ours is a more natural and succinct method. Sanner and Kersting [2010] is similar to the first formalism, but instead of Functional STRIPS, they use the situation calculus to model POMDPs. Although reified situations make the meaning of formulae perspicuous, and reasoning with the situation calculus, in general, has been accepted by the community, when actions are nondeterministic, ‘action histories’ cause difficulties in our work: The set of possible alternative histories is unbounded and some histories may refer to the same state [Rens, 2010, Chap. 6]. When, in future work, SLAOP is extended to express belief states (i.e., sets of possible alternative states), dealing with duplicate states will be undesirable.

The Independent Choice Logic [Poole, 1998] is relatively different from SLAOP; it is an extension of Probabilistic Horn Abduction. Due to its difference, it is hard to compare to SLAOP, but it deserves mentioning because it shares its application area with SLAOP and both are inspired by decision theory. The future may tell which logic is better for certain representations and for reasoning over the representations.

Finally, SLAOP was not conceived as a new approach to represent POMDPs, but as the underlying specification language in a larger meta-language for reasoning robots that include notions of probabilistic uncertainty. The choice of POMDPs as a semantic framework is secondary.

3 Specification Logic of Actions and Observations with Probability

SLAOP is a non-standard modal logic for POMDP specification for robot or intelligent agent design. The specification of robot movement has a ‘single-step’ approach in SLAOP. As such, the syntax will disallow nesting of modal operators; sentences with sequences of actions, like \([\text{grab}] [\text{drink}] [\text{replace}] [\text{drank}]\) are not allowed. Sentences will involve at most unit actions, like \([\text{grab}][\text{holding}] \lor [\text{drink}] [\text{drank}]\). Nevertheless, the ‘single-step’ approach is sufficient for specifying the probabilities of transitions due to action executions. The logic to be defined in a subsequent paper will allow an agent to query the probability of some propositional formula \(\varphi\) after an arbitrary sequence of actions and observations.
3.1 Syntax

The vocabulary of our language contains four sorts:

1. a finite set of fluents (alias propositional atoms) $\mathcal{P} = \{p_1, \ldots, p_n\}$.
2. a finite set of names of atomic actions $\mathcal{A} = \{\alpha_1, \ldots, \alpha_n\}$.
3. a finite set of names of atomic observations $\mathcal{O} = \{q_1, q_2, \ldots\}$ of rational numbers in \mathbb{Q}.
4. a countable set of names $\mathcal{Q} = \{q_1, q_2, \ldots\}$ of integers.

From now on, denote $\mathcal{Q} \cap (0, 1]$ as \mathbb{Q}°. We refer to elements of $\mathcal{A} \cup \mathcal{O} \cup \mathcal{Q}$ as constants. We are going to work in a multimodal setting, in which we have modal operators $[\alpha][\beta]$; one for each $\alpha \in \mathcal{A}$, and predicates $(\varsigma | \alpha)_{\mathcal{Q}}$ and $(\varsigma | \alpha)^{\circ}$, for each pair in $\mathcal{Q} \times \mathcal{A}$.

Definition 3.1 Let $\alpha, \alpha' \in \mathcal{A}$, $\varsigma, \varsigma' \in \mathcal{Q}$, $q \in (\mathcal{Q} \cap (0, 1])$, $r, v \in \mathcal{R}$ and $p \in \mathcal{P}$. The language of SLAOP, denoted $\mathcal{L}_{\text{SLAOP}}$, is the least set of Φ defined by the grammars:

$$\varphi ::= p \mid \top \mid \neg \varphi \mid \varphi \land \varphi.$$

$$\Phi ::= \varphi \mid [\alpha]_{\mathcal{Q}} \varphi \mid (\varsigma | \alpha)_{\mathcal{O}} \mid (\varsigma | \alpha)^{\circ} \mid \alpha = \alpha' \mid \varsigma = \varsigma'. $$

As usual, we treat \bot, \lor, \to and \leftrightarrow as abbreviations.

We shall refer to formulae $\varphi ::= p \mid \top \mid \neg \varphi \land \varphi$ as static. If a formula is static, it mentions no actions and no observations.

$[\alpha]_{\mathcal{Q}} \varphi$ is read ‘The probability of reaching a world in which φ holds after executing α, is equal to q’. $[\alpha]_1$ abbreviates $[\alpha]_{\mathcal{Q}}$. $\langle \alpha \rangle \varphi$ abbreviates $[\alpha]_{\mathcal{Q}} \neg \varphi$. $\langle \varsigma | \alpha \rangle_{\mathcal{Q}}$ can be read ‘The probability of perceiving ς is equal to q, given α was performed’. $(\varsigma | \alpha)^{\circ}$ abbreviates $(\varsigma | \alpha)_1$. $(\varsigma | \alpha)^{\circ}$ is read ‘It is possible to perceive ς, given α was performed’.

The definition of a POMDP reward function $R(a, s)$ may include not only the expected rewards for being in the states reachable from s via a, but may deduct the cost of performing a in s. To specify rewards and execution costs in SLAOP, we require Reward and Cost as special predicates. Reward(r) can be read ‘The reward for being in the current situation is r units’, and we read Cost(α, c) as ‘The cost for executing α is c units.’

