Detection of anti-mycolic acid antibodies by liposomal biosensors

Running title: Antibody detection by liposomal biosensors

Y. Lemmer1,3, S.T., Thanyani1, P.J. Vrey1, C.H.S. Driver2, L. Venter1, S. van Wyngaardt1, A.M.C. ten Bokum1, K.I. Ozoemen2, L.A. Pilcher2, D.G. Fernig5, A.C. Stoltz1,4, H.S. Swai3, J.A. Verschoor1

1. Department of Biochemistry, University of Pretoria, South Africa
2. Department of Chemistry, University of Pretoria, South Africa
3. Materials Science and Manufacturing, CSIR, Pretoria, South Africa
4. Department of Infectious Diseases, University of Pretoria, South Africa
5. School of Biological Sciences, University of Liverpool, UK

Corresponding author: J.A. Verschoor

Department of Biochemistry

University of Pretoria

Pretoria 0002

Republic of South Africa

Tel. +27 12 420 2477

Fax. +27 12 362 5302

e-mail: jan.verschoor@up.ac.za
ABSTRACT

Antibodies to mycolic acid antigens can be detected as surrogate markers of active tuberculosis (TB) with evanescent field biosensors where the lipid antigens are encapsulated in liposomes. Standard immunoassay such as ELISA, where the lipid antigen is not encapsulated, but directly adsorbed to the well-bottoms of microtiter plates, does not yield the required sensitivity and specificity for accurate diagnosis of TB. One reason for this is the cross-reactivity of natural anti-cholesterol antibodies with mycolic acids. Mycolic acids (MA) are the major cell wall lipids of mycobacteria. Mycobacterial MA has immunomodulatory properties and elicits specific antibodies in tuberculosis patients. Liposomes were optimized for their use as carriers both for the presentation of immobilized purified mycobacterial MA on sensor surfaces, and as a soluble inhibitor of antibody binding in inhibition assays. By using an inhibition assay in the biosensor, the interference by anti-cholesterol antibodies is reduced. Here we describe the MA carrying capacity of liposomes with and without cholesterol as stabilizing agent, optimised concentration and size of liposomes for use in the biosensor assay, comparison of the methods for wave-guide and surface plasmon resonance biosensors and how the cholesteroloid nature of MA can be demonstrated by biosensor when Amphotericin B is allowed to bind to MA in liposomes.
INTRODUCTION

As a result of the development of drug-resistant strains of *Mycobacterium tuberculosis* and the breakdown of the immune system of its host by HIV, TB is no longer a ‘controlled’ disease and has become a major health problem in both developed and developing countries (Houghton *et al*., 2002). Diagnosis of TB is no longer 100% reliable due to AIDS and was never adequate for determining extrapulmonary and child TB. HIV co-infection and drug resistance appears to shorten the life-time of a TB patient considerably, such that it becomes a matter of life and death to be able to diagnose TB within 24 hours of sampling. The decision towards treatment cannot be taken lightly, as the treatment regime has to be maintained for at least six months to clear all the latent TB from the body. The current drive towards new tools for TB diagnosis arose from these facts, and that the mycobacterial pathogen isolated from sputum samples is slow growing, thereby requiring several weeks to become visible during *in vitro* growth (Reischl *et al*., 1996; Samanich *et al*., 2000). Although DNA amplifying technology has reduced the period from sampling to TB diagnosis to within days, it still uses mainly samples obtained from the lungs. Therefore, fast, affordable and reliable diagnosis of TB has become a high priority in public health (Chan *et al*., 2000) and is currently actively pursued in several laboratories. Mycolic acids appeared to be promising antigens for the design of fast immunodiagnostics for TB (Verschoor *et al*., 1999).

