Laser Enabled Refurbishment and Performance Enhancement of Industrial Components

C van Rooyen, M Theron, HP Burger
Afrimold
29 September 2011
Introduction

- **Refurbishment**
 Reconditioning of a component, no longer fit for service, to original specifications

- **Performance Enhancement**
 Reengineering of components during refurbishment to obtain longer service life than achievable with original design. Ideally also included in the manufacturing process if possible.
The Case for Refurbishment/Performance enhancement of Industrial Components in South Africa

The potential to improve operational efficiency and reduce operating cost

- Manufacturing Industry largely dependent on imported equipment
 - Expensive to import replacement parts
 - Long lead times – loss of production
 - Expensive inventories of critical spare parts
 - Volatile exchange rate – complicates financial planning

The potential to reduce environmental impact

Provided that:

Techno-economically viable refurbishment processes and service providers are available
Root causes of degradation of machinery

Loss of Usefulness

- Obsolescence 15%
- Surface Degradation 70%
- Failure 15%

Surface Degradation

- Corrosion 20%
- Mechanical Wear 50%

Mechanical Wear 50%

- Abrasion 28.5%
- Fatigue 8%
- Adhesion 6%
- Other 7.5%

Corrosion 20%

- Two body 5%
- 3 bodies 23.5%

Adhesion 6%

Fatigue 8%

Other 7.5%

Corrosion 20%

- Abrasion 28.5%
- Fatigue 8%
- Adhesion 6%
- Other 7.5%

Mechanical Wear 50%

- Two body 5%
- 3 bodies 23.5%

Adhesion 6%

Fatigue 8%

Other 7.5%
Current state-of-the-art of surface refurbishment/performance enhancement

Predominantly
- **Weld overlay process based on arc welding**
 Pro’s
 - Thick layers (metallurgically bonded)
 - High deposition rates
 - Inexpensive
 Con’s
 - High heat input
 - High dilution
 - Distortion
- **Thermal spray processes**
 Pro’s
 - Versatility
 - Low heat input
 - Minimal distortion
 - Layer thickness range
 Con’s
 - Low impact and fatigue resistance (mechanical bonding)

Niche for process which provides
- Minimal distortion (Low heat input)
- High impact and fatigue resistance (Metallurgically bonded layer)
- Thin layers (low dilution)
Laser Enabled Refurbishment/Performance Enhancement Process

Laser Metal Deposition (Laser cladding)
Laser Cladding is essentially a weld overlay process where
• The heat source is a laser beam and
• The welding consumable is a metallic powder or wire

Background:
• High power lasers produce power output in the multi kilowatt range.
• Laser beams can be focused to spot diameters of well below 1 mm
• A focused laser beam can produce power density on a work piece surface that is both very high and highly localized.
• This feature enables the relatively low heat input that is characteristic of all laser based manufacturing processes.
• Laser beam creates shallow melt pool on substrate surface.
• Consumable is fed into melt pool.
• Deposition of weld bead results from relative movement between laser beam and substrate.
• Successive weld beads with appropriate overlap results in clad layer.
• Process parameters:
 ➢ Laser power
 ➢ Laser spot diameter
 ➢ Powder feed rate
 ➢ Weld speed
• Simultaneous optimization to ensure fusion, minimize dilution and optimize deposition rate.
Laser Metal Deposition (LMD)

- Laser beam creates shallow melt pool on substrate surface.
- Consumable is fed into melt pool.
- Deposition of weld bead results from relative movement between laser beam and substrate.
- Successive weld beads with appropriate overlap result in clad layer.
Process Characteristics

- **Low Heat Input** (Typically 0.02-0.2 kJ/mm)
 - Small HAZ
 - Low dilution (<5%)
 - Minimized distortion
 - Thin layers possible
 - No undercut
 - Increased hardness (Grain refinement caused by rapid solidification)
 - Combination of thin layers and low dilution allow consumable saving.

- **Metallurgical bonded layer**
 - Good fatigue resistance
 - Good impact resistance

- **Layer thickness**
 - Typically 0.1 – 2 mm
 - Thicker layers possible through multiple passes
Process Characteristics (continued).

