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Abstract—Collision avoidance is one of the important safety 
key operations that needs attention in the navigation system of 
an autonomous robot. In this paper, a Behavioural Bayesian 
Network approach is proposed as a collision avoidance strategy 
for autonomous robots in an unstructured environment with 
static obstacles. In our approach, an unstructured environment 
was simulated and the information of the obstacles generated 
was used to build the Behavioural Bayesian Network Model 
(BBNM). This model captures uncertainties from the 
unstructured environment in terms of probabilities, and allows 
reasoning with the probabilities. This reasoning ability enables 
autonomous robots to navigate in any unstructured 
environment with a higher degree of belief that there will be no 
collision with obstacles. Experimental evaluations of the 
BBNM show that when the robot navigates in the same 
unstructured environment where knowledge of the obstacles is 
captured, there is certainty in the degree of belief that the 
robot can navigate freely without any collision. When the same 
model was tested for navigation in a new unstructured 
environment with uncertainties, the results showed a higher 
assurance or degrees of belief that the robot will not collide 
with obstacles. The results of our modelling approach show 
that Bayesian Networks (BNs) have good potential for guiding 
the behaviour of robots when avoiding obstacles in any 
unstructured environment. 

Keywords- Collision Avoidance, Unstructured Environment, 
Autonomous Robots, Behavioural Model, Modelling and 
Simulation 

I. INTRODUCTION 
Robotics is the engineering, science and technology, 

design, manufacture, application and structural disposition of 
robots [16]. Making progress towards autonomous robots is a 
major practical interest in a wide variety of application areas 
including manufacturing, construction, mining, medical 
surgery and assistance for the disabled and the aged. The 
basic characteristic of an autonomous robot is its capability 
to operate/navigate independently in an unknown, known or 
partially-known environment [2]. To achieve this level of 
robustness, some methods need to be developed to provide 

collision-free navigation for robots in an unstructured 
environment. An unstructured environment in this work is a 
type of environment that has no specific pattern and where 
obstacles are static.  

In our autonomous robot Collision Avoidance Model 
(CAM), safety measures need to be put in place in order to 
make autonomous robots avoid colliding with obstacles 
while navigating to achieve their goal. Fig. 1 shows an 
ongoing key challenge that has a red-coloured object with 
four wheels as the robot [15], and the chairs as the obstacles. 
This is usually a repetitive process of moving to a new 
position, sensing the environment, calculating the distances 
and taking action to the next level based on the information 
gathered from the environment. Most of the difficulties faced 
in these processes originated from the nature of the real 
world, an unstructured environment and environmental 
uncertainties[3]. For instance, any prior knowledge about the 
environment is, in general, incomplete, uncertain and 
approximate [7]. For example, perceived information is 
usually unreliable, stable features in the environment may 
change with time and agents can modify the environment. 
Fig. 1, a robotic vehicle set to avoid collisions with the chairs 
in an unstructured indoor environment.  

Many studies to date have focused on improving the 
navigation system of autonomous robots. Hongjun et al. [6], 
proposed a novel method for sensor planning using mobile 
robot localization based on Bayesian Network inference. In 
their work, they proved that an autonomous robot cannot 
always determine its unique situation by local sensing 
information only. The reason is that, the sensor is prone to 
errors and a slight change of robotic behaviour deteriorates 
the sensing result. Jasmin et al. [7] describes how soft 
computing methodologies such as fuzzy logic, genetic 
algorithm and the Dempster-Shafer theory of evidence can 
be implemented in a mobile robot navigation system by 
using a reasoning and search system. In addition, Lazkano et 
al. implemented a doorcrossing behaviour in a mobile robot 
within an environment with smooth walls and doors using 
only sonar readings [4].  
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Using alternative modelling, this paper focuses on using 
the Bayesian Networks for investigating the collision 
avoidance task. This model captures uncertainties from the 
unstructured environment in terms of probabilities and 
performs reasoning with the probabilities. The reasoning in 
this case is the ability of the robot to learn the unstructured 
environment through the learning capabilities of the 
Bayesian Network [4]. The reasoning algorithm centres 
around Bayes’ rule for calculating the posterior probability 
that a robot takes an action given data (obstacles distances). 
That is, we want to deal with expressions of the form:  
 

Pr(Robot’s behaviour?│Obstacles distances).       (1) 
 
The major contributions in this paper are as follows:  
1)The application of Bayesian Network for building behaviour for 
mobile robots as a collision avoidance model in unstructured 
environments where obstacles are static.  
2)Accounting for inevitable uncertainties embedded in 
unstructured environments as a way for making timely and 
accurate avoidances of obstacles through three experiments.  