The major cell wall lipids of mycobacteria are the mycolic acids (MA), which are long chain (C60-C90) α-branched, β-hydroxy fatty acids. Mycobacterial MAs are immunogenic. MA was the first non-protein antigen shown to stimulate the proliferation of human CD4⁺, CD8⁻ and CD4⁺ T lymphocytes upon CD1 presentation (Beckman *et al*., 1994; Goodrum *et al*., 2001). In addition, anti-MA antibodies could be detected in the serum of patients with active pulmonary tuberculosis (Pan *et al*.,
1999) using the standard ELISA procedure, indicating that free MA are present in the circulation during active tuberculosis disease (Beatty et al., 2000). The prevalence of anti-MA antibodies appeared to be independent of the degree to which a person was suffering from AIDS (Schleicher et al., 2002). Whereas ELISA did not detect anti-MA antibodies well enough to be considered as a basis for a diagnostic test of active tuberculosis, biosensor analysis did (Thanyani et al., 2008). It could achieve the required specificity and sensitivity to be seriously regarded as a solution to the current dilemma of standard TB diagnosis taking several weeks after sampling to produce a result. Even the highly sensitive PCR detection of mycobacterial DNA in patient sputum samples still takes a few days to deliver a diagnostic outcome.

MA are soluble in extremely non-polar organic solvents such as chloroform, dichloromethane and hexane. Alternatively, they can be 'solubilized' in boiling water or aqueous buffers. For the detection of anti-MA antibodies by means of ELISA, MA was either coated from hexane solutions (Pan et al., 1999) or from boiling PBS (Schleicher et al., 2002). This presentation of MA is clearly not physiological. Presentation of MA in liposomal environments more closely resembles the way in which MA is encountered in the body of the patient. Indeed, when encapsulated into liposomes and injected into mice, MA was shown to behave as a typical pathogen associated molecular pattern (Korf et al., 2005). It could also act as an immunomodulatory compound that suppressed experimental asthma through Treg cell intervention (Korf et al., 2006). It was only logical to derive that diagnosis of TB by detection of surrogate marker antibodies against MA should perform better when MA antigen was presented in liposomes. This was demonstrated by Thanyani et al., (2008) by making use of biosensors. Here we describe how liposomes were optimized for their use as carriers of MA for immobilization as antigens on sensor surfaces and as soluble inhibitors of antibody binding in inhibition assays in a TB diagnostic assay. It is dubbed the MARTI-test, as an acronym of Mycolic acid
Antibody Real-Time Inhibition. Whereas the original MARTI-test was described for a wave-guide biosensor (Thanyani et al., 2008), we show here how the method was adjusted to also suit the more popularly used surface plasmon resonance (SPR) biosensors. Finally, we demonstrate the cholesteroid nature of MA with the biosensor by measuring the binding of Amphotericin B to MA in liposomes.

EXPERIMENTAL

Purification of mycobacterial MA

MAs were isolated and purified from Mycobacterium tuberculosis H37Rv ATTC 27294 purchased from the American Type Culture Collection (ATTC, Baltimore, MD, USA) as described by Goodrum et al., (2001). The MA was dissolved in chloroform (HPLC grade; Merck; Darmstadt, Germany) and aliquotted into glass vials. The chloroform was evaporated under nitrogen gas and the dried MA was stored at 4 °C until use. The purified mycolic acids contained no detectable LPS, as determined using the kinetic-QCL Limulus amoebocyte test kit (Sigma, St. Louis, MO).

Fluorescent labelling of MA

MA was fluorescently labeled by derivatization with 5-bromomethyl fluorescein (5-BMF; Molecular Probes, Leiden, The Netherlands) as described by Korf et al., (2005). Quality control was performed by TLC on a silica gel GHL thin layer plate. Chromatography was performed in two dimensions with chloroform: methanol: water as the mobile phase in the first dimension and 100% methanol (Merck) as the mobile phase in the second dimension. Iodine vapor was used to visualize the MA. No free 5-BMF, not associated with the MA spot, was detected, indicating that the label was
covalently bound. Fluorescently labelled 5-BMF-MA was incorporated into liposomes for assessment by the biosensor or flow cytometry.

Determination of MA carrying capacity of liposomes

Mycelic acids were dissolved in chloroform and 100 µg quantities aliquoted into amber vials and stored at 4 °C. Liposomes were prepared according to the method described by Bangham *et al.* (1983). This involves the deposition of a thin lipid film from an organic solvent medium on the wall of a container, followed by agitation with an aqueous medium. In short, phosphatidyl choline (PC from egg yolk, 99% pure; Sigma), cholesterol (Sigma) and dried MA were all dissolved separately in chloroform. PC (9 mg), with or without 4.5 mg cholesterol and varying amounts of MA were mixed together in a glass vial. The chloroform was evaporated under nitrogen gas. PBS (1 ml) was added and the mixture was heated to 80 °C until the lipid film dissociated from the wall of the vial. The hot mixture was then vortexed and sonicated using a Branson sonifier for 50 pulses at a 20% output level.