Let $V_\mathcal{A} = \{v_1^\alpha, v_2^\alpha, \ldots\}$ be a countable set of action variables and $V_\mathcal{Q} = \{v_1^q, v_2^q, \ldots\}$ a countable set of observation variables. Let $\varphi_1^\alpha \wedge \ldots \wedge \varphi_n^\alpha$ be abbreviated by $(\forall \alpha)^n \varphi$, where φ_1^α means φ with all variables $v \in (V_\mathcal{A} \cup V_\mathcal{Q})$ appearing in it replaced by constant c of the right sort (action or observation). Quantification over observations is similar to that for actions; the symbol \exists is also available for abbreviation, with the usual meaning.

3.2 Semantics

While presenting our semantics, we show how a POMDP, as defined below, can be represented by a SLAOP structure.

A POMDP [Kaelbling et al., 1998] (for our purposes) is a tuple $(S, \mathcal{A}, T, R, \mathcal{O}, \mathcal{Q})$, where S is a finite set of states that the agent can be in; \mathcal{A} is a finite set of action agents; T is the state-transition function, representing, for each action, transition probabilities between states; R is the reward function, giving the expected immediate reward gained by the agent, for any state and agent action; \mathcal{O} is a finite set of observations the agent can experience of its environment; and \mathcal{Q} is the observation function, giving, for each action and the resulting state, a probability distribution over observations, representing the agent’s ‘trust’ in its observations.

Our semantics follows that of multi-modal logic K. However, SLAOP structures are non-standard in that they are extensions of structures with the form (W, R), where W is a finite set of worlds such that each world assigns a truth value to each atomic proposition, and R is a binary relation on W.

Intuitively, when talking about some world w, we mean a set of features (fluents) that the agent understands and that describes a state of affairs in the world or that describes a possible, alternative world. Let $w : \mathcal{P} \mapsto \{0, 1\}$ be a total function that assigns a truth value to each fluent. Let C be the set of all possible functions w. We call C the conceivable worlds.

Definition 3.2 A SLAOP structure is a tuple $\mathcal{S} = (W, R, O, \mathcal{Q}, \mathcal{U})$ such that

1. $W \subseteq C$: the set of possible worlds (corresponding to S);
2. R: a mapping that provides an accessibility relation $R_{\alpha} : W \times W \times \mathbb{Q}^\circ$ for each $\alpha \in \mathcal{A}$ (corresponding to T); Given some $w^- \in W$, we require that $\sum(w^-, w^+, pr) \in R_{\alpha} \Rightarrow pr = 1$; If (w^-, w^+, pr), $(w^-, w^+, pr') \in R_{\alpha}$, then $pr = pr'$;
3. O: a nonempty finite set of observations (corresponding to \mathcal{Q});
4. $N : \mathcal{Q} \mapsto O$ is a bijection that associates to each name in \mathcal{Q}, a unique observation in O;
5. Q: a mapping that provides a perceivability relation $Q_{\alpha} : O \times W \times \mathbb{Q}^\circ$ for each $\alpha \in \mathcal{A}$ (corresponding to O); Given some $w^+ \in W$, we require that $\sum(w^+, w^+, pr) \in Q_{\alpha} \Rightarrow pr = 1$; If (s, w^+, pr), $(s, w^+, pr') \in Q_{\alpha}$, then $pr = pr'$;
6. U: a pair (Re, Co) (corresponding to R), where $Re : W \mapsto \mathcal{Q}$ is a reward function and Co is a mapping that provides a cost function $Co_{\alpha} : W \mapsto \mathcal{Q}$ for each $\alpha \in \mathcal{A}$;
7. Observation-per-action condition: For all $\alpha \in \mathcal{A}$, if $\langle w, w', pr^\alpha \rangle \in R_{\alpha}$, then there is an $o \in O$ s.t. $(o, w', pr^\alpha) \in Q_{\alpha}$;
8. Nothing-for-nothing condition: For all w, if there exists no w' s.t. $(w, w', pr) \in R_{\alpha}$ for some pr, then $Co_{\alpha}(w) = 0$.

A corresponds to \mathcal{A} and \mathcal{O} to \mathcal{Q}. R_{α} defines which worlds w^+ are accessible via action α performed in world w^- and the transition probability $pr \in \mathbb{Q}^\circ$. Q_{α} defines which observations α are perceivable in worlds w^+ accessible via action α and the observation probability $pr \in \mathbb{Q}^\circ$. We prefer to exclude relation elements referring to transitions that cannot occur, hence why $pr \in \mathbb{Q}^\circ$ and not $pr \in \mathbb{Q} \cap [0, 1]$.

Because N is a bijection, it follows that $|O| = |\Omega|$ (we take $|X|$ to be the cardinality of set X). The value of the reward function $R_e(w)$ is a rational number representing the reward an agent gets for being in or getting to the world w. It must be defined for each $w \in W$. The value of the cost function $C_\alpha(w^-)$ is a rational number representing the cost of executing α in the world w^-. It must be defined for each action $\alpha \in \mathfrak{A}$ and each $w^- \in W$. Item 7 of Definition 3.2 implies that actions and observations always appear in pairs, even if implicitly. And item 8 seems reasonable; it states that any action that is ineffectual in world w incurs no cost for it in the world w.