• **Reduced machining effort**
 ➢ Capacity for thin layers reduce pre machining.
 ➢ Low layer surface roughness reduce post machining. Machining tolerance 0.2 – 1.0 on dia.

• **High level of quality assurance**
 ➢ Automated process
 ➢ Combination of laser technology and CNC processing ensures excellent process control and reproducibility.

• **Flexibility**
 ➢ Much larger range of commercially available powder consumables than welding wires.
 ➢ Ability to modify consumable chemical composition by mixing of powders.

• **On Site applications becoming possible**
 ➢ Increased mobility of new generation high power laser sources.
Process Characteristics (continued).

- **Flexibility**
 - Much larger range of commercially available powder consumables than welding wires.
 - Ability to modify consumable chemical composition by mixing of powders.
- **Deposition rate**
 - Up to 1.3 kg/hour (316L).
- **Consumable utilization (Powder efficiency)**
 - Up to 95%

Applications of Laser Metal Deposition

- Refurbishment of worn components.
- Performance enhancement of functional surfaces on components.
 - Improved wear resistance
 - Improved corrosion resistance
- Correction of machining errors on high value components.
Laser Metal Deposition in South Africa

- Technology platform established at CSIR-NLC in 2002
- Technology transfer from Fraunhofer ILT
- Ongoing core funded R&D program
- Contract R&D for Industry
- Refurbishment service
- Small number of manual wire feed systems in industry
Materials and Applications

- **Stainless steel**
 - Low-C martensitic (0.02C, 12Cr, 5Ni, 1-5Mo) - 38-40 HRC
 - 431 (0.2C, 16Cr, 4Ni) - 52 HRC
 - 316L

- **Ni alloys**
 - Inconel (625, 718)
 - Nistelle C, D
 - Self fluxing - 40-60 HRC

- **Co alloys**
 - Stellite 6 – 52 HRC
 - Stellite 12 – 55 HRC

- **Ti alloys**
 - Ti6Al4V

Also Al-Si, Al-Si-Mg, Al-Zn-Mg-Cu
Injection Mould Repair

Werma Patterns & Moulds
Repair of casting defect in gearbox housing
Refurbishing of compressor screw

Rebuilt mechanical seal
Refurbishment and performance enhancement of concast rolls
Refurbishment of Water Storage Tanks

- Combination of high residual stress and marine environment induced stress corrosion cracks in SS 304L MIG weldments.
- Process required to seal leaking cracks.
Lab demonstration – January 2010
Mobile Laser Cladding System

- 3 Axis space frame
- Pneumatic suction pads
- Laser cladding head
- Fiber laser
- Chiller
- Powder feeder
- Control system
On Site Application: April 2011

Service life of R1bn asset extended till at least 2015
Conclusion

- **Refurbishment is underutilized in South Africa**
 - OEM requirements for original parts and approved processes.
 - Subcontracting of maintenance requirements
 - Lack of technological awareness
 - Lack of confidence
 - Change of mindset required

- **Laser metal deposition has potential to increase refurbishment significantly**
 - Excellent process control
 - Low dilution, low HI, high repeatability, high precision

- Address application niche
 - Thermal spray – PTA
 - Maximum benefit - Thin layers, metallurgical bond, expensive consumables
Laser Transformation Hardening

Alternative processes
- furnace hardening (electric or gas)
- thermo-chemical methods
 - carburizing
 - nitriding (0.1 – 0.5 mm, 55-70 HRC)
 - Carbo-nitriding
 - Cyaniding
- electric induction
- flame hardening

Laser hardening indicated when application requires:
- Selective case hardening
- Minimum distortion
- Quenching is impractical
Laser hardening of stub axle
“Soft Tooling” – Laser trimming of sheet metal pressings
- Reconfigurable
- Trim tool development
- Small batch production
- Handy alternative when trim tool is unavailable
Thank you for your attention!

The Laser Materials Processing Competence area wishes to express their gratitude to:

- DST
- CSIR
- Fraunhofer ILT

For enabling us to make LIGHT work of industry challenges!