MA-carrier liposomes were extracted using a triphase partition method, modified from Dennison *et al.* (1997). Briefly, a sample (50-200 µl) of MA-carrier liposome solution was diluted to 600 µl with H₂O and extracted three times with equal volumes of tert-butanol and chloroform. The chloroform phases were collected and the chloroform was evaporated under nitrogen gas. MA remaining in the vials due to saturation of the liposomes were collected by chloroform rinses. HPLC of the extracted MA was carried out as described (Butler *et al.*, 1990), after derivatisation with p-bromophenacyl bromide. A high molecular weight internal standard (Ribi ImmunoChem Research Company, Hamilton, MT, USA) was added to each sample to allow quantification of the extracted MA.
Liposomes made with egg phosphatidyl choline, with or without the addition of cholesterol, were shown to be able to incorporate MA. The maximum amount of MA that could be incorporated reproducibly was about 2 mg/ml for liposomes consisting of phosphatidyl choline and cholesterol, but only about 500 µg MA per ml into liposomes consisting of phosphatidyl choline only (Fig. 1). MA that was not incorporated into the liposomes could in most cases be quantitatively recovered from the wall of the vessel in which the liposomes were prepared (shaded part of the bars). At very high concentrations the recovery was not quantitative, as the MA tended to form clumps which would float in the liposome suspension. The MA-liposomes could be lyophilized and reconstituted without significant loss of MA content. Heating to 80 °C in the reconstitution process was an important step to ensure full recovery of MA content.

Mycolic acid liposome size is influenced by cholesterol and MA content, but not by pH.

MA containing liposomes were prepared with equal amounts of 5-BMF labeled and unlabeled mycolic acids and varying amounts of cholesterol according to Table 1.

Table 1

A liposome stock suspension was obtained by adding PBS (1 ml) to the dried lipid components, dissolving it on a heat block for 60 min. after vortexing and sonicating the heated (80 °C) mixture with a Branson Sonifier B30 Cell Disrupter at 20% duty cycle and output control of 2.
Both the size distribution (forward scatter, FS) and the fluorescence (FL 1) of the liposomes were measured on a Beckman Coulter Epics Ultra Flowcytometer. For the analysis, ten times dilutions of the stock liposomes were prepared using PBS in plastic analyzing tubes covered with foil to prevent the photobleaching of the fluorescent marker. The tubes were kept in a water bath at 37 °C for the experiments that were performed. One gate was set on the analyzer to exclude background signals and debris events that had a FS value below 10. A constant number of 50,000 events were counted per measurement. Flowset (3.6 μm) fluorospheres measured with each experiment was used to correlate the relative size of the liposomes to that of the beads when varying amounts of cholesterol were added to a constant amount of MA and PC.

The size distribution of the liposomes changed in accordance with a change in the cholesterol concentration (Fig. 2A). Two different liposome states could be identified. At the two highest concentrations of cholesterol, the liposomes were 2 log units bigger than the liposomes that contained none or the lowest concentrations of cholesterol. The liposomes obtained with the addition of 11.25 μl of cholesterol stock gave an intermittent size of liposomes in between that of the two states. With an increase in the cholesterol concentration and liposome size, the liposomes also showed an analogous increase of 2 log units in the amount of fluorescence per liposome that was emitted (Fig. 2B), indicating that the change from smaller to larger liposomes was not due to swelling with water/PBS, but to an accumulation of more MA containing material into the bigger liposomes. The results imply that cholesterol content determines two states of liposomes, where higher concentrations of cholesterol induce the disordered state of the bilayer in liposomes that increase their
size 100-fold. All cholesterol containing liposomes used in the biosensor analysis were in the disordered state at the highest concentration of cholesterol shown here.