Definition 3.3 (Truth Conditions) Let \mathcal{S} be a SLAOP structure, with $\alpha, \alpha' \in \mathfrak{A}$, $\zeta, \zeta' \in \Omega$, $q \in (\Omega \cap (0,1])$ or Ω^* as applicable, and $r \in \Omega$ or Ω as applicable. Let $p \in \mathfrak{P}$ and let φ be any sentence in \mathcal{L}_{SLAOP}. We say φ is satisfied at world w in structure \mathcal{S} (written $\mathcal{S}, w \models \varphi$) if and only if the following holds:

1. $\mathcal{S}, w \models p$ iff $w(p) = 1$ for $w \in W$;
2. $\mathcal{S}, w \models \top$ for all $w \in W$;
3. $\mathcal{S}, w \models \neg \varphi$ iff $\mathcal{S}, w \models \varphi$;
4. $\mathcal{S}, w \models \varphi \land \varphi'$ iff $\mathcal{S}, w \models \varphi$ and $\mathcal{S}, w \models \varphi'$;
5. $\mathcal{S}, w \models \alpha = \alpha'$ iff α and α' are identical;
6. $\mathcal{S}, w \models \zeta \leq \zeta'$ iff ζ and ζ' are identical;
7. $\mathcal{S}, w \models [\alpha]_q \varphi$ iff $\sum_{(w,w',p) \in R_{\alpha}, w'=w} p r = q$;
8. $\mathcal{S}, w \models (\zeta \mid \alpha)_q \varphi$ iff $(N(\zeta), w, q) \in Q_\alpha$;
9. $\mathcal{S}, w \models (\zeta \mid \alpha)\varphi$ iff $q \exists q_k (N(\zeta), w, q) \in Q_\alpha$;
10. $\mathcal{S}, w \models \text{Reward}(r)$ iff $R_e(w) = r$;
11. $\mathcal{S}, w \models \text{Cost}(\alpha, c)$ iff $C_\alpha(w) = c$.

The definition of item 7 comes from probability theory, which says that the probability of an event (φ) is simply the sum of the probabilities of the atomic events (worlds) where the event (φ) holds.

The formula φ is valid in a SLAOP structure (denoted $\mathcal{S} \models \varphi$) if $\mathcal{S}, w \models \varphi$ for every $w \in W$. We define global logical entailment (denoted $\mathcal{K} \models_{GS} \varphi$) as follows: for all \mathcal{S}, if $\mathcal{S} \models \bigwedge_{\psi \in \mathcal{K}} \psi$ then $\mathcal{S} \models \varphi$.

4 Some Properties

Remark 4.1 Item 7 of Definition 3.2, the observation-per-action condition, implies that if $\mathcal{S}, w \models (\alpha) \varphi$ then $\mathcal{S}, w' \models \varphi \rightarrow (\exists v')(v' \mid \alpha)\varphi$, for some $w, w' \in W$.

Remark 4.2 Item 8 of Definition 3.2, the nothing-for-nothing condition, implies that $\models_{SLAOP} (\forall v') \neg (v') \top \rightarrow \text{Cost}(v', 0)$.

In the terminology of probability theory, a single world would be called an atomic event. Probability theory says that the probability of an event e is simply the sum of the probabilities of the atomic events (worlds) where e holds. We are interested in noting the interactions of any two sentences of the form $[\alpha]_q \varphi$ being satisfied in the same world. Given the principle of the sum of atomic events, we get the following properties.

Proposition 4.1 Assume an arbitrary structure \mathcal{S} and some w in \mathcal{S}. Assume $\mathcal{S}, w \models [\alpha]_q \theta \land [\alpha]_q \psi$. Then

1. if $q = q'$ then no deduction can be made;
2. if $q \neq q'$ then $\mathcal{S}, w \models (\alpha) \neg (\theta \leftrightarrow \psi)$;
3. if $q > q'$ then $\mathcal{S}, w \models (\alpha) (\theta \leftrightarrow \psi)$;
4. if $q + q' > 1$ then $\mathcal{S}, w \models [\alpha] (\theta \leftrightarrow \psi)$;
5. $\mathcal{S}, w \models [\alpha] (\neg \theta \rightarrow \psi) \rightarrow [\alpha]_{q+y} (\theta \vee \psi)$;
6. if $q = 1$ then $\mathcal{S}, w \models [\alpha] (\theta \rightarrow \psi)$ and $\mathcal{S}, w \models [\alpha]_{q+y} (\theta \land \psi)$;
7. $\mathcal{S}, w \models [\alpha]_q \top$ is a contradiction if $q < 1$;
8. $\mathcal{S}, w \models (\alpha) \neg \varphi$ iff $\mathcal{S}, w \models [\alpha]_q \varphi$ and $q \neq 1$;
9. $\mathcal{S}, w \models \neg (\alpha) \neg \varphi$ iff $\mathcal{S}, w \models \neg [\alpha]_q \varphi$ and $q \neq 1$.

Proof:
Please refer to our draft report [Rens and Meyer, 2011]. Q.E.D.

It is worth noting that in the case when $q > q'$ (item 3), $\mathcal{S}, w \models (\alpha) (\neg \theta \land \psi)$ is also a consequence. But $(\alpha) (\theta \rightarrow \psi)$ logically implies $(\alpha) (\theta \land \psi)$.

Consider item 8 further: Suppose $[\alpha]_{q+q} \varphi$ where $q' = 1$ (in some structure at some world). Then, in SLAOP, one could represent $\mathcal{S}, w \models (\alpha) \neg \varphi$ as $\neg (\alpha) \neg \varphi$. But this is just $[\alpha]_{q+q} \varphi$. The point is that there is no different way to represent $[\alpha]_{q+q} \varphi$ in SLAOP (other than syntactically). Hence, in item 8, we need not cater for the case when $q = 1$.

Proposition 4.2 $\models_{SLAOP} (\alpha) \theta \land \neg (\alpha) \psi \rightarrow (\alpha) (\theta \leftrightarrow \psi)$.

