Optimisation of optical absorption properties of spectrally selective C-NiO composite coatings

Ngcali Tile^{1,2}, Kittessa Roro¹, Andrew Forbes^{1,2}

¹CSIR National Laser Centre, Pretoria

² School of physics, university of KwaZulu-Natal, Durban

Fire wood is the traditional fuel in most rural Africa

Most African countries have ~ 325 days of strong sunlight

Source: NASA 2008

Source: NASA

Challenge: harnessing solar power more effectively and efficiently, to reduce dependence on traditional/fossil fuels

Solar thermal technology is used for harnessing solar energy for heat applications

Solar thermal collectors for water heating use a spectrally selective surface that absorb sunlight and convert it to heat

Fig. 13. The solar selectivity curves of C–ZnO and C–NiO based samples. The curve for a commercial Solkote paint is included for comparison.

G. Katumba *et al*. Sol.Energy Mater. Sol.Cells 92 (2008) 1285–1292

C-NiO has been found to have good spectrally selective properties

Fig. 13. The solar selectivity curves of C–ZnO and C–NiO based samples. The curve for a commercial Solkote paint is included for comparison.

Table 1

The solar selectivity of the C–ZnO, C–NiO and Solkote paint coatings on aluminium substrates

Sample	α	3	α/ε
Solkote	0.93	0.33	2.85
C–ZnO	0.71	0.06	12.70
C–NiO	0.84	0.04	20.91

A figure of merit is given in column 4 for easier comparison.

G. Katumba et al. Sol.Energy Mater. Sol.Cells 92 (2008) 1285–1292

Preliminary studies showed that C-NiO is durable

Fig. 13. The solar selectivity curves of C–ZnO and C–NiO based samples. The curve for a commercial Solkote paint is included for comparison.

Fig. 15. Normal reflectance curves for the as-deposited C–ZnO and C–NiO samples and corresponding curves of the same samples after ageing.

Table 1

The solar selectivity of the C–ZnO, C–NiO and Solkote paint coatings on aluminium substrates

Sample	α	3	α/ε
Solkote	0.93	0.33	2.85
C–ZnO	0.71	0.06	12.70
C–NiO	0.84	0.04	20.91

A figure of merit is given in column 4 for easier comparison.

G. Katumba et al. Sol.Energy Mater. Sol.Cells 92 (2008) 1285–1292

The samples are fabricated in a simple wet chemistry lab following a simple 3 step procedure

By suitable choice of precursor, we can engineer novel composite materials

Sol-gel technique can be adapted to different coating methods

Spray coating

Spin coating

Absorption properties improve with an increase in heat treatment temperature

Emittance decreases with an increase in coating speed

Absorption properties deteriorate with an increase in SUC and water content

Absorption properties are constant from 0-8 grams SUC

Absorption properties vary with PEG content peaking at 2 grams

Summary of best parameters

Parameter	Optimum
Anneal temperature	450-550°C
Coating speed	3000 RPM
Sucrose content	0-10 grams (Water fixed)
PEG content	2 grams
No. Of passes	1

Summary of the most important results

The cost of our coating is relatively cheap

COATING	COST/M ² LAB SCALE	COST/M ² BULK SCALE
C-NiO	R 14.50	R 0.65
Solkote	-	R 12
Black Paint	-	R 4
Black Chrome	-	R 20
Nickel-Alumina	-	R 1.50

Absorption properties worsen as number of passes increases

Ongoing.....

Thank You