The remainder of this paper is arranged as follows. In 
Section 2, we present the theoretical background of the CAM 
as a class of Bayesian Network (BN) model. Section 3 
presents the experimental setup of the proposed approach. 
The results of the three experimental applications and 
evaluations of the model are given in Section 4. Finally, 
conclusions and further work are given in Section 5. 

 
Figure 1.  A robotic vehicle set to avoid collisions with the chairs in an 

unstructured indoor environment. 

II. THEORETICAL BACKGROUND 

A. Bayesian Networks 
Probabilistic graphical models represented by directed 

acyclic graphs that have nodes as variables and arcs that 
show the conditional (in)dependencies among the variables 
[4] are Bayesian Networks. BN has two main components: 
the graphical structure and the conditional probabilities 
associated to each node of the network. These components 
can be established by the human expert who takes advantage 
of his knowledge about the relations among the variables. It 
can also be built automatically by implementing any 
automatic learning algorithm and finally it can be a 
combination of mixing the expert’s knowledge and the 
learning mechanism [4]. In this experimental task, the 
BBNM is built using GeNle [19]. GeNle is a software that 
has the capability of building graphical networks with some 
automatic learning algorithms. For example, the Naive 
Bayes’ classifier technique. The various ways in which a 
Bayesian Network can learn are: (i) known structures with 
complete data, (ii) known structures with incomplete data, 

(iii) unknown structures with complete data and (iv) 
unknown structures with incomplete data [14]. Figs. 2a and 
2b illustrate how BN model is learnt from complete data as is 
the case for this experimental work. The pre-processing step 
known as discretization is performed by partitioning the 
possible values of continuous attributes into small number of 
inter-values, where each interval is mapped to a discrete 
symbol [8]. Discretization is applied whenever continuous 
data needs to be transformed into discrete data for effective 
feature construction and ease of modelling. 

B. Bayesian Network Inference 
The fundamental idea of solving a probabilistic network, 

BN, is to exploit the structure of the knowledge base 
(Database) to reason efficiently (inference) about the events 
and decisions of the problem domain, taking the inherent 
uncertainty into account [1]. The BN model in this work is 
achieved using the Naive Bayes. The Naive Bayes’ model is 
most commonly used for classification because of its low 
model complexity and high computational power [1]. 
Considering Fig. 3, the node to be inferred is the class or 
query node, A. The evidence nodes are independent of each 
other and are dependent on the class node, A. 

 
Figure 2 (a). Initial Stages of BN Learning 

 
Figure 2 (b). Final Stage of BN Learning 

 
Figure 3. Representation of Bayes Net for Inference. 

 
The only parent in the network is A.  To calculate the BN 

inference using the network in Fig. 3 [20], we apply the 
Bayes’ theorem as follows: 

            P (A|X[i],…,X[j]) = P (X[i],…,X[j]|A)P(A),                (2) 
    P (X[i],…,X[j]) 

where P (A|X[i],…, X[j]) is the posterior or degree of  belief , 
A is obtained after obtaining the behaviour of the robot. It is 
called the original degree of belief when the likelihood and the 
prior are combined.  The term P (X[i],…,X[j]|A) is the 
likelihood function of X[i] given A. It is taken as the probability 
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of what we know, given what we don’t know. P(A) is the prior 
and is called prior because it is the probability of A before 
making any observation or any inference [13] and 
P(X[i],…,X[j]) is the probability of data.  Availability of data is 
an advantage to estimate the prior and conditional probability 
distribution P(A) and P(X1|A),…, P(Xj |A) from data. 

III. THE PROPOSED BEHAVIOURAL MODEL 
In order to design a Behavioural Model, it is necessary to 

have a playerstage. Playerstage is a prototype of an 
unstructured environment that describes the robot’s position 
and other parameters like obstacles. 