Proof:
Let \mathcal{S} be any structure and w and \mathcal{S} a world in \mathcal{S}. Assume $\mathcal{S}, w \models (\alpha) \theta \land \neg (\alpha) \psi$. Assume $\mathcal{S}, w \models (\alpha) (\theta \leftrightarrow \psi)$. Then because $\mathcal{S}, w \models (\alpha) \theta$, one can deduce $\mathcal{S}, w \models (\alpha) \psi$. This is a contradiction, therefore $\mathcal{S}, w \models (\alpha) (\theta \leftrightarrow \psi)$. Hence, $\mathcal{S}, w \models (\alpha) \theta \land \neg (\alpha) \psi \rightarrow (\alpha) (\theta \leftrightarrow \psi)$. Q.E.D.

Proposition 4.3 Assume an arbitrary structure \mathcal{S} and an arbitrary world w in \mathcal{S}. There exists some constant q such that $\mathcal{S}, w \models [\alpha]_{q+q} \varphi$ if and only if $\mathcal{S}, w \models (\alpha) \varphi$.

Proof:
Assume an arbitrary structure \mathcal{S} and an arbitrary world w in it. Then $\mathcal{S}, w \models [\alpha]_{q+q} \varphi$ for some constant q

$\models \exists q \cdot \left(\sum_{(w', w, p) \in R_{\alpha}, w'=w} p r = q\right)$

$\models \exists q \cdot \left(\sum_{(w', w, p) \in R_{\alpha}, w'=w} p r = q\right) = 0$

$\models \exists q \cdot \left(\sum_{(w', w, p) \in R_{\alpha}, w'=w} p r \neq 1\right)$

$\models \exists q \cdot \left(\sum_{(w', w, p) \in R_{\alpha}, w'=w} p r \neq 1\right) = 1$

We are also interested in noting the interactions of any two percept events—which sentences of the form $(\zeta \mid \alpha)_{q} \varphi$ are satisfied in the same world. Only two consequences could be gleaned, given Definition 3.3, item 8:

Proposition 4.4 Assume an arbitrary structure \mathcal{S} and some w in \mathcal{S}.

1. If $\mathcal{S}, w \models (\zeta \mid \alpha) \theta \land (\zeta' \mid \alpha') \psi$ and ζ is the same observation as ζ', then $q = q'$.
2. If $\mathcal{G}, w \models (\varsigma \land \alpha)_q$ and ς is not the same observation as ς', then $q + q' \leq 1$.

Proof:
Directly from probability theory and algebra. Q.E.D.

Proposition 4.5 Assume an arbitrary structure \mathcal{G} and an arbitrary world w in it. There exists some constant q such that $\mathcal{G}, w \models (\varsigma \land \alpha)_q$ if and only if $\mathcal{G}, w \models (\varsigma \land \alpha)^\circ$.

Proof:
Let $N(\varsigma) = o$. Assume an arbitrary structure \mathcal{G} and an arbitrary world w in \mathcal{G}. Then $\mathcal{G}, w \models (\varsigma \land \alpha)_q$ for some constant q

$\Rightarrow \exists q \cdot (o, w, q) \in Q_o$

$\Rightarrow \mathcal{G}, w \models (\varsigma \land \alpha)^\circ$. Q.E.D.

The following is a direct consequence of Propositions 4.3 and 4.5.

Corollary 4.1 $\models_{SLAOP} [\alpha]_q \varphi \rightarrow \langle \alpha \rangle \varphi$ and $\models_{SLAOP} (\varsigma \land \alpha)_q \rightarrow (\varsigma \land \alpha)^\circ$.

Further Properties of Interest
Recall that $R^o = \{ (w, w') \mid (w, w', pr) \in R_o \}$. We now justify treating $[\alpha]_1$ as $[\alpha]$ of regular multi-modal logic.

Proposition 4.6 $[\alpha]_1$ is the regular $[\alpha]$. That is, $\mathcal{G}, w \models [\alpha]_1 \varphi$ if and only if for all w', if $wR^o_\alpha w'$, then $\mathcal{G}, w' \models \varphi$, for any structure \mathcal{G} and any world w in \mathcal{G}.

Proof:
$\mathcal{G}, w \models [\alpha]_1 \varphi$

$\Rightarrow (\sum_{(w, w', pr) \in R_o, \mathcal{G}, w' \models \varphi} pr) = 1$

$\Rightarrow \forall w' \cdot, if \exists pr \cdot (w, w', pr) \in R_o then \mathcal{G}, w' \models \varphi$

$\Rightarrow \forall w' \cdot, if wR^o_\alpha w' then \mathcal{G}, w' \models \varphi$. Q.E.D.

Proposition 4.7 $\langle \alpha \rangle$ has normal semantics. That is, $\mathcal{G}, w \models \langle \alpha \rangle \varphi$ if and only if there exist w', pr such that $(w, w', pr) \in R_\alpha$ and $\mathcal{G}, w' \models \varphi$.

Proof:
$\mathcal{G}, w \models \langle \alpha \rangle \varphi$

$\Rightarrow \mathcal{G}, w \models \neg [\alpha] \neg \varphi$

$\Rightarrow \mathcal{G}, w \models \neg [\alpha] \neg \varphi$

$\Rightarrow \mathcal{G}, w \models \neg [\alpha] \neg \varphi$

$\Rightarrow (\sum_{(w, w', pr) \in R_o, \mathcal{G}, w' \models \neg \varphi} pr) \neq 1$

$\Rightarrow \exists w', pr \cdot (w, w', pr) \in R_o and \mathcal{G}, w' \models \neg \varphi$

$\Rightarrow \exists w', pr \cdot (w, w', pr) \in R_o and \mathcal{G}, w' \models \varphi$. Q.E.D.

