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Abstract. We use Cavalieri’s principle to develop a novel integration tech-

nique which we call Cavalieri integration. Cavalieri integrals differ from Rie-

mann integrals in that non-rectangular integration strips are used. In this
way we can use single Cavalieri integrals to find the areas of some interesting

regions for which it is difficult to construct single Riemann integrals.

We also present two methods of evaluating a Cavalieri integral by first
transforming it to either an equivalent Riemann or Riemann-Stieltjes integral

by using special transformation functions h(x) and its inverse g(x), respec-

tively. Interestingly enough it is often very difficult to find the transformation
function h(x), whereas it is very simple to obtain its inverse g(x).

1. Introduction

We will use Cavalieri’s principle to develop a novel integration technique which
can be used to almost effortlessly find the area of some interesting regions for which
it is rather difficult to construct single Riemann integrals. We will call this type
of integration Cavalieri integration. As the name suggests, Cavalieri integration is
based on the well known Cavalieri principle, stated here without proof [3]:

Theorem 1.1 (Cavalieri’s principle). Suppose two regions in a plane are included
between two parallel lines in that plane. If every line parallel to these two lines
intersects both regions in line segments of equal length, then the two regions have
equal areas.

∆x ∆x

A B

Figure 1. Simple illustration of Cavalieri’s principle in R2, with
area A = area B.

Inspired by Cavalieri’s principle, we pose the following question: what happens
when we replace the usual rectangular integration strip of the Riemann sum with
an integration strip that has a non-rectangular shape? It turns out that such a
formulation leads to a consistent scheme of integration with a few surprising results.
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By considering non-rectangular integration strips we form a Cavalieri sum which
can either be transformed to a normal Riemann sum (of an equivalent region) by
using a transformation function h(x), or to a Riemann-Stieltjes sum by using the
inverse transformation function g(x).

The main result of Cavalieri integration can be demonstrated by using a simple
example. Consider the region bounded by the x-axis and the lines f(x) = x,
a(y) = 1− y and b(y) = 4− y, shown in Figure 2.A. Notice that we cannot express
the area of this region as a single Riemann integral. We can however calculate the
area of this region by using a single Cavalieri integral:

Area =

∫ b(y)

a(y)

f(x) dx,

which is related to a Riemann integral and a Riemann-Stieltjes integral as follows:
∫ b(y)

a(y)

f(x) dx =

∫ b

a

f ◦ h(x) dx =

∫ b′

a′
f(x) dg(x).

For the present example we have the following result, since h(x) = x/2 and
g(x) = 2x: ∫ 4−y

1−y
x dx =

∫ 4

1

x

2
dx =

∫ 2

0.5

x d2x = 3.75.

The transformed regions f ◦ h(x) (corresponding to the Riemann formulation) and
f(x) · g′(x) (corresponding to the Riemann-Stieltjes formulation) are shown in Fig-
ure 2.B and Figure 2.C, respectively.
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Figure 2. Illustration of Cavalieri integration by example.

In this paper we will show how to find the transformation function h(x) and its
inverse g(x). We first give a brief overview of classical integration theory (Section 2),
followed by the derivation of Cavalieri integration in Section 3. Finally we present
a number of fully worked examples in Section 4, which clearly demonstrate how
Cavalieri integration can be applied to a variety of regions.

2. Classical Integration Theory

One of the oldest techniques for finding the area of a region is the method of
exhaustion, attributed to Antiphon [4]. The method of exhaustion finds the area of
a region by inscribing inside it a sequence of polygons whose areas converge to the
area of the region. Even though classical integration theory is a well established
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field there are still new results being added in modern times. For example, in the
very interesting paper by Ruffa [5] the method of exhaustion was generalized, which
lead to an integration formula that is valid for all Riemann integrable functions:

∫ b

a

f(x)dx = (b− a)

∞∑

n=1

2n−1∑

m=1

(−1)m+12−nf

(
a+

m(b− 1)

2n

)
.

Classical integration theory is however very different from the method of ex-
haustion, and is mainly attributed to Newton, Leibniz and Riemann. Newton
and Leibniz discovered the fundamental theorem of Calculus independently and
developed the mathematical notation for classical integration theory. Riemann for-
malized classical integration by introducing the concept of limits to the foundations
established by Newton and Leibniz. However, the true father of classical integration
theory is probably Bonaventura Cavalieri (1598–1647).

Cavalieri devised methods for computing areas by means of ‘indivisibles’ [1]. In
the method of indivisibles, a region is divided into infinitely many indivisibles, each
considered to be both a one-dimensional line segment, and an infinitesimally thin
two-dimensional rectangle. The area of a region is then found by summing together
all of the indivisibles in the region. However, Cavalieri’s method of indivisibles was
heavily criticized due to the “indivisible paradox”, described next [1].

2.1. Indivisible paradox. Consider a scalene triangle, ∆ABC, shown in Fig-
ure 3.A. By dropping the altitude to the base of the triangle, ∆ABC is partitioned
into two triangles of unequal area. If both the left (∆ABD) and right (∆BDC)
triangles are divided into indivisibles then we can easily see that each indivisible
(for example EF ) in the left triangle corresponds to an equal indivisible (for exam-
ple GH) in the right triangle. This would seem to imply that both triangles must
have equal area!
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Figure 3. Cavalieri’s indivisible paradox.

Of course this argument is clearly flawed. To see this, we can investigate it more
closely from a measure-theoretic point of view, as shown in Figure 3.B. Drawing a
strip of width ∆y through the triangle and calculating the pre-image of this strip
produces two intervals on the x-axis with unequal width. Letting ∆y → 0 produces
the two indivisibles EF and GH. However, it does not matter how small you make
∆y, the two interval lengths ∆x1 and ∆x2 will never be equal. In other words,
the area that EF and GH contributes to the total area of the triangle must be
different.

There is an even simpler way to renounce the above paradox: instead of using
indivisibles parallel to the y-axis, we use indivisibles parallel to BC, as shown in
Figure 3.C. Then each pair of corresponding indivisibles IJ in ∆ABD and JK
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in ∆BDC clearly has different lengths almost everywhere. Therefore the areas of
∆ABD and ∆BDC need not be the same.

This trick of considering indivisibles (or infinitesimals) other than those parallel
to the y-axis forms the basis of Cavalieri integration, in which non-rectangular
integration strips will be used.

3. Cavalieri Integration

We present a method of integration which we will refer to as Cavalieri integration,
in which the primary difference from ordinary Riemann integration is that more
general integration strips can be used. In some sense the Cavalieri integral can
also be seen as a generalization of the Riemann integral, in that the Cavalieri
formulation reduces to the ordinary Riemann integral when the integration strips
are rectangular. That is not to say that the Cavalieri integral extends the class of
Riemann-integrable functions. In fact, the class of Cavalieri-integrable functions
is exactly equivalent to the class of Riemann-integrable functions. However, the
Cavalieri integral allows us to express the areas of some regions as single integrals
for which we would have to write down multiple ordinary Riemann integrals.