Figure 2

In Fig 2, the biggest sized liposomes measured around 30 micron and were composed of phosphatidyl choline (9 parts), cholesterol (4.5 parts) and MA (0.25 parts). When the phosphatidyl choline was combined with either the MA or the cholesterol, significant changes in the sizes of the liposomes occurred. With cholesterol alone the size sharply increased, while with MA alone the size sharply decreased (Fig. 3). This effect was not significantly influenced in the pH range between 4 to 10 of the PBS to which the liposomes were exposed, probably due to the unchanged surface charge of phosphatidyl choline liposomes over these pH values. The anionic phosphatidyl residues (pKa ≤ 3.5) only become neutralised below pH 4, while the cationic state of choline (pKa = 13.9) is maintained over the full pH range measured (Tatulian et al., 1993). It is therefore expected that the stability of the liposomes described here for use in the biosensor will be quite tolerant to a broad pH window extending to both sides of the typical pH of 7.4 of PBS.

Figure 3

Mycolic acid-liposome immobilisation on IAsys biosensor cuvettes

A number of application notes are available for the adsorption of liposomes to hydrophobic sensor surfaces. These do not stand up as rigorous and reliable for the immobilization of MA-antigen containing liposomes aiming at antibody detection. This motivated the use of non-derivatised sensor cuvettes where the glass-like hafnium oxide surface was made hydrophobic by treatment with the cationic detergent,
cetylpyridinium chloride (CPC). CPC is well known for its use as an antiseptic agent. Its property of binding to glass when applied at aqueous dilutions below the critical micellar concentration (i.e. below 0.1 mg/ml) is long established (Westwell et al., 1959), leaving a ‘greasy’ surface (Hartley et al., 1938).

PBS/AE buffer consisted of 8.0 g NaCl, 0.2 g KCl, 0.2 g KH$_2$PO$_4$ and 1.05 g Na$_2$HPO$_4$ per litre of double distilled, deionised water containing 1 mM EDTA and 0.025% (m/v) sodium azide and adjusted to pH 7.4. CPC (0.02 mg/ml) and saponin (1 mg/ml) were prepared in PBS/AE. The IAsys resonant mirror biosensor system and twin-cell non-derivatized cuvettes were from Affinity Sensors (Farfield Scientific, Crewe, United Kingdom). The sensor was set for a data-sampling interval of 0.4 s, temperature of 25 °C and stirring rate of 75% for all experiments. The cells were rinsed three times prior to use with 96% ethanol (Saarchem, South Africa), followed by extensive washing with PBS/AE. A 60 µl volume of PBS/AE was pipetted into each cell of the cuvette to obtain a stable baseline for 1 min. Cuvettes were washed with PBS/AE until a stable baseline could be maintained for at least 5 min. The cells were aspirated and 50 µl of a 20 µg/ml CPC in PBS/AE solution was added. After 10 min, the cells were washed five times with 60 µl PBS/AE. PBS/AE (25 µl) was added until a stable baseline was achieved. Twenty-five microlitres of the desired liposome solution were added and the binding response monitored for 10 min. The MA containing liposome concentration consisting of 9:3:1 (m/m) phosphatidyl choline: cholesterol: MA was titrated between 0.02 mg/ml and 10 mg/ml of total lipid concentration. The MA containing liposome concentration with the optimum binding capacity was found to be 500 µg total lipid/ml (Fig 4). This concentration was used in all subsequent experiments.
After liposome binding, the cells were washed five times with 60 µl PBS/AE and immediately after that, treated five times with 60 µl 1 mg/ml saponin in PBS/AE. Due to a response difference among saponin batches, it was necessary to titrate the amount of saponin required each time a new batch of saponin was used. The cells were incubated with saponin for at least 10 min. and until a stable baseline was achieved before a final five times wash with 60 µl PBS/AE. Antibody interaction analysis could be continued from this point as described by Thanyani et al. (2008). The cells were washed five times with PBS/AE, the content of each cell substituted with 25 µl of PBS/AE and left for about 5 - 10 min to achieve a stable baseline. Inhibition studies were performed using patient’s serum that was first placed at room temperature to thaw completely. After obtaining a stable baseline, a 1/1000 dilution of serum antibodies (10 µl) in PBS/AE was added in each cell, to compare the responses of the two cells over 10 min. A pre-incubation of 1/500 dilutions of serum with solutions of liposomes containing mycolic acids and empty liposomes (phosphatidylcholine alone) was allowed for 20 min. These were then added (10 µl) for binding inhibition studies in the two cuvette cells, one with mycolic acids liposomes and the other with empty liposomes as a control, and allowed to bind for 10 min. Finally, dissociation of antibodies was effected with three times PBS/AE washing and measurement of the response for 5 min.