A. The System Model for the CAM 
The system model comprises three essential components 

which are: simulation of an unstructured environment, 
Behavioural Bayesian Network model (BBNM) and 
predictions by testing the model for obstacle avoidance. The 
first component of the system model discovered the system 
knowledge of obstacles distances which are used in the 
second component of the system model to build the 
Behavioural Bayesian Network Model. The last component 
reasons with the model by predicting the behaviour of a 
robot given obstacles distances in an unstructured 
environment. 

 
Figure 4 (a). Playerstage Prototype for Robot’s Navigation 

 
Figure 4 (b). Cardinal Directions for guiding the movements 

B.  Data Acquisition from Simulation  
At first, data was collected from the environment for the 

construction of the network model. This was achieved by 
automating a code that generates points to represent 
obstacles as depicted in Fig. 4a. The unstructured 
environment the robots navigate is a representation of a real 
life indoor environment simulated as a playerstage. The 
implementation is a simple forward-looking movement as 
shown in Fig. 4a.  

Furthermore, basic assumptions are made in generating data 
for the model(cardinal points, obstacles, etc.). Further details of the 
assumptions are detailed in the components of the playerstage 
below. 

C. Components of the Playerstage 
1) Cardinal Directions: To determine the geographical 

orientation of an autonomous robot, at each position, the 
notion of the cardinal direction is used. There are four 
major cardinal directions, or cardinal points. North (N), 
south (S), east (E) and west (W) and four main intermediate 
directions, north-east (NE), north-west (NW),  south-west 
(SW) and south-east (SE) as depicted in Fig. 4b. 

2) Robot: This is the initial position of the robot as 
depicted in Fig. 4a in the unstructured environment before 
navigation. The robot perceives the environment using its 
Light Detection and Ranging (lidar) sensor. The lidar 
sensor captures the closest obstacles’ distances at the six 
geographical directions of the path. Out of all the closest 
obstacles distances captured, the obstacle with the farthest 
distance is picked. The robot navigates towards the farthest 
obstacle observation and reasons for the next direction. The 
new position of the robot forms the basis of its new direction. 
The process is repeated, it perceives the environment, 
checks for the closest obstacles distances in the next level of 
perception, picks the highest obstacle distance among the 
perceived obstacles distances and navigates towards it. It 
then reasons again for the next direction. The robot follows 
the above steps until it gets to its desired destination. 

3) Obstacles: The obstacles are represented with 
random variables or random points, which correspond to 
the position of chairs, tables, etc. in the real life 
environment. 

 
Figure 5.  Bottom up obstacles direction capturing using some line 

conditions 
4) Distance: To calculate the distances between the 

robot position and the obstacles, the Euclidean distance [21] 
or metric distance is adopted. Euclidean distance is the 
distance between two points. In the playerstage, d denotes 
the distance between the robot and the nearest obstacle. The 
obstacles’ distances are calculated as shown in (3). 

 d=√(x1−x2)2 + (y1− y2 )2       (3) 
where 

•  x1 = robot’s position at x-cordinate 
•  y1 = robot’s position at y-cordinate 
•  x2 = obstacle’s position at x-cordinate 
•  y2 = obstacle’s position at y-cordinate 

5) Lines: To partition the path into different 
geographical directions, we use the equation of a line. In 
our playerstage, we have six different lines captioned L0, …, 
L6. The lines divide the path into six equal directions 
captioned NW1,…,NE3. as depicted in Fig. 4a. Fig. 5 shows 
how obstacles directions are captured. To capture the 
nearest obstacle distance to the robot in NE1 direction, the 
parameters in the NE1 partition are considered. These 
directions form the columns in the generated database. To 
capture the position and partition of the obstacles, 
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equations of lines are also used. The lines are calculated as 
follows: 

  Li = y − mi x,   (4) 
 

where  i = 1, . . . , 6 and mi  is the slope of line i.  
6) Angles: The angles are calculated by uniformly 

dividing the path (180◦) into a number of n-equal partitions 
(lines). In the playerstage, each partition has angle 30◦  as a 
result of dividing the path into 6-equal partitions. 