3.1. Preliminaries and Definitions. In order to develop (and clearly present)
the Cavalieri integration theory, a number of definitions must first be introduced.
Also note that we will restrict our attention to integration in R2, with coordinate
axes x and y.

Definition 3.1 (Translational function). A continuous function a(y) is called a
translational function with respect to a continuous function f(x) on the interval
[a, b] if {a ◦ f(x) + z = x} is singular, for every z ∈ (b− a) and a(0) = a.

The above definition says that any continuous function a(y) which intersects a
continuous function f(x) exactly once for an arbitrary translation on the x-axis
within the interval [a, b] is called a translational function. Two examples of trans-
lational functions are shown in Figure 4.A and Figure 4.B, and Figure 4.C presents
an example of a linear function a(y) which is not translational with respect to f(x).
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Figure 4. Examples of translational, and non-translational functions.

Definition 3.2 (Cavalieri region R). Let R be any region (in R2) bounded by a
nonnegative function f(x) (which is continuous on the interval [a′, b′]), the x-axis,
and the boundary functions a(y) and b(y), where a(y) is a translational function,
b(y) := a(y) + (b− a). Furthermore we have that a′ and b′ are the unique x-values
for which a(y) and b(y) intersect f(x), respectively; and a = a(0) and b = b(0).
Then R is called the Cavalieri region bounded by f(x),a(y), b(y) and the x-axis.
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Figure 5. A Cavalieri region R with integration boundaries a(y)
and b(y), and an equivalent region E with integration boundaries
x = a and x = b.

The Cavalieri integral (which we will formally define in Definition 3.20) can be
related to an ordinary Riemann integral through a particular transformation h,
which we will consider in some detail below. It may be useful to think of this
transformation (at least intuitively) as transforming any Cavalieri region R into an
equivalent region E with equal area (see Figure 5), but with integration boundaries
x = a and x = b. That is, the area of the equivalent region E can easily be expressed

in terms of an ordinary definite integral
∫ b
a
φ(x) dx.

Definition 3.3 (Transformation function h). Let a(y) be a translational function.
The mapping h : [a, b]→ [a′, b′], which maps x1i ∈ [a, b] to x2i ∈ [a′, b′], is defined as
h(x1i ) := {x2i ∈ [a′, b′] : a(f ◦ x2i ) + [x1i − a] = x2i , a = a(0)}, which we will refer to
as the transformation function (we will prove that it is indeed a function below).

Proposition 3.4. The mapping h : [a, b]→ [a′, b′] is a function.

Proof. That h is a function follows directly from the definition of a translational
function (Definition 3.1), since we know that {a ◦ f(x2i ) + [x1i − a] = x2i } must be
singular for every [x1i − a] ∈ (b − a). That is, h maps every point x1i ∈ [a, b] to
exactly one point x2i ∈ [a′, b′]. �

Proposition 3.5. The transformation function h is strictly monotone on [a, b].

Proof. Let R be a Cavalieri region bounded by f(x), a(y), b(y) and the x-axis, as
shown in Figure 6. Two possibilities may arise.

Case I: {a ◦ f(x) = x} = a′ ⇒ h is strictly increasing:
Consider any translation of a(y), a(y) + ∆c, s.t. a+ ∆c ∈ (a, b). Since the domain
D(f) ≥ a′, and since a(y) intersects f(x) at a′, the translation a(y) + ∆c cannot
also intersect f(x) at a′. Instead, we clearly have that a(y) + ∆c must intersect
f(x) at a point c′ > a′ on D(f).

We now define A as the region bounded by the translational functions a(y) and
a(y) + ∆c, and the lines y = a′ and y = b′ (see Figure 6). The continuous function
f(x) on the interval [a′, b′] must lie within the region A, since any point of f(x)
outside of this region would imply that a(y) cannot be a translational function.
That is, if f(x) has points outside of region A, then there exists a translation of
a(y) s.t. a(y) intersects f(x) at more than one point.
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Now consider any translation of a(y), a(y)+∆d, where ∆d > ∆c and ∆d ∈ (a, b].
Suppose that a(y) + ∆d induces a point d′, with a′ < d′ < c′. That is, a(y) + ∆d
intersects f(x) at some point in region A.

The functions a(y) + ∆c and a(y) + ∆d are continuous on the interval y ∈ [0, γ],
where γ := {a ◦ f(x) + ∆d = x} (in fact, any translational function must be
continuous on y ∈ R). Now let Ψ := a(y) + ∆c −

(
a(y) + ∆d

)
, which is again a

continuous function on [0, γ]. Since c < d and c′ > d′ by assumption, it follows
that Ψ(0) < 0 and Ψ(γ) > 0. From the intermediate value theorem it follows that
there exists a point α ∈ [0, γ] s.t. Ψ(α) = 0. That is, a(α) + ∆c = a(α) + ∆d.
But this is impossible, since a(y) + ∆d is a translation of a(y) + ∆c. Therefore
c′ = h(c) < h(d) = d′.

Since ∆c is arbitrary and d > c⇒ h(d) > h(c), h is strictly increasing on [a, b].
Case II: {a ◦ f(x) = x} = b′ ⇒ h is strictly decreasing:

The second case can be proved in a similar manner as Case I above, in which case h
is a strictly decreasing function with the order of the induced partition P2 reversed.

Since h is either strictly increasing (Case I) or strictly decreasing (Case II), it is
strictly monotone on [a, b]. �

a′ d′ c′ a

α

c d b′ b

y

x

f(x)

a(y) b(y)

γ
A

∆c
∆d

a(y) + ∆c

a(y) + ∆d

Figure 6. Sketch for the proof of Proposition 3.5.

Proposition 3.6. The transformation function h is continuous on [a, b].