Regeneration of the cuvette was effected by three washes with 96% ethanol for 1 min, followed by seven washes with 70 µl PBS/AE for 1 min. The surface was then finally treated with 50 µl potassium hydroxide (12.5 M) for 2 min followed by seven washes with 70 µl PBS/AE for 1 min.

Figure 4
A typical profile of a positive and negative TB test using this method, but applied in the ESPRIT biosensor, is shown in Fig. 11. The outcome of the test in the IAsys biosensor scored an overall specificity of 48.4% (15/31) and sensitivity of 86.7% (26/30) with 61 patient sera analyzed (Thanyani et al., 2008). When adjusted for the inadequate performance of the reference culture test in HIV-infected patients, the MARTI-test scored a specificity of 76.9%.

A disadvantage of the IAsys biosensor in this application is the difficulty of aligning the relative basic signal strength of the two cells in a cuvette, which must be identical during the first serum exposure before a patient diagnosis can be derived from the difference of the binding signal during the second liposome-pre-incubated serum exposure. We experienced an average success rate of around 30% to obtain comparable signals during the first serum exposure. For this reason and due to the fact that the IAsys cuvettes were relatively expensive, we transferred the technology from the wave-guide IAsys biosensor to the more generally used surface plasmon resonance biosensors.

Technology transfer from the IAsys waveguide to the ESPRIT surface plasmon resonance biosensor (SPR)

An ESPRIT SPR biosensor (Eco Chemie B.V., Utrecht, The Netherlands) was used in this study to detect antibodies to mycolic acid in human patient sera. The principle of the SPR biosensor is based on the change in the refractive index on a thin gold film surface modified with various materials (Lee et al., 2005) to indicate the binding of ligands, in this case anti-mycolic acid antibodies. Both IAsys and ESPRIT biosensors use a cuvette system. The light is totally internally reflected from the sensing surface by means of a prism in both biosensors. SPR signals are related to the refractive index close to the sensor surface, and therefore report the amount of
macromolecules bound to the sensor surface. An SPR immunosensor is comprised of several important components such as a light source, detector, prism with transducer surface and flow system (Shankaran et al., 2007). The transducer surface is usually a gold film (50 – 100 nm, on which biomolecules, such as antibody or antigen is immobilized) on a glass slide optically coupled to the glass prism through refractive index matching oil. The resonance conditions are influenced by the biomolecules interacting with their immobilized ligands on the gold layer. When the molecules interact, the change in the interfacial refractive index can be detected as a shift in the resonance angle. These changes are monitored over time and converted into a sensorgram, from which the kinetics and affinity constants of the interaction can be determined.

There has been considerable progress in the development of new methods of immobilizing biological recognition elements onto transducer sensor surfaces (Zhang et al., 2000), a key step in the development of biosensors. The use of self-assembled mono- and multi-layers (SAMs) is increasing rapidly in various fields of research, and this applies especially to the construction of biosensors (Zhang et al., 2000; Zhang et al., 2008). The uncomplicated procedure for SAM formation and compatibility with metal substrates such as gold for electrochemical measurements enable special benefits for biosensor applications. The term self-assembly involves the spontaneous arrangement of atoms and molecules into an ordered stable form or even aggregate of functional entities (Tecilla et al., 1990). For example, the highly ordered and dense nature of the long chain alkane thiols of SAMs mimic the cellular microenvironment of lipid bilayer structures, thereby providing novel substrates for immobilized biomolecules (Arya et al., 2006). The molecular self-assembly of long chain alkanethiol on gold has drawn considerable attention during the past decade, since self-assembled monolayers (SAMs) have strong adhesion to a substrate, high degree of thermal and chemical
stability and mechanical strength (Kim et al., 2001). The stability of the SAMs of the alkanethiol molecules formed on the gold depends on the strength of Au-S bond and the Van der Waals force between a thiol molecule and its surrounding molecules (Han et al., 2004). SAMs can be used as interface layers upon which almost all types of biological components, including proteins, enzymes, antibodies and their receptors can be loaded (Zhang et al., 2000). The current study involves the preparation of octadecanethiol in absolute ethanol to form a SAM that was characterized using cyclic voltammetry and applied for the measurement of binding, or inhibition of binding of patient serum antibodies to mycolic acids that were immobilized in liposomes onto the alkanethiol coated ESPRIT biosensor surface. The low solubility of octadecanethiol in ethanol is preferred to form the SAMs. Kim et al., (2001) demonstrated that the adsorption rate of alkanethiol onto clean gold when using a quartz crystal microbalance (QCM) biosensor depends on the thiol concentration, temperature and solvent used. In our study, a full coverage of the underivatised Au surface was observed when 10 mM of octadecanethiol was used. This was confirmed by a strongly hindered redox reaction when the surface was characterized in an independent with cyclic voltammetry instrument. Cyclic voltammetry (CV) experiment were carried out using an Autolab potentiostat PGSTAT 30 from Eco Chemie (Utrecht, the Netherlands) driven by the General Purpose Electrochemical Systems (GPES) data processing software version 4.9.