5 Specifying Domains with SLAOP

We briefly describe and illustrate a framework to formally specify—in the language of SLAOP—the domain in which an agent or robot is expected to live. Let BK be an agent’s background knowledge (including non-static formulae) and let IC be its initial condition, a static formula describing the world the agent finds itself in when it becomes active. In the context of SLAOP, we are interested in determining $BK \models_{GS} IC \rightarrow \varphi$, where φ is any sentence.

The agent’s background knowledge may include static law axioms which are facts about the domain that do not change. They have no predictable form, but by definition, they are not dynamic and thus exclude mention of actions. $\text{dank} \rightarrow \neg \text{full}$ is one static law axiom for the oil-can scenario. The other kinds of axioms in BK are described below.

5.1 The Action Description

In the following discussion, W^φ is the set of worlds in which static formula φ holds (the ‘models’ of φ). A formal description for the construction of conditional effect axioms follows. For one action, there is a set of axioms that take the form

$\phi_1 \rightarrow ([\alpha]_{q_11} \varphi_{i_1} \land \ldots \land [\alpha]_{q_{i_1}n} \varphi_{i_{1n}})$;

$\phi_2 \rightarrow ([\alpha]_{q_{i_12}} \varphi_{i_1} \land \ldots \land [\alpha]_{q_{i_2n}} \varphi_{i_{2n}})$; \ldots;

$\phi_j \rightarrow ([\alpha]_{q_{i_j1}} \varphi_{i_j} \land \ldots \land [\alpha]_{q_{i_jn}} \varphi_{i_{jn}})$,

where the ϕ_i and φ_{ik} are static, and where the ϕ_i are conditions for the respective effects to be applicable, and in any one axiom, each φ_{ik} represents a set W^φ_{ik} of worlds. The number q_{ik} is the probability that the agent will end up in a world in W^φ_{ik}, as the effect of performing α in the right condition ϕ_i. For axioms generated from the effect axioms (later in Sec. 5.1), we shall assume that φ_{ik} is a minimal disjunctive normal form characterisation of W^φ_{ik}. The following constraints apply.

- There must be a set of effect axioms for each action $\alpha \in \mathfrak{A}$.
- The ϕ_i must be mutually exclusive, i.e., the conjunction of any pair of conditions causes a contradiction. However, it is not necessary that $W^\varphi_{i_1 union \ldots union W^\varphi_{in} = C$.
- A set of effects φ_{i_1} to φ_{in} in any axiom i must be mutually exclusive.
- The transition probabilities q_{i_1}, \ldots, q_{in} of any axiom i must sum to 1.

The following sentence is an effect axiom for the grab action: $(\text{full} \land \neg \text{holding}) \rightarrow ([\text{grab}]_{0.7} (\text{full} \land \text{holding}) \land [\text{grab}]_{0.2} (\neg \text{full} \land \neg \text{holding}) \land [\text{grab}]_{0.1} (\text{full} \land \neg \text{holding}))$.

Executable axioms of the form $\phi_k \rightarrow \langle \alpha \rangle$ \mathfrak{T} must be supplied, for each action, where ϕ_k is a precondition conveying physical restrictions in the environment with respect to α.

The sentence $\neg \text{holding} \rightarrow \langle \text{grab} \rangle$ \mathfrak{T} states that if the robot is not holding the oil-can, then it is possible to grab the can.

A set of axioms must be generated that essentially states that if the effect or executability axioms do not imply executability for some action, then that action is inexecutable. Hence, given α, assume the presence of an executability closure axiom of the following form: $\neg (\phi_1 \lor \ldots \lor \phi_j \land \phi_k) \rightarrow \neg \langle \alpha \rangle$ \mathfrak{T}. The sentence $\neg \text{holding} \rightarrow \neg \langle \text{grab} \rangle$ \mathfrak{T} states that if the robot is holding the oil-can, then it is not possible to grab it.

Now we show the form of sentences that specify what does not change under certain conditions—conditional frame axioms. Let $\phi_i \rightarrow ([\alpha]_{q_{i_11}} \varphi_{i_1} \land \ldots \land [\alpha]_{q_{i_1n}} \varphi_{i_{1n}})$ be the i-th effect axiom for α. For each $\alpha \in \mathfrak{A}$, for each effect axiom i, do: For each fluent $p \in \mathfrak{B}$, if p is not mentioned in φ_{i_1} to φ_{in}, then $\phi_i \land p \rightarrow [\alpha] p$ and $\phi_i \land \neg p \rightarrow [\alpha] \neg p$ are part of the domain specification.