Proof. Choose an arbitrary value x1∗ ∈ [a, b] such that x1∗ = a+c. We can now define
a sequence (x1i ) with x1i = x1∗+ 1

i , ∀ i ∈ N. Now (x1i )→ x1∗ as i→∞. The sequence

of functions
(
a(y) + [x1i − x1∗ + c]

)
has x-intercepts equal to (x1i ). The mapping h

now generates a new sequence (x2i ) s.t. ∀ i, x2i = {x2i : a◦f(x2i )+[x1i −x1∗+c] = x2i }.
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Now taking the limit as i→∞
lim
i→∞

x2i = lim
i→∞

[a ◦ f(x2i ) + (x1i − x1∗ + c) = x2i ]

= lim
i→∞

[a ◦ f(x2i ) + (
1

i
+ c) = x2i ]

= [a ◦ f(x2i ) + ( lim
i→∞

1

i
+ c) = x2i ]

= [a ◦ f(x2i ) + c) = f(x2i )]

= [a(x2i ) + [x1∗ − a]) = f(x2i )]

= x2∗

This shows that x2i → x2∗ as x1i → x1∗ assuming [a ◦ f(x2i ) + [x1∗ − a]) = f(x2i )] has
one unique solution, which must be the case since a(y) is a translational function.
The function h must be continuous at x1∗ since x2i → x2∗ as x1i → x1∗. Since x1∗ is
arbitrary, h is a continuous function on [a, b]. �

Proposition 3.7. The transformation function h is bijective on [a, b].

Proof. That h is injective on [a, b] follows from the fact that h is strictly monotone
on [a, b] (by Proposition 3.5). Furthermore h is clearly surjective on [a, b], since it
is continuous on [a, b] (by Proposition 3.6). Since h is both injective and surjective
on [a, b], h is also bijective on [a, b]. �

3.2. Derivation of Cavalieri Integration. Since we want to derive the Cavalieri
integral – which uses more general integration strips than the rectangles of the
Riemann integral – we first need to formally define valid integration strips.

Definition 3.8 (Integration strip). An integration strip is an area bounded below
by the x-axis, on the left by a translational function a(y) w.r.t. f(x) on [a, b], from
the right by b(y) = a(y) + (b− a), and from above by the line y = c.

An example of three integration strips is given in Figure 7, where Figure 7.a
corresponds to the usual Riemann integration strip.

(a) (b) (c)

y = c

x

a(y)
b(y)

a(y)
b(y)

a(y)
b(y)

Figure 7. Three integration strips with integration boundaries
a(y) and b(y).

From Cavalieri’s principle it follows that we can easily compute the area of any
integration strips.

Proposition 3.9 (Cavalieri’s principle for integration strips.). The area of an in-
tegration strip is equal to

A = (b− a)c.
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Proof. The area of an integration strip can be determined by calculating the area
between the curves b(y) and a(y) with the definite integral

A =

∫ c

0

b(y)− a(y) dy

=

∫ c

0

(b− a) dy

= (b− a)y
∣∣∣
c

0

= (b− a)c.

�

In order to find the area of a Cavalieri region R, we need to associate two related
partitions P1 and P2 to the region R.

Definition 3.10. A partition of [a, b] is a finite set P of points x0, x1, . . . , xn such
that a = x0 < x1 < · · · < xn = b. We describe P by writing:

P = {x0, x1, . . . , xn}.
The n subintervals into which a partition P = {x0, x1, . . . , xn} divides [a, b] are

[x0, x1], [x1, x2], . . . , [xn−1, xn]. Their lengths are x1 − x0, x2 − x1, . . . , xn − xn−1,
respectively. We denote the length xk − xk−1 of the kth subinterval by ∆xk. Thus

∆xk = xk − xk−1
and we define

∆x0 := 0.

We now choose any partition P1 = {x10, x11, . . . , x1n} of [a, b], and we inscribe over
each subinterval derived from P1 the largest integration strip that lies inside the
Cavalieri region R. Since both boundaries of any integration strip are necessarily
translations of the translational function a(y), we can apply the transformation
function h to the partition P1. If the transformation function h is strictly increasing,
the restriction of h to the partition P1 induces a new partition P2 = {x20, x21, . . . , x2n}
as shown in Figure 8. Otherwise, if h is strictly decreasing, the restriction of h
induces a reversed partition P2 = {x2n, x2n−1, . . . , x20}. In the rest of this document
we will assume that h is strictly increasing, without any loss of generality.

y

f

x
a = x10 x11 x12 x13 · · ·x1k−1 x1k x1n = b

R1 R2 R3 Rk Rn

∆x1k

mk · · ·· · ·

x1n−1· · ·

x20
x21

x22 x23 x2k−1 x2k

x2n−1

x2n

Figure 8. The lower Cavalieri sum of f(x) for a partition P1 on [a, b].
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Since we have assumed that f is continuous and nonnegative on [a′, b′], we know
from the Maximum-Minimum theorem that for each k between 1 and n there exists
a smallest value mk of f on the kth subinterval [x2k−1, x

2
k]. If we choose mk as

the height of the kth integration strip Rk, then Rk will be the largest (tallest)
integration strip that can be inscribed in R over [x1k−1, x

1
k]. Doing this for each

subinterval, we create n inscribed strips R1, R2, . . . , Rn, all lying inside the region
R. For each k between 1 and n the strip Rk has base [x1k−1, x

1
k] with width ∆x1k

and has height mk. Hence the area of Rk is the product mk∆x1k (by Cavalieri’s
principle). The sum

L(P1, f, h) =

n∑

k=1

mk∆x1k, (lower Cavalieri sum)

where

mk = inf
x
f(x), h(x1i−1) = x2i−1 ≤ x ≤ x2i = h(x1i )

is called the lower Cavalieri sum and should be no larger than the area of R. The
lower Cavalieri sum is represented graphically in Figure 8. Recall that the lower
Riemann sum is defined similarly, that is

L(P, f) =

n∑

k=1

mk∆xk, (lower Riemann sum)

where

mk = inf
x
f(x), xi−1 ≤ x ≤ xi

and P = {x0, x1, . . . , xn} is a partition on [a, b], and the integration strips are
rectangular. The lower Riemann sum is represented graphically in Figure 9.

y

f

x
a = x0 x1 x2 x3 · · ·xk−1 xk · · ·xn−1 xn = b

R1 R2 R3 Rk Rn

∆xk

mk · · ·· · ·R1

Figure 9. The Lower Riemann Sum of f(x) for a partition P on [a, b].

Irrespective of how we define the area of the Cavalieri region R, this area must be
at least as large as the lower Cavalieri sum L(P1, f, h) associated with any partition
P1 of [a, b].

By a procedure similar to the one that involves inscribing integration strips to
compute a lower Cavalieri sum, we can also circumscribe integration strips and
compute an upper Cavalieri sum as shown in Figure 10.

Let P1 = {x10, x11, . . . , x1n} be a given partition of [a, b], and let f be continuous
and nonnegative on [a′, b′]. The Maximum-Minimum Theorem implies that for each
k between 1 and n there exists a largest value Mk of f on the kth integration strip
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y

f

x
a = x10 x11 x12 x13 · · ·x1k−1 x1k x1n = b

R1 R2 R3 Rk Rn

∆x1k

Mk · · ·· · ·

x1n−1· · ·

x20
x21

x22 x23 x2k−1 x2k

x2n−1

x2n

Figure 10. The upper Cavalieri sum of f(x) for a partition P1 on [a, b].