Angle = 180◦   = 30◦       (5) 
   6 

7) Level: Each navigation position is described as a 
level of obstacle perception at every instance in time. This 
level represents the rows in the generated database. 
Suppose from the robot’s position, the obstacle distance at a 
particular position is represented by dij , where i  ranges 
from 1,…,6 and j ranges from 1,…,n. In a general notion, 
the generated data will be represented as follows: LOP 
represents the  levels  of  obstacles’  perceptions  and  the  
column  headings (NW1, . . . ,NE3) represent the 
geographical orientation of obstacles’ distances and their 
positions. Therefore, each cell in the table represents the 
obstacles’ distance measured. For example, in Fig. 6, d11 
and d23 represent measured obstacles’ distances as 
perceived by  the  robot in  the  geographical orientation 
NW1 and NW3, respectively. The Action column represents 
the highest distance position for each level of perception. 
That is: 

 
Figure 6.  Data Generation Table 

TABLE I.  PSEUDO-CODE FOR DATA GENERATION AT PATH 180◦ 

input: Obstacles in unstructured environment, U. 
output: Database of obstacles’ distances, D(U ). 
step 1: Initial position of robot at origin (0,0) on path 

(line) 180◦ . 
step 2: Set robots lidar sensor perceptions at level 

 i(i =1,…, n) to m equal partitions of path P◦ each. 
step 3: Measure and record the nearest obstacles’ 

distances di ’s in each partition. 
step 4: Get the highest obstacle distance max (di ’s). 
step 5: Action: Set neighbourhood threshold control 

parameter di'   as the new robots’s position. 
step 6: Repeat steps 1 to 5 until the robot navigates to its 

desired destination.  
Action = max(LOPi )    i = 1, . . . , n.      (6) 
For example, 
For row LOP1: 
d13 > (d11 , d12 , d14 , d15 , d16 ) ⇒ d13 = max(dij) 

In LOP1 and LOP2, we assumed the highest obstacle 
distance is NW3 and NW1, respectively. The pseudo-code in 
Table 1 summarises the steps involved in generating data for 
the CAM 

D. The Behavioural Bayesian Network Model (BBNM) 
Once the network structure is obtained and the 

probability tables are calculated, the network model is ready 
for prediction [4]. The structure shows that there is only one 
parent or class node called Action and six variable/evidence 
nodes called NW1,…,NE3. The model also shows that the 
class node is conditionally dependent on the evidence nodes. 
This means the evidence can be propagated to get the 
posterior distribution. This is achieved by updating the 
posterior of the class variable after setting the evidence of 
each node. Propagation can be performed using exact 
methods or approximate methods. Exact methods calculate 
the exact posterior probabilities of the variables and this is 
usually the case where the network is simple. Some 
examples of exact methods are: variation elimination, clique 
tree propagation etc. In the case of complex network 
structures, approximate methods are used. Examples of 
approximate methods are: clustering, sampling etc. These 
methods use Bayes’ rule for computation. 

E. Scoring and Validation 
We considered the K-fold cross-validation technique in 

this paper. With K-fold cross-validation, a single subsample 
of the known data is set aside as validation data for testing 
the model, and the remaining K-1 subsamples are used as 
training data [18]. We repeat the cross-validation process K 
times where each K subsamples are used exactly once as the 
validation data. 

IV. EXPERIMENTAL EVALUATIONS AND RESULTS 
One of the objectives of this paper is to bring the 

Behavioural model to practice with an emphasis on robotic 
applications and 

TABLE II.  PSEUDO-CODE FOR BEHAVIOURAL BAYESIAN NETWORK 
MODEL 

 
Figure 7.  Behavioural Bayesian Network Model 

 
collision avoidance strategy. This consequently alleviates the 
robot’s behaviour as it reasons over environmental 
uncertainties. To justify the universality of the CAM and to 

input: Database of obstacle’s distances, D( U). 
output: Behavioural Bayesian Network Model (BBNM ). 
step 1: Discretize data D(U); Dis(U). 
step 2: Learn network structure from Dis(U ) as Directed 

Acyclic Graph (DAG). 
step 3: Learn associated conditional probability tables 

(CPTs), say Ki , from Dis(U ).  
step 4: Visualize Bayesian Network (BN) structure. 
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assure that our Behavioural modelling design is reproducible, 
different unstructured environments are used to test our 
model and implementation. Fig. 7 shows the proposed 
Behavioural model structure learned from Fig. 6 using the 
GeNle software [19]. Table 2 shows the steps involved in 
building this BBNM from data D. Note that the model 
obtained is a typical type of Naive Bayes as explained in 
Section 2. 