For our scenario, the conditional frame axioms of grab are

$(\text{full} \land \neg \text{holding} \land \text{dank}) \rightarrow [\text{grab}] \text{dank};$

$(\text{full} \land \neg \text{holding} \land \neg \text{dank}) \rightarrow [\text{grab}] \neg \text{dank};$

$(\neg \text{full} \land \neg \text{holding} \land \text{dank}) \rightarrow [\text{grab}] \text{dank};$

$(\neg \text{full} \land \neg \text{holding} \land \neg \text{dank}) \rightarrow [\text{grab}] \neg \text{dank}$.
Given frame and effect axioms, it may still happen that the probability to some worlds cannot be logically deduced. Suppose (for the purpose of illustration only) that the sentence

\[[\text{grab}]_{0.7}(\text{full} \land \text{holding}) \land [\text{grab}]_{0.3}(\text{full} \land \neg\text{holding} \land \text{drank}). \]

\[(1)\]
can be logically deduced from the frame and effect axioms in BK. Now, according to (1) the following worlds are reachable: (full \land holding \land drunk), (full \land holding \land \neg drank) and (full \land \neg holding \land drunk). The transition probability to (full \land \neg holding \land drunk) is 0.3, but what are the transition probabilities to (full \land holding \land drunk) and (full \land holding \land \neg drunk)? We have devised a process to determine such hidden probabilities via unification axioms [Rens and Meyer, 2011]. Uniform axioms describe how to distribute probabilities of effects uniformly in the case sufficient information is not available. It is very similar to what [Wang and Schmolze, 2005] do to achieve compact representation. A uniform axiom generated for (1) would be

\[[\text{grab}]_{0.35}(\text{full} \land \text{holding} \land \text{drank}) \land [\text{grab}]_{0.35}(\text{full} \land \text{holding} \land \neg \text{drank}) \land [\text{grab}]_{0.3}(\text{full} \land \neg \text{holding} \land \text{drank}). \]

The following axiom schema represents all the effect conditions closure axioms, \((\neg \phi_1 \lor \cdots \lor \phi_j) \land P \rightarrow [A]P\), where there is a different axiom for each substitution of \(\alpha \in \mathcal{A}\) for \(A\) and each literal for \(P\). For example, \((\text{holding} \land P) \rightarrow \neg[\text{grab}]P\), where \(P\) is any \(p \in \mathcal{Q}\) or its negation.

5.2 The Perception Description

One can classify actions as either ontic (physical) or sensory. This classification also facilitates specification of perceivability. Ontic actions have intentional ontic effects, that is, effects on the environment that were the main intention of the agent. grab, drink and replace are ontic actions. Sensory actions—weight in our scenario—result in perception, maybe with (unintended) side-effects.

Perceivability axioms specify what conditions must hold after the applicable action is performed, for the observation to be perceivable. Ontic actions each have perceivability axioms of the form \((\text{obsNil} \mid \alpha)\). Sensory actions typically have multiple observations and associated conditions for perceiving them. The probabilities for perceiving the various observations associated with sensory actions must be specified. The following set of perceivability axiom schemata does this:

\[
\begin{align*}
\phi_{11} & \rightarrow (s_1 \mid \alpha)_{q_{11}}; \\
\phi_{12} & \rightarrow (s_1 \mid \alpha)_{q_{12}}; \\
\cdots \\
\phi_{n1} & \rightarrow (s_n \mid \alpha)_{q_{n1}}; \\
\phi_{n2} & \rightarrow (s_n \mid \alpha)_{q_{n2}}; \\
\cdots \\
\phi_{nk} & \rightarrow (s_n \mid \alpha)_{q_{nk}},
\end{align*}
\]

where \(\{s_1, s_2, \ldots, s_n\}\) is the set of first components of all elements in \(Q_\alpha\) and the \(\phi_i\) are the conditions expressed as static formulae. The following constraints apply to these axioms:

- There must be a set of perceivability axioms for each action \(\alpha \in \mathcal{A}\).
- In the semantics section, item 7 of the definition of a SLAOP structure states that for every world reachable via some action, there exists an observation associated with the action, perceivable in that world. The perceivability axioms must adhere to this remark.

- For every pair of perceivability axioms \(\phi \rightarrow (\zeta \mid \alpha)_q\) and \(\phi' \rightarrow (\zeta' \mid \alpha')_{q'}\) for the same observation \(\zeta\), \(W^\phi\) must be disjoint from \(W^{\phi'}\).

- For every particular condition \(\phi\), \(\sum_{\phi \rightarrow (\zeta \mid \alpha)_q} q = 1\). This is so that \(\sum_{N(\zeta) \cap (N(\zeta') + pr) \in Q_\alpha} pr = 1\).

Some perceivability axioms for the oil-can scenario might be

\[
\begin{align*}
(\neg \text{full} \land \text{drank} \land \text{holding}) & \rightarrow (\text{obsLight} \mid \text{weight})_{0.7}; \\
(\neg \text{full} \land \text{drank} \land \text{holding}) & \rightarrow (\text{obsHeavy} \mid \text{weight})_{0.1}; \\
(\neg \text{full} \land \text{drank} \land \text{holding}) & \rightarrow (\text{obsMedium} \mid \text{weight})_{0.2}.
\end{align*}
\]

Perceivability axioms for sensory actions also state when the associated observations are possible. The following set of axioms states when the associated observations are impossible for sensory action weight of our scenario.

\[
\begin{align*}
((\neg \text{full} \land \text{drank} \land \neg \text{holding}) \lor (\text{full} \land \neg \text{drank} \land \neg \text{holding})) & \rightarrow \neg(\text{obsLight} \mid \text{weight})^\circ; \\
((\neg \text{full} \land \text{drank} \land \neg \text{holding}) \lor (\text{full} \land \neg \text{drank} \land \neg \text{holding})) & \rightarrow \neg(\text{obsHeavy} \mid \text{weight})^\circ; \\
((\neg \text{full} \land \text{drank} \land \neg \text{holding}) \lor (\text{full} \land \neg \text{drank} \land \neg \text{holding})) & \rightarrow \neg(\text{obsMedium} \mid \text{weight})^\circ.
\end{align*}
\]

The perceivability condition closure axiom schema is

\[
\begin{align*}
\neg(\phi_{11} \lor \cdots \lor \phi_{1j}) & \rightarrow \neg(s_1 \mid \alpha)^\circ; \\
\neg(\phi_{21} \lor \cdots) & \rightarrow \neg(s_2 \mid \alpha)^\circ; \\
\cdots \\
\neg(\phi_{nk} \lor \cdots) & \rightarrow \neg(s_n \mid \alpha)^\circ,
\end{align*}
\]

where the \(\phi_i\) are taken from the perceivability axioms. There are no perceivability closure axioms for ontic actions, because they are always tautologies.