Rk, such that Rk will be the smallest possible strip circumscribing the appropriate
portion of R. The area of Rk is Mk∆x1k, and the sum

U(P1, f, h) =

n∑

k=1

Mk∆x1k, (upper Cavalieri sum)

where

Mk = sup
x
f(x), h(x1i−1) = x2i−1 ≤ x ≤ x2i = h(x1i )

is called the upper Cavalieri sum of f associated with the partition P1. The up-
per Cavalieri sum is represented graphically in Figure 10. Recall that the upper
Riemann sum is defined similarly, that is

U(P, f) =

n∑

k=1

Mk∆xk, (upper Riemann sum)

where

Mk = sup
x
f(x), xi−1 ≤ x ≤ xi

and P = {x0, x1, . . . , xn} is a partition on [a, b], and the integration strips are
rectangular. The upper Riemann sum is represented graphically in Figure 11.

y

f

x
a = x0 x1 x2 x3 · · ·xk−1 xk · · ·xn−1 xn = b

R1 R2 R3 Rk Rn

∆xk

Mk · · ·· · ·

Figure 11. The upper Riemann sum of f(x) for a partition P on [a, b].

Irrespective of how we define the area of the Cavalieri region R, this area must
be no larger than the upper Cavalieri sum U(P1, f, h) for any partition P1 of [a, b].
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The assumption that f must be nonnegative on [a′, b′] can now be dropped.
Assuming only that f is continuous on [a′, b′], we still define the lower and upper
Cavalieri sums of f for a partition P1 of [a, b] by

L(P1, f, h) =

n∑

k=1

mk∆x1k

and

U(P1, f, h) =

n∑

k=1

Mk∆x1k,

where for any integer k between 1 and n, mk and Mk are the minimum and maxi-
mum values of f on [x2k−1, x

2
k], respectively.

Remark 3.11. In the rest of this document we will repeatedly make use of the
following notation. We will let f(x) be any continuous function on the interval
[a′, b′]. We will also assume that a(y) is some translational function w.r.t. f(x)
on the interval [a, b], with which we’ll associate a partition P1. Furthermore, we
will let h denote the transformation function which maps the partition P1 ⊂ [a, b]
to the partition P2 ⊂ [a′, b′]. Of course, b(y) must be a particular translation on
the x-axis of a(y), such that b(y) = a(y) + (b − a), where a = a(0) and b = b(0)
as defined previously. Finally, we have that a′ and b′ are the unique x-values for
which a(y) and b(y) intersect f(x), respectively.

Definition 3.12 (Cavalieri sum). For each k ∈ N from 1 to n, let t2k be an arbitrary
number in [x2k−1, x

2
k] ⊆ [a′, b′]. Then the sum

C(P1, f, h) =

n∑

k=1

f(t2k)∆x1k = f(t21)∆x11 + f(t22)∆x12 + · · ·+ f(t2n)∆x1n

is called a Cavalieri sum for f on [a, b].

Recall that a Riemann sum for f on [a, b] is defined similarly, that is

R(P, f) =

n∑

k=1

f(tk)∆xk = f(t1)∆x1 + f(t2)∆x2 + · · ·+ f(tn)∆xn,

where P = {x0, x1, . . . , xn} is any partition of [a, b], and tk is an arbitrary number
in [xk−1, xk] ⊆ [a, b].

Proposition 3.13. The lower Cavalieri sum L(P1, f, h) is equivalent to the lower
Riemann sum L(P1, f ◦ h), that is

(3.1) L(P1, f, h) = L(P1, f ◦ h)

and the upper Cavalieri sum U(P1, f, h) is equivalent to the upper Riemann sum
U(P1, f ◦ h):

(3.2) U(P1, f, h) = U(P1, f ◦ h).

Proof. We first consider the lower sums of (3.1). Since the transformation function
h is strictly monotone, continuous and bijective on [a, b] we can choose values of x2i
to minimize the value of f in the interval [x2k−1, x

2
k] and so minimizing f ◦ h in the

interval [x1k−1, x
1
k]. The proof of (3.2) is similar. �
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Remark 3.14. Proposition 3.13 will be used repeatedly to prove many of the
remaining results for Cavalieri integration, since existing results for Riemann sums
will hold trivially for the corresponding Cavalieri sums.

We now give two important results from Riemann integration theory.

Proposition 3.15. Suppose P = {x0, x1, . . . , xn} is a partition of the closed inter-
val [a, b], and f a bounded function defined on that interval. Then we have:

• The lower Riemann sum is increasing with respect to refinements of par-
titions, i.e. L(P ′, f) ≥ L(P, f) for every refinement P ′ of the partition
P.
• The upper Riemann sum is decreasing with respect to refinements of par-

titions, i.e. U(P ′, f) ≤ U(P, f) for every refinement P ′ of the partition
P.
• L(P, f) ≤ R(P, f) ≤ U(P, f) for every partition P.

Proof. The proof is taken from [6]. The last statement is simple to prove: take
any partition P = {x0, x1, . . . , xn}. Then inf{f(x), xk−1 ≤ x ≤ xk} ≤ f(tk) ≤
sup{f(x), xk−1 ≤ x ≤ xk} where tk is an arbitrary number in [xk−1, xk] and k =
1, 2, . . . , n. That immediately implies that L(P, f) ≤ R(P, f) ≤ U(P, f). The
other statements are somewhat trickier. In the case that one additional point t0
is added to a particular subinterval [xk−1, xk], let ck = sup f(x) in the interval
[xk−1, xk], Ak = sup f(x) in the interval [xk−1, t0], Bk = sup f(x) in the interval
[x0, xk]. Then ck ≥ Ak and ck ≥ Bk so that:

ck(xk − xk−1) = ck(xk − t0 + t0 − xk−1)

= ck(xk − t0) + ck(t0 − xk−1)

≥ Bk(xk − t0) +Ak(x0 − tk−1),

which shows that if P = {x0, x1, . . . , xk, xk−1, . . . , xn} and P ′ = {x0, x1, . . . , xk, t0,
xk−1, . . . , xn} then U(P ′, f) ≤ U(P, f). The proof for a general refinement P ′ of P
uses the same idea plus an elaborate indexing scheme. No more details should be
necessary. The proof for the statement regarding the lower sum is analogous. �

Proposition 3.16. Let f be continuous on [a, b]. Then there is a unique number
I satisfying

L(P, f) ≤ I ≤ U(P, f)

for every partition P of [a, b].