Three experiments were conducted on unstructured 
environments with static obstacles including: 
1) Performance accuracy of the collision avoidance model by 
plying modelled environment (ME). 
2) Performance accuracy of the collision avoidance model by 
plying new directions. 
3) Performance accuracy of the collision avoidance model by 
plying new unstructured environment (UE). 

The performance accuracies of the CAM on each of these 
environments are also computed using the cross-validation 
technique [17] summarized in each of the experiments. With 
five level of obstacle perceptions (LOP) selected on each 
validation experiment, Figs. 8, 10 and 11 show the results of 
the expected robot behaviour (ERB) compared with the 
predicted robot behaviour (PRB). The validation results 
realised after the comparison are visualized on Tables III, IV 
and V. The performance accuracy of the model is computed 
as T from Figs. 8, 10 and 11 as expressed in (7). For dataset1 
in Fig. 8 for example, T = 5/5*100% = 100%. The average 
performance accuracy is computed by finding the average of 
the number of validation experiments. In Table III, the 
average performance accuracy for experiment I is 
(100%+100%+100%)/(3) = 100%. 
           Number  of correct   predictions 
T =                                                            × 100%                   (7) 

Total  number of cases 

A. Experiment I: Performance Accuracy of the CAM by 
Plying ME  
Obstacles’ distances are perceived by the robot’s lidar 

sensor and measured. Fig. 8 shows the data used for 
experiment I. The objective of this experiment is to test the 
model’s accuracy in the modelled environment. That is, 
some of the samples used for building the model are used to 
test the model’s performance. Table III shows the results of 
the average performance obtained from the evaluation of the 
model. 

To better measure the accuracy of the obtained model, 3-
fold cross-validation is applied to the data and the average 
accuracy measure from the testing of the 3-folds is reported 
in Table III. 

The charts in Fig. 9 show the predicted behaviour of the 
robot when navigating in the modelled environment 
represented by  

TABLE III.  3-FOLD CROSS-VALIDATION TABLE FOR EXPERIMENT I 

3-Fold Cross-validation Subsample Precision
Validation  Data  1 Dataset1 100%
Validation  Data  2 Dataset2 100%
Validation  Data  3 Dataset3 100%

Average Cross-Validation: 300/3= 100%

 
Figure 8. Data from Modelled Unstructured Environment 

 
dataset1 in Fig. 8. The charts show the proportion of the 
degree of belief for each evidence (NW1,…,NE3) of 
obstacles’ distances in dataset1. The area of each chart is 
proportional to the quantity of the degree of belief. Observe 
that the largest portion of each chart in Fig. 9 represents the 
behaviour of the robot for each set of obstacles perceived. 
This tallies with the degree of beliefs in the PRB column of 
dataset1 in Fig. 8. 

The highest posterior probability of the class node 
(Action) is used to select the behaviour of the robot. For 
example, NW2 is the highest obstacle distance at E1 of 
dataset1. At this point, the robot navigates away from the 
closest obstacles’ distances and moves towards the farthest 
obstacle distance NW2. When approaching, it perceives 
obstacles’ distances again at a new position and reasons for 
the next direction. Equation 9 expresses how the predictions 
of the robot behaviour is obtained for NW1 of dataset1 in Fig. 
8 and (8) is the predictor variable. The collision avoidance is 
a continuous process as the robot perceives new obstacles’ 
distances as evidence over time. Looking at the results in Fig. 
8 and Table III, the model performance is 100% accurate. 
This shows that there is a 100% guarantee of collision-free 
navigation for autonomous robots in the modelled 
environment.  
 
P r(A=NW1|NW1=5,NW2=8.71,…,NE3=0.44).              (8) 
 
Using the Bayes’ rule described in Section 2, equation 8 becomes 

P r(NW1=5, … ,NE3=0.44|A=NW1)×Pr(A=NW1) 
.     (9) 

Pr(NW1=5,…,NE3=0.44) 
More information on (9) is available in [9]. 