Ontic actions each have unperceivability axioms of the form \((\forall v)(v^x \mid \alpha)^\circ \leftrightarrow v^x = \text{obsNil}\). The axiom says that no other observation is perceivable given the ontic action. That is, for any instantiation of an observation \(z'\) other than \(\text{obsNil}, \neg((z' \mid \alpha)\).

For sensory actions, to state that the observations not associated with action \(\alpha\) are always impossible given \(\alpha\) was executed, we need an axiom of the form \((\forall v^x)(v^x \neq o_1 \land v^x \neq o_2 \land \cdots \land v^x \neq o_n) \rightarrow \neg(v^x \mid \alpha)^\circ\). For the oil-can scenario, they are

\[
\begin{align*}
(\forall v^x)(v^x \neq \text{obsNil})^\circ \leftrightarrow v^x = \text{obsNil}; \\
(\forall v^x)(v^x \neq \text{drank})^\circ \leftrightarrow v^x = \text{obsNil}; \\
(\forall v^x)(v^x \neq \text{replace})^\circ \leftrightarrow v^x = \text{obsNil}; \\
(\forall v^x)(v^x \neq \text{obsHeavy} \land v^x \neq \text{obsLight} \land v^x \neq \text{obsMedium}) \rightarrow \neg(v^x \mid \text{weight})^\circ.
\end{align*}
\]

5.3 The Utility Function

A sufficient set of axioms concerning ‘state rewards’ and ‘action costs’ constitutes a utility function.

There must be a means to express the reward an agent will
get for performing an action in a world it may find itself—for
every action and every possible world. The domain ex-
pert must supply a set of reward axioms of the form \(\phi_i \to
\text{Reward}(r_i) \), where \(\phi_i \) is a condition specifying the world
in which the rewards can be got (e.g., \(\text{holding} \to \text{Reward}(5) \)
and \(\text{drink} \to \text{Reward}(10) \)).

The conditions of the reward axioms must identify worlds
that are pairwise disjoint. This holds for cost axioms too:

The domain expert must also supply a set of cost axioms
of the form \((\phi_i \land (\alpha \land \top)) \to \text{Cost}(\alpha, c_i) \), where \(\phi_i \)
is a condition specifying the world in which the cost \(c_i \) will be incurred for
action \(\alpha \). For example,

\[
\begin{align*}
(\text{full} \land (\text{grab} \land \top)) & \to \text{Cost}(\text{grab, 2}); \\
(\neg \text{full} \land (\text{grab} \land \top)) & \to \text{Cost}(\text{grab, 1}); \\
(\text{full} \land (\text{drink} \land \top)) & \to \text{Cost}(\text{drink, 2}); \\
(\neg \text{full} \land (\text{drink} \land \top)) & \to \text{Cost}(\text{drink, 1}); \\
(\text{replace} \land \top) & \to \text{Cost}(\text{replace, 0.8}).
\end{align*}
\]

5.4 A Frame Solution

The method we propose for avoiding generating all the frame
and effect closure axioms, is to write the effect and exec-
cutability axioms, generate the uniform axioms, and then gen-
erate a set of new kind of axioms representing the frame and
effect closure axioms much more compactly. By looking at
the effect axioms of a domain, one can define for each fluent
\(p \in \mathcal{P} \) a set \(\text{Cost}^+(p) \) of actions that can (but not nec-
necessarily always) cause \(p \) (as a positive literal) to flip to \(\neg p \),
and a set \(\text{Cost}^-(p) \) of actions that can (but not necessarily
always) causes \(\neg p \) (as a negative literal) to flip to \(p \). For
instance, \(\text{grab} \in \text{Cost}^+(\text{full}) \), because in effect axiom

\[
(\text{full} \land \neg \text{holding}) \to (\text{grab}_{1.7}(\text{full} \land \text{holding}) \land (\text{grab}_{0.2}(\neg \text{full} \land \neg \text{holding}) \land (\text{grab}_{0.1}(\text{full} \land \neg \text{holding})),
\]

\(\text{grab} \) flips \(\text{full} \) to \(\neg \text{full} \) (with probability 0.2). The axiom
also shows that \(\text{grab} \in \text{Cost}^-\text{cost} \) because it flips
\(\neg \text{holding} \to \text{holding} \) (with probability 0.7). The actions
mentioned in these sets may have deterministic or stochastic
effects on the respective propositions.

Furthermore, by looking at the effects axioms, \(\text{Cost} \)
functions can be defined: For each \(\alpha \in \text{Cost}^+(p) \),
\(\text{Cost}^+(\alpha, p) \) returns a sentence that represents the disjunction
of all \(\phi_i \) under which \(\alpha \) caused \(p \) to be a negative literal.
\(\text{Cost}^-(\alpha, p) \) is defined similarly.