Proof. The proof is taken from [2]. From Proposition 3.15 it follows that every lower
sum of f on [a, b] is less than or equal to every upper sum. Thus the collection
L of all lower sums is bounded above (by an upper sum) and the collection U of
all upper sums is bounded below (by any lower sum). By the Least Upper Bound
Axiom, L has a least upper bound L and U has a greatest lower bound G. From
our preceding remarks it follows that

L(P, f) ≤ L ≤ G ≤ U(P, f)

for each partition P of [a, b]. Moreover, any number I satisfying

L(P, f) ≤ I ≤ U(P, f)

for each partition P of [a, b] must satisfy

L ≤ I ≤ G
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since L is the least upper bound of the lower sums and G is the greatest lower
bound of the upper sums. Hence to complete the proof of the theorem it is enough
to prove that L = G. Let ε > 0. Since f is continuous on [a, b], it follows that f is
uniformly continuous on [a, b]. Thus there is a δ > 0 such that if x and y are in [a, b]
and |x− y| < δ, then |f(x)− f(y)| < ε

b−a . Let P = {x0, x1, . . . , xn} be a partition

of [a, b] such that ∆xk < δ for 1 ≤ k ≤ n, and let Mk and mk be, respectively, the
largest and smallest values of f on [xk−1, xk]. Then

U(P, f)− L(P, f) =

n∑

k=1

Mk∆xk −
n∑

k=1

mk∆xk

=

n∑

k=1

(Mk −mk)∆xk

<
ε

b− a
n∑

k=1

∆xk

=
ε

b− a (b− a)

= ε.

Since L(P, f) ≤ L ≤ G ≤ U(P, f), it follows that 0 ≤ G−L ≤ U(P, f)−L(P, f) ≤
ε. Since ε was arbitrary, we conclude that L = G. �

Definition 3.17 (Definite Riemann integral). Let f be continuous on [a, b]. The
definite Riemann integral of f from a to b is the unique number I satisfying

L(P, f) ≤ I ≤ U(P, f)

for every partition P of [a, b]. This integral is denoted by
∫ b

a

f(x) dx.

We now state (and prove) the equivalent of Proposition 3.15 for lower and upper
Cavalieri sums:

Proposition 3.18. We clearly have:

• The lower Cavalieri sum is increasing with respect to refinements of parti-
tions, i.e. L(P ′1, f, h) ≥ L(P1, f, h) for every refinement P ′1 of the partition
P1.

• The upper Cavalieri sum is decreasing with respect to refinements of parti-
tions, i.e. U(P ′1, f, h) ≤ U(P1, f, h) for every refinement P ′1 of the partition
P1.

• L(P1, f, h) ≤ C(P1, f, h) ≤ U(P1, f, h) for every partition P1.

Proof. The proof follows trivially from Proposition 3.13 and Proposition 3.15 (since
every Cavalieri sum corresponds to an equivalent Riemann sum). �

Proposition 3.19. Let f be continuous on [a′, b′]. Then there is a unique number
I satisfying

L(P1, f, h) ≤ I ≤ U(P1, f, h)

for every partition P1 of [a, b].

Proof. The proof follows trivially from Proposition 3.13 and Proposition 3.16. �
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We can now finally define the Cavalieri integral:

Definition 3.20 (Definite Cavalieri integral). Let f be continuous on [a′, b′]. The
definite Cavalieri integral of f(x) from a(y) to b(y) is the unique number I satisfying

L(P1, f, h) ≤ I ≤ U(P1, f, h)

for every partition P1 of [a, b]. This integral is denoted by
∫ b(y)

a(y)

f(x) dx.

Definition 3.21. Let R be any Cavalieri region as given in Definition 3.2 then the
area A of the region R is defined to be

A =

∫ b(y)

a(y)

f(x) dx.

Proposition 3.22. The following Cavalieri and Riemann integrals are equivalent:
∫ b(y)

a(y)

f(x) dx =

∫ b

a

f ◦ h(x) dx.

Proof. By noting that L(P1, f ◦ h) = L(P1, f, h) ≤ I ≤ U(P1, f, h) = U(P1, f ◦ h),
the proof follows trivially from Proposition 3.13, Proposition 3.16 and Proposi-
tion 3.19. �

Theorem 3.23. For any ε > 0 there is a number δ > 0 such that the following
statement holds: If any subinterval of P1 has length less than δ, and if x2k−1 ≤ t2k ≤
x2k for each k between 1 and n, then the associated Cavalieri sum

∑n
k=1 f(t2k)∆x1k

satisfies. ∣∣∣∣∣

∫ b(y)

a(y)

f(x) dx−
n∑

k=1

f(t2k)∆x1k

∣∣∣∣∣ < ε.

Proof. This proof was adapted from [2]. For any ε > 0 choose δ > 0 such that if x
and y are in [a′, b′] then |x− y| < δ, then |f(x)− f(y)| < ε

b′−a′ . If P1 is chosen so

that ∆x1k < δ for each k, then by Proposition 3.19,

U(P1, f, h)− L(P1, f, h) ≤ ε.
Moreover, if x2k−1 ≤ t2k ≤ x2k for 1 ≤ k ≤ n, then

mk ≤ f(t2k) ≤Mk.

It follows that

L(P1, f, h) =

n∑

k=1

mk∆x1k ≤
n∑

k=1

f(t2k)∆x1k ≤
n∑

k=1

Mk∆x1k = U(P1, f, h).

Since

L(P1, f, h) ≤
∫ b(y)

a(y)

f(x) dx ≤ U(P1, f, h),

we conclude that ∣∣∣∣∣

∫ b(y)

a(y)

f(x) dx−
n∑

k=1

f(t2k)∆x1k

∣∣∣∣∣ < ε.

�
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By combining Proposition 3.22 and Theorem 3.23 we finally have

∫ b(y)

a(y)

f(x) dx = lim
n→∞

n∑

k=1

f(t2k)∆x1k

= lim
n→∞

n∑

k=1

f ◦ h(t1k)∆x1k

=

∫ b

a

f ◦ h(x) dx,

where the last line follows from the well known fact that the limit of a Riemann
sum equals the Riemann integral.

3.3. The Cavalieri integral as a Riemann-Stieltjes integral. When evaluat-
ing a Cavalieri integral from a(y) to b(y), it may sometimes be more convenient to
consider an equivalent Riemann-Stieltjes integral from a′ to b′ than the ordinary
Riemann integral from a to b.

To transform the Cavalieri integral into an equivalent Riemann-Stieltjes inte-
gral, we will make use of the inverse transformation function g := h−1 (which is
guaranteed to exist, since h is a bijective function).

Definition 3.24 (Inverse transformation function g). Let a(y) be a translational
function. The mapping g : [a′, b′] → [a, b], which maps x2i ∈ [a′, b′] to x1i ∈ [a, b],
is defined as g(x2i ) := x2i − a ◦ f(x2i ) + a, which we will refer to as the inverse
transformation function.