B. Experiment II: Performance Accuracy of the CAM by 
Plying New Directions 
For experimental verification, the BBNM is deployed in 

a different environment where robots navigate in new 
directions e.g. diagonal movements. This tests for increased 
uncertainty on the robots’ navigation because the test dataset 
here were not used for building the model. We performed 
validation experiments similar  
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Figure 9. Pictorial Results of PRB of Dataset1 in Fig. 8 

TABLE IV.  3-FOLD CROSS-VALIDATION TABLE FOR EXPERIMENT II 

3-Fold Cross-validation Subsample Precision
Validation  Data  1 Dataset1 60%
Validation  Data  2 Dataset2 80%
Validation  Data  3 Dataset3 80%

Average Cross-Validation: 220/3= 73.3%
 

 
Figure 10. Data from New Direction 

 

 
Figure 11. Data from New Unstructured Environment 

TABLE V.  3-FOLD CROSS-VALIDATION TABLE FOR EXPERIMENT III 

3-Fold Cross-validation Subsample Precision
Validation Data  1 Dataset1 80%
Validation Data  2 Dataset2 80%
Validation Data  3 Dataset3 60%

Average Cross-Validation: 220/3= 73.3%
to those in experiment I with the data generated from the 
simulation of diagonal movements. The evaluation of the 
model is also performed using the 3-fold cross-validation 
technique. The results are tabulated in Fig. 10. Performance 
accuracy for experiment II using 3-fold cross validation is 
shown in Table IV. The overall performance accuracy result 
obtained during the robot’s navigation in this direction looks 
promising as shown in Fig. 10 and Table IV. 

C. Experiment III: Performance Accuracy of the CAM by 
Plying New Unstructured Environment 
In this section, we carry out the last experiment to further 

evaluate the performance of the model. This provides the 
experimental results for an obstacle avoidance model when 
an autonomous robot navigates in a new environment while 
perceiving new obstacles’ distances. Fig. 11 and Table V 
show the average performance obtained for three different 
validations conducted in the new environment. In each 
validation, obstacles distances are randomly sampled and 
selected from the new test dataset. Each set contains five 
evidence (E1,…,E5 ) rows of perceptions and six obstacles’ 
distances (NW1,…,NE3) as columns. The ERB column 
which denotes the expected robot behaviour offers the prior 
knowledge of how the robot should behave from the 
simulated experiment. The PRB column which denotes the 
predicted robot behaviour also shows the result of the model. 
After each experiment, the result of the ERB and that of PRB 
are compared and evaluated. The essence of this is to test 
how accurate our model will perform when the robot finds 
itself in a new environment where patterns/knowledge of the 
obstacles are unknown. This is achieved and the results in 
Fig. 11 and Table V proved the adaptability of the model in 
such an unknown environment. 

V. CONCLUSION AND FUTURE WORK 
In this paper, we have presented the Collision Avoidance 

Model (BM) to improve the safe navigation of an 
autonomous robot in an unstructured environment where 
obstacles are static. The results of the CAM are promising 
and are able to predict the behaviour of the robot in an 
unstructured environment. The results of experiment I shows 
that there is certainty in the degree of belief that the robot 
will not collide with any obstacle in that environment. The 
73.3% accuracy achieved from experiment II shows that the 
model is able to adapt to an unstructured environment with 
increased uncertainties. The BBNM has also been tested in a 
new unknown environment in experiment III where 
uncertainties are more and the results show the potentials of 
the model as promising to cope with unstructured 
environments. However, the purpose of the proposed 
Behavioural model is to investigate its capability to handle 
uncertainties for robot to navigate freely in any unstructured 
environment. The experimental results obtained reveal this 
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achievement. Having achieved a level of certainty in the 
degree of belief for the proposed model, we are working to 
make our idea robust and flexible by carrying out 
investigations on (i) dynamic obstacles; (ii) moving from a 
specified start position to goal position; (iii) comparism with 
other models e.g. Hopfield Neural Network, etc; and (iv) test 
our idea on the field. 
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