Suppose that \(\text{Cost}^+(p) = \{ \alpha_1, \ldots, \alpha_m \} \) and
\(\text{Cost}^-(p) = \{ \beta_1, \ldots, \beta_n \} \). We propose, for any flu-
etent \(p \), a pair of compact frame axioms with schema

\[
(\forall v^\alpha)(v^\alpha \to (\alpha_1 \land \neg \text{Cost}^+(\alpha_1, p)) \to [\alpha_1]p \land \\
(\forall v^\alpha)(v^\alpha \to (\alpha_m \land \neg \text{Cost}^+(\alpha_m, p)) \to [\alpha_m]p \land \\
(\forall v^\alpha)(v^\alpha \neq \alpha_1 \land \cdots \land v^\alpha \neq \alpha_m) \to [v^\alpha]p)
\]

\(^1\)Such sets and functions are also employed by Demolombe,
Herzig and Varzinczak [Demolombe et al., 2003]. and

\[
(\forall v^\alpha)(v^\alpha = \beta_1 \land \neg \text{Cost}^-(\beta_1, p)) \to [\beta_1]p \land \\
(\forall v^\alpha)(v^\alpha = \beta_m \land \neg \text{Cost}^-(\beta_m, p)) \to [\beta_m]p \land \\
(\forall v^\alpha)(v^\alpha \neq \beta_1 \land \cdots \land v^\alpha \neq \beta_m) \to [v^\alpha]p)
\]

Claim 5.1 The collection of pairs of compact frame axioms
for each fluent in \(\mathcal{P} \) is logically equivalent to the collection
of all conditional frame axioms and effect closure axioms
generated by the processes presented above.

Proof:
Please refer to our draft report [Rens and Meyer, 2011].
Q.E.D.

There are in the order of \(|\mathcal{A}| \cdot 2|\mathcal{O}| \cdot D \) frame axioms,
where \(D \) is the average number of conditions on effects per
action (the \(\phi_i \)). Let \(N \) be the average size of \(|\text{Cost}^+(p)| \) or
\(|\text{Cost}^-(p)| \) for any \(p \in \mathcal{P} \). With the two compact frame
axioms (per fluent), no separate frame or effect closure axioms
are required in the action description (\(AD \)). If we con-
sider each of the most basic conjuncts and disjuncts as a unit
length, then the size of each compact frame axiom is \(O(N) \),
and the size of all compact frame axioms in \(AD \) is in the or-
der of \(N \cdot 2|\mathcal{P}| \). For reasonable domains, \(N \) will be much
smaller than \(|\mathcal{A}| \), and the size of all compact frame axioms is
thus much smaller than the size of all frame and effect closure
axioms (\(|\mathcal{A}| \cdot 2|\mathcal{O}| \cdot (D + 1) \)).

5.5 Some Example Entailment Results

The following entailments have been proven concerning the
oil-can scenario [Rens and Meyer, 2011]. \(BK^\mathcal{O} \) is the back-
ground knowledge of an agent in the scenario. To save space
and for nearer presentation, we abbreviate constants and flu-
teents by their initials.

\[
BK^\mathcal{O} \models_{GS} (f \land d \land \neg h) \to [g]_{0.7}(f \land d \land h); \\
BK^\mathcal{O} \models_{GS} (f \land \neg d \land h) \to \neg [d]_{0.2}(f \lor \neg d \lor \neg h); \\
BK^\mathcal{O} \models_{GS} (f \land (d \land h) \to \neg [d]_{0.2}(f \lor \neg d \lor \neg h);
\]

If the robot is in a situation where it is holding the full oil-can
(can is being held). In any world, there always exists an obser-
vation after the robot has drank.

\[
BK^\mathcal{O} \models_{GS} (d \land h) \to h; \\
BK^\mathcal{O} \models_{GS} (f \land (d \land h) \to \neg \text{Cost}(d, 3); \\
Assuming it is possible to drink and the can is full of oil, then
the cost of doing the drink action is not 3 units.

6 Concluding Remarks

We introduced a formal language specifically for robots that
must deal with uncertainty in affection and perception. It is
one step towards a general reasoning system for robots, not
the actual system.
POMDP theory is used as an underlying modeling formalism. The formal language is based on multi-modal logic and accepts basic principals of cognitive robotics. We have also included notions of probability to represent the uncertainty, but we have done so ‘minimally’, that is, only as far as is necessary to represent POMDPs for the intended application. Beyond the usual elements of logics for reasoning about action and change, the logic presented here adds observations as first-class objects, and a means to represent utility functions.

In an associated report [Rens and Meyer, 2011], the frame problem is addressed, and we provided a belief network approach to domain specification for cases when the required information is available.

The computational complexity of SLAOP was not determined, and is left for future work. Due to the nature of SLAOP structures, we conjecture that entailment in SLAOP is decidable. It’s worth noting that the three latter framework discussions in Section 2 [Wang and Schmolze, 2005; Sanner and Kersting, 2010; Poole, 1998] do not mention decidability results either.

The next step is to prove decidability of SLAOP entailment, and then to develop a logic for decision-making in which SLAOP will be employed. Domains specified in SLAOP will be used to make decisions in the ‘meta’ logic, with sentences involving sequences of actions and the epistemic knowledge of an agent. This will also show the significance of SLAOP in a more practical context. Please refer to our extended abstract [Rens, 2011] for an overview of our broader research programme.

References