Proposition 3.25. The following Cavalieri and Riemann-Stieltjes integrals are
equivalent:

∫ b(y)

a(y)

f(x) dx =

∫ b′

a′
f(x) dg(x).

Proof. From Theorem 3.23 we have

(3.3)

∫ b(y)

a(y)

f(x) dx = lim
n→∞

n−1∑

i=0

f(x2i )∆x
1
i .

By noting that ∆x1i = x1i+1 − x1i = g(x2i+1) − g(x2i ), and that g(a′) = a and
g(b′) = b, we can re-write (3.3) as

∫ b(y)

a(y)

f(x) dx = lim
n→∞

n−1∑

i=0

f(x2i )
[
g(x2i+1)− g(x2i )

]
,

which we recognize as the Riemann-Stieltjes integral
∫ b′
a′
f(x) dg(x), as required. �

Whenever g is differentiable, we can conveniently express the Cavalieri integral
simply in terms of f(x) and a(y):

∫ b(y)

a(y)

f(x) dx =

∫ b′

a′
f(x)

[
1− da(y)

dy
◦ f(x) · df(x)

dx

]
dx.
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4. Cavalieri Integration: Worked Examples

Several fully worked examples of Cavalieri integration are given below. We first
present a simple example of Cavalieri integration from first principles (Example 4.1),
followed by the integration of a Cavalieri region in which f(x) is nonlinear (Exam-
ple 4.2). In Example 4.3 the boundary functions are also nonlinear, followed by
Example 4.4 in which the boundary function b(y) is no longer required to be a
translation of a(y). In Example 4.5 we show that the transformation function h
can be fiendishly difficult to find, but we show that the Riemann-Stieltjes formu-
lation leads to a much simpler solution in Example 4.6. In Example 4.7 we show
that the Cavalieri integral can be used to integrate non-Cavalieri regions (with a(y)
non-translational), and in Example 4.8 we show that the transformation function
h can be strictly decreasing. Finally, in Example 4.9 we show that the Cavalieri
integral can be used in some instances where the function f(x) is not even defined.

Example 4.1 (Cavalieri integration from first principles; f(x), a(y) and b(y) lin-
ear). Consider the Cavalieri region bounded by the x-axis and the lines f(x) = x,
a(y) = 1− y, and b(y) = 4− y. This region is shown in Figure 12.

x

y

f(x) = x

b(y) = 4− y

a(y) = 1− y

4

2

21 3 40

1

3

a b

Figure 12. Region bounded by the x-axis and the lines f(x) = x,
a(y) = 1− y, and b(y) = 4− y.

Also consider a partition (x1i )
n
i=0 on the x-axis such that a = x10 < x11 < · · · <

x1n = b, and ∆x1i = x1i+1 − x1i . We can form the Cavalieri integral (using the left
hand rule) as follows:

(4.1)

∫ b(y)

a(y)

f(x) dx = lim
n→∞

n−1∑

i=0

f(x2i )∆x
1
i .

The partition points x2i as used in the Cavalieri sum is shown in Figure 13.
To transform the Cavalieri sum given in (4.1) into an ordinary Riemann sum,

we must find an expression for x2i in terms of the partition points x1i , for all i =
0, 1, . . . , n. First consider the collection of functions {a(y) + [x1i − a] = x2i : i =
0, 1, . . . , n}. To find the partition points x2i in terms of x1i we substitute the function
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x

y

4

1

21 3 40

x10 x11 x12 x13

x20

x21

x22

x23
2

3

a(y) + [x13 − 1]

a(y) + [x12 − 1]

a(y) + [x11 − 1]

a(y)

∆x12

x

y

4

2

21 3 40

1

3

(a) n = 3 (b) n = 12

Figure 13. Partition points x2i as used in the Cavalieri sum.

f(x2i ) for y to obtain:

a ◦ f(x2i ) + [x1i − 1] = x2i

−x2i + x1i = x2i

x2i =
x1i
2
,

so that we have the general expression x2i = h(x1i ), with h(x) = x/2.
Finally this allows us to rewrite the Cavalieri integral from (4.1) as an equivalent

Riemann integral:

∫ b(y)

a(y)

f(x) dx = lim
n→∞

n−1∑

i=0

f(x2i )∆x
1
i

= lim
n→∞

n−1∑

i=0

f ◦ h(x1i )∆x
1
i

=

∫ b

a

f ◦ h(x) dx.(4.2)

Evaluating the Riemann integral of (4.2) with a = 1 and b = 4 we obtain

∫ b(y)

a(y)

f(x) dx =

∫ b

a

f ◦ h(x) dx

=
1

2

∫ 4

1

x dx

=
1

4
x2
∣∣∣
4

1

= 3.75,
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which we can quickly verify to be correct by evaluating the area of the region shown
in Figure 12 with ordinary Riemann integration:

∫ 2

0

x dx+

∫ 4

2

4− x dx−
∫ 1

2

0

x dx−
∫ 1

1
2

1− x dx = 3.75

=

∫ b(y)

a(y)

f(x) dx.

Example 4.2 (Cavalieri integration; f(x) nonlinear). Consider the Cavalieri region
bounded by the x-axis and the functions f(x) = x2, a(y) = 1− y, and b(y) = 4− y.
This region is shown in Figure 14, along with the strips of integration.

0 1 2 3 4

1

2

3

4
f(x) = x2

a(y) = 1− y

b(y) = 4− y

x

y

Figure 14. Region bounded by the x-axis and the functions
f(x) = x2, a(y) = 1− y, and b(y) = 4− y.

The area of this region can be calculated with the Cavalieri integral

(4.3)

∫ b(y)

a(y)

f(x) dx =

∫ b

a

f ◦ h(x) dx.

To evaluate (4.3) we first need to find h using Definition 3.3:

a ◦ f(x2i ) + [x1i − 1] = x2i

−(x2i )
2 + 1 + x1i − 1 = x2i

(x2i )
2 + x2i − x1i = 0

x2i =
1

2

(√
4x1i + 1− 1

)

= h(x1i ).
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We can now calculate (4.3) with h(x) = 1
2 (
√

4x+ 1− 1) as follows

∫ b(y)

a(y)

f(x) dx =

∫ b

a

f ◦ h(x) dx

=
1

4

∫ 4

1

(
√

4x+ 1− 1)2 dx

= − 1

96
(4x+ 1)(−12x+ 8

√
4x+ 1− 9)

∣∣∣
4

1

= 9 +
1

12
(5
√

5− 17
√

17)

≈ 4.09063.

One can also compute the area under consideration (see Figure 14) using ordinary
Riemann integration:

∫ 1
2 (
√
17−1)

0

x2 dx+

∫ 4

1
2 (
√
17−1)

4− x dx

−
∫ 1

2 (
√
5−1)

0

x2 dx−
∫ 1

1
2 (
√
5−1)

1− x dx ≈ 4.09063

≈
∫ b(y)

a(y)

f(x) dx.