Sodium dodecylsulphate (SDS) and absolute ethanol (analytical grade) were obtained from Merck (Gauteng, SA). Octadecanethiol, ferricyanide \([K_3\text{Fe(CN)}_6]\), ferrocyanide \([K_4\text{Fe(CN)}_6]\), potassium chloride (KCl) and urea, all analytical grade, were obtained from Sigma-Aldrich (St. Louis, MO). Acetic acid (analytical grade), sodium hydrogen carbonate (NaHCO₃), isopropanol (chemically pure) and sodium hydroxide (NaOH) were obtained from Saarchem (Gauteng, SA). Octadecanethiol (10 mM) was dissolved in absolute ethanol using a water bath sonifier (Ultrasonic
cleaner, Optima Scientific CC, Model: DC150H) for 30 min. Sodium hydrogen carbonate (0.2 M), SDS (0.5% w/v), sodium hydroxide (50 mM), 1 mM ferrocyanide/ferricyanide, 1 M potassium chloride and urea (6 M) were prepared with sterile double distilled water. The coating of the gold disc could not be monitored in real-time, since the octadecanethiol (ODT) was dissolved in absolute ethanol that generates too large refractive index jumps in the sensor signals when alternated with PBS/AE. The underivatised gold disc was incubated for 16 hours at room temperature in 10 mM ODT. The ODT coated gold disc was immersed in a solution of 1 mM ferrocyanide/ferricyanide (used as a redox probe) containing 1 M potassium chloride and scanned at a rate of 25 mV/s and 50 mV/s at a potential window of -0.1 to 0.5 V (vs Ag/AgCl, sat’d KCl). The results in Fig. 5 show that there was a significant drop in the current response of the ODT coated disc, towards the redox probe in comparison to the uncoated gold disc indicating the formation of a stable self assembled monolayer (SAM) of octadecanethiol by S-Au bonds on the surface of the gold disc. The SAM was maintained after the exposure of the coated surface to several regeneration cycles of absolute ethanol and a mixture of 50 mM NaOH with isopropanol (2:3, v/v).

Figure 5

Kim et al. (2001) reported that partial ODT multilayers on the gold surface could be formed via the formation of disulfides, since thiols are oxidized to disulfides in the presence of oxygen and the solubility of disulfides in ethanol is much less than that of thiols. If a solution of ODT in ethanol is exposed to oxygen and oxidized to disulfide, the oxidized disulfide can be precipitated onto the monolayer. In the current study, the solution of ODT in absolute ethanol was covered with parafilm to avoid oxygen exposure.
The ODT coated disc was subsequently inserted into the biosensor on a droplet of special refractive index oil, after wiping the glass bottom surface with lens tissue. The PBS/AE was filtered through a 0.2 µm particle retention membrane and degassed with helium for 30 min. before use. Degassing is required whenever a hydrophobic surface is created that is exposed to air before liposome addition to prevent the formation of a ‘dissolved’ air layer onto the hydrophobic surface that prevents SPR to occur. The cuvette was flushed with 500 µl ethanol (96%) using the automatic dispenser with simultaneous draining, followed by brief (~ 60 s) flow-washing with PBS/AE. An automated software programme sequence was created to control the addition of all the samples and liquids into the cuvette. Quality of the surfaces were monitored by determining the SPR dips after cleaning the Au ODT coated surface with 96% ethanol and a mixture of isopropanol and 50 mM sodium hydroxide (2:3, v/v). The samples were transferred from a 384 multi-well plate (Bibby Sterilin Ltd, Stone, UK) to the cuvette surface by an autopipettor. First, the baseline of the ESPRIT biosensor was set with 10 µl PBS/AE, followed by addition of 50 µl MA liposomes on the disc for 20 min. The immobilized liposomes were then finally washed five times with 100 µl PBS/AE, to prepare for blocking the surface with saponin.