Example 4.3 (Cavalieri integration; f(x), a(y) and b(y) nonlinear). Consider the
Cavalieri region bounded by the x-axis and the functions f(x) = x2, a(y) = 2−√y,
and b(y) = 4 − √y. This region is shown in Figure 15, along with the strips of
integration.

f(x) = x2 b(y) = 4−√y

a(y) = 2−√y
21 3 4

1

2

3

4

0
x

y

a b

Figure 15. Region bounded by the x-axis and the functions
f(x) = x2, a(y) = 2−√y, and b(y) = 4−√y.

The area of this region can be calculated with the Cavalieri integral

(4.4)

∫ b(y)

a(y)

f(x) dx =

∫ b

a

f ◦ h(x) dx.
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To evaluate (4.4) we first need to find h:

a ◦ f(x2i ) + [x1i − 2] = x2i

−x2i + 2 + x1i − 2 = x2i

x2i =
1

2
x1i

= h(x1i ).

We can now calculate (4.4) with h(x) = x/2 as follows

∫ b(y)

a(y)

f(x) dx =

∫ b

a

f ◦ h(x) dx

=
1

4

∫ 4

2

x2 dx

=
1

12
x3
∣∣∣
4

2

=
14

3
.

We can once again verify our answer above by computing the area of the region
shown in Figure 15 with ordinary Riemann integration:

∫ 2

0

x2 dx+

∫ 4

2

(4− x)2 dx−
∫ 1

0

x2 dx−
∫ 2

1

(2− x)2 dx =
14

3

=

∫ b(y)

a(y)

f(x)dx.

Example 4.4 (Cavalieri integration; b(y) not a translation of a(y)). Consider the
Cavalieri region bounded by the x-axis and the functions f(x) =

√
x, a(y) = 2−y2,

and b(y) = 4− y. This region is shown in Figure 16.

f(x) =
√
x

b(y) = 4− y

a(y) = 2− y2
21 3 4

1

2

3

4

0
x

y

ba

Figure 16. Region bounded by the x-axis and the functions
f(x) =

√
x, a(y) = 2− y2, and b(y) = 4− y.

To obtain the shaded area bounded in Figure 16 we will subtract the two Cavalieri
integrals shown in Figure 17 and Figure 18. That is, we will compute the desired
area by evaluating A−B.
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f(x) =
√
x

21 3 4

1

2

3

4

0
x

y

ba
A

Figure 17. Region bounded by the x-axis and the functions
f(x) =

√
x and b(y) = 4− y.

The area of A can be calculated with the Cavalieri integral

(4.5)

∫ b(y)

−y
f(x) dx =

∫ b

0

f ◦ h1(x) dx.

To evaluate (4.5) we first need to find h1:

−f(x2i ) + x1i = x2i

−
√
x2i + x1i = x2i

√
x2i + x2i − x1i = 0

x2i =
(
x1i +

1

2

)
− 1

2

√
4x1i + 1

= h1(x1i ).

We can now calculate (4.5) with h1(x) = (x+ 0.5)− 0.5
√

4x+ 1 as follows:
∫ b(y)

−y
f(x) dx =

∫ b

0

f ◦ h1(x) dx

=

∫ 4

0

√
(x+ 0.5)− 0.5

√
4x+ 1 dx

=
1

12
(4x+ 1)

3
2 − 1

2
x− 1

8

∣∣∣∣∣

4

0

≈ 3.75773.

The area of B can be calculated with the Cavalieri integral (see Figure 18)

(4.6)

∫ a(y)

−y2
f(x) dx =

∫ a

0

f ◦ h2(x) dx.

To evaluate (4.6) we first need to find h2:

−(f(x2i ))
2 + x1i = x2i

−x2i + x1i = x2i

x2i =
1

2
x1i
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f(x) =
√
x

21 3 4

1

2

3

4

0
x

y

ba B

Figure 18. Region bounded by the x-axis and the functions
f(x) =

√
x and a(y) = 2− y2.

We can now calculate (4.6) with h2(x) = x/2 as
∫ a(y)

−y2
f(x) dx =

∫ a

0

f ◦ h2(x) dx

=

∫ 2

0

√
0.5x dx

=
2x

3
2

3
√

2

∣∣∣∣∣

2

0

=
4

3
.

Finally we obtain the desired area A − B =
∫ b(y)
−y f(x) dx −

∫ a(y)
−y2 f(x) dx ≈

3.75773− 4

3
≈ 2.42440.

Example 4.5 (Cavalieri integration; h difficult to find). Consider the Cavalieri
region bounded by the x-axis and the functions f(x) = x2, a(y) = 1 − y2, and
b(y) = 4−y2. This region is shown in Figure 19, along with the strips of integration.

0 1 2 3 4

1

2

3
f(x) = x2

a(y) = 1− y2

b(y) = 4− y2

x

y

Figure 19. Region bounded by the x-axis and the functions
f(x) = x2, a(y) = 1− y2, and b(y) = 4− y2.

The area of this region can be calculated with the Cavalieri integral

(4.7)

∫ b(y)

a(y)

f(x) dx =

∫ b

a

f ◦ h(x) dx.
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To evaluate (4.7) we first need to find h:

a ◦ f(x2i ) + [x1i − 1] = x2i

−(x2i )
4 + 1 + x1i − 2 = x2i

(x2i )
4 + x2i − x1i = 0.

Solving for x2i in terms of x1i produces h(x) which is equal to:

(4.8) h(x) =
1

2

√
2√
G(x)

−G(x)− 1

2

√
G(x)

with

G(x) =
3
√√

3.
√

256x3 + 27 + 9
3
√

2.3
2
3

−
4 3

√
2
3x

3
√√

3.
√

256x3 + 27 + 9
.

We can now calculate (4.7) with h(x) given by (4.8) as follows:

∫ b(y)

a(y)

f(x) dx =

∫ b

a

f ◦ h(x) dx

=

∫ 4

1

(
1

2

√
2√
G(x)

−G(x)− 1

2

√
G(x)

)2

dx

≈ 3.46649,

which we will once again verify by using ordinary Riemann integration:
∫ 1.28378

0

x2 dx+

∫ 4

1.28378

√
4− x dx

−
∫ 0.724492

0

x2 dx−
∫ 1

0.724492

√
1− x dx ≈ 3.46649

≈
∫ b(y)

a(y)

f(x) dx.

Example 4.6 (Riemann-Stieltjes formulation). Consider the Cavalieri region bounded
by the x-axis and the functions f(x) = x2, a(y) = 1 − y, and b(y) = 4 − y. This
region is shown in Figure 20, along with the strips of integration. Note that this is
the same region as studied in Example 4.2. We will show that the Riemann-Stieltjes
formulation is considerably simpler than the direct method in which we need to find
h explicitly.

The area of this region can be calculated with the Cavalieri integral

(4.9)

∫ b(y)

a(y)

f(x) dx =

∫ b′

a′
f(x) dg(x).

To evaluate (4.9) we first need to find g using Definition 3.24:

x1i = x2i − a ◦ f(x2i ) + 1

= (x2i )
2 + x2i

= g(x2i ).
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0 1 2 3 4

1

2

3

4
f(x) = x2

a(y) = 1− y

b(y) = 4− y

x

y

Figure 20. Region bounded by the x-axis and the functions
f(x) = x2, a(y) = 1− y, and b(y) = 4− y.

We can now calculate (4.9) with g(x) = x2 + x as follows
∫ b(y)

a(y)

f(x) dx =

∫ b′

a′
f(x) dg(x)

=

∫ b′

a′
f(x)g′(x) dx

=

∫ 1
2 (
√
17−1)

1
2 (
√
5−1)

x2(2x+ 1) dx

=
x4

2
+
x3

3

∣∣∣∣∣

1
2 (
√
17−1)

1
2 (
√
5−1)

≈ 4.09063,

which is the same as obtained in Example 4.2.

Example 4.7 (Cavalieri integration; a(y) non-translational). Consider the non-
Cavalieri region R shown in Figure 21.A:

0 1 2

1

2

3

4
(2, 4)

a(y) = 1
2y

f(x) = x2

x

y

R

A.

0 1 2

1

2

3

4
(2, 4)

a(y) = 1
2y

f(x) = x2

x

y

b(y) = 1
2y +

1
2

AR1
=
∫ 1

2y+
1
2

1
2y

x2dx

R1

B.

0 1 2

1

2

3

4
(2, 4)

a(y) = 1
2y

f(x) = x2

x

y

b(y) = 1
2y +

1
2

AR2
=
∫ 1

2y+
1
2

1
2y

x2dx

R2

C.

Figure 21. The region bounded by f(x) = x2 and a(y) = 1
2y.
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The area of this region can be calculated with the double integral:

AR =

∫ 4

0

∫ √y
1
2y

1 dx dy

=

∫ 4

0

x
∣∣∣
√
y

1
2y
dy

=

∫ 4

0

√
y − 1

2
y dy

=
2

3
y

3
2 − 1

4
y2
∣∣∣
4

0

=
4

3
,

and also with the integral:

AR =

∫ 2

0

2x− x2 dx

= x2 − 1

3
x3
∣∣∣
2

0

=
4

3
.

We can also calculate the area AR with the difference between two Cavalieri
integrals. The two areas being subtracted are shown in Figure 21.B and Figure 21.C.

AR = AR1 −AR2

=

∫ 1
2y+

1
2

1
2y

x2 −
∫ 1

2y+
1
2

1
2y

x2

=

∫ 1
2

0

f ◦ h1(x) dx−
∫ 1

2

0

f ◦ h2(x) dx

=

∫ 1
2

0

(
1 +
√

1− 2x
)2
dx−

∫ 1
2

0

(
1−
√

1− 2x
)2
dx

=
4

3
.

Example 4.8 (Cavalieri integration; h strictly decreasing). Consider the Cavalieri
region bounded by the x-axis and the functions f(x) = 3 − 2x, a(y) = 2 − y, and
b(y) = 3− y. This region is shown in Figure 22.

The area of this region can be calculated with the Cavalieri integral

(4.10)

∫ b(y)

a(y)

f(x) dx =

∫ b

a

f ◦ h(x) dx.

To evaluate (4.10) we first need to find h:

a ◦ f(x2i ) + [x1i − 2] = x2i

⇒ x2i = 3− x1i ,

so that h(x) = 3− x.
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0 1 2 3

1
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3

f(x) = 3− 2x

a(y) = 2− y

b(y) = 3− y

x

y

Figure 22. Region bounded by the x-axis and the functions
f(x) = 3− 2x, a(y) = 2− y, and b(y) = 3− y.

We can now calculate (4.10) as follows
∫ b(y)

a(y)

f(x) dx =

∫ b

a

f ◦ h(x) dx

=

∫ 3

2

2x− 3 dx

= x2
∣∣∣
3

2
− 3x

∣∣∣
3

2

= 2.

Example 4.9 (Cavalieri integration; f(x) not defined). Consider the normal Rie-
mann integration task given below (shown in Figure 23):
∫ 1

0

√
1− x dx−

∫ 0.5

0

√
0.5− x dx =

∫ 1

0

1− y2 dy −
∫ √0.5

0

0.5− y2 dy ≈ 0.431.

0 0.5 1

1

0.5

b(y) = 1− y2

a(y) = 0.5− y2

x

y
x = 0

Figure 23. Region bounded by the x-axis, the line x = 0 and the
functions a(y) = 0.5− y2 and b(y) = 1− y2.

Note that the shaded region in Figure 23 is not a Cavalieri region, since f(x)
is not even defined. Nevertheless, we can compute this area as a single Cavalieri
integral as follows. We find the transformation function h by equating

a(x2i ) + [x1i − 0.5] = x2i
∣∣
x2
i=0

,

where the x2i on the right hand side is set to zero since the region is bounded from
the left by x = 0, and the x2i on the left hand side remains unchanged, since we are
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really interested in the y-intercepts of each translation of a(y). Therefore we find

x2i = h(x1i ) =
√
x1i ,

so that we can compute the shaded area as
∫ b(y)

a(y)

(x = 0) dx =

∫ b

a

h(x) dx

=

∫ 1

0.5

√
x dx

≈ 0.431.

5. Conclusion

We have presented a novel integral
∫ b(y)
a(y)

f(x) dx in which non-rectangular inte-

gration strips were used. We also presented two methods of evaluating Cavalieri
integrals by establishing the following relationships between Cavalieri, Riemann
and Riemann-Stieltjes integrals:

∫ b(y)

a(y)

f(x) dx =

∫ b

a

f ◦ h(x) dx =

∫ b′

a′
f(x) dg(x),

which is equivalent to noting that

Area A = Area B = Area C,

as shown in Figure 24.

∆x ∆x

f f ◦ h

fg′

A B

C

area A = area B = area C

a b a bb′a′

a′ b′

Figure 24. Relationships between Cavalieri (region A), Riemann
(region B) and Riemann-Stieltjes (region C) integrals.

The reason for calling
∫ b(y)
a(y)

f(x) dx the Cavalieri integral should now become

transparently clear: the area of region B is equal to the area of region A by Cava-
lieri’s principle.
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