Use of degassed buffers after liposome coating of the sensor surface

A recent study (Eastoe et al., 2007) showed that exposure of lipids to degassed buffers resulted in a detergent effect that destabilised the lipids. The removal of hydrophobic gas by pumping created a limited ability of the degassed water or aqueous buffer to dissolve lipids. To determine whether this will also be the case here where buffers are degassed by bubbling through helium gas, we exposed a liposome coated surface repeatedly to either degassed, or non-degassed buffer. The liposomes containing mycolic acids were immobilized on ODT coated gold sensor discs for 20 min. The liposomes were washed 5 times with degassed or non-
degassed PBS/AE, and left for 5 min. with mixing to achieve a baseline. This procedure was repeated 3 times. Fig. 6A demonstrates how the baseline is affected during movement of degassed PBS/AE over the liposome coat; compared to when buffer was used that was not degassed (Fig. 6B). A stable baseline was obtained only when a non-degassed PBS/AE was used. The rest of the procedure in the MARTI-assay that follows after liposome coating was subsequently done with buffer that was not degassed, taking special care that air bubbles did not develop in the fluid lines that could affect the working of the pumps. In several attempts where we tested samples with continued use of degassed buffer after liposome coating, we obtained non-reliable results with the liposome layer often coming apart at the final step of antibody incubation.

Figure 6

Optimization of saponin concentration

Different concentrations of saponin (m/v,%) prepared in PBS/AE (0.1%, 0.05%, 0.025%, 0.0125%, and 0.00625%) were tested to block the hydrophobic sites of the MA-liposome layer.

Figure 7

The stock saponin concentration was 0.1% and the subsequent dilutions were prepared from this stock solution. From the results obtained (Fig. 7A), there was a tendency of an increase in saponin accumulation onto mycolic acid liposomes immobilized on an ODT coated gold surface, as the saponin concentration was increased from 0.00625% to 0.05%. At a saponin concentration of 0.05% there was an amount of net saponin accumulation after PBS/AE buffer wash (Fig. 7B). An unstable baseline was also obtained when 0.05% saponin was used. A saponin
concentration of 0.0125% was chosen as optimal, because it gave a stable baseline and acceptable variation after PBS/AE wash (Fig. 7B) as compared to 0.00625% and 0.025%. The differences in optimal saponin concentration used on the IAsys (0.03%) and current ESPRIT biosensors (0.0125%) could be due to different batches of saponin, or that the CPC and ODT activation before immobilization of the mycolic acid produces different surface properties.

Optimization of first serum exposure dilution in PBS/AE

After optimization of saponin concentration, the next step was to determine which concentration of serum is optimal for the MARTI-assay in the first exposure to antigen. (Chung et al., 2005) indicated that serum should be diluted to minimize the non-specific binding to the biosensor surface. Serum is a complicated protein mixture for direct application to a biosensor surface. The introduction of a first serum exposure at high dilution was previously done on the IAsys biosensor to provide a practical working dilution that did not fully saturate the antigen coat, but was still concentrated enough to give a measurable signal to probe the comparability of the binding signals from the cuvette. This simultaneously blocked off the major non-specific binding areas and hugely increased the accuracy of the MARTI-test.

Serum samples collected for another study (Schleicher et al., 2002) were used that were obtained from 61 adult patients (aged between 18 and 65 years), who were admitted to the general medical wards of the Helen Joseph Hospital, Johannesburg, South Africa, including a number with active pulmonary tuberculosis. The TB negative patients that were used as controls had medical conditions other than TB and were recruited from the general medical wards.

The liposomes were immobilized as described above, the surface blocked with 0.0125% saponin, after which 50 µl of PBS/AE was added and left for 5 min. to effect a stable baseline. This was followed by addition of 35 µl of either 1/500, 1/1000,
1/2000, or 1/4000 dilutions of serum in PBS/AE. For the assessment of the optimal dilution of the first serum exposure, a second exposure of serum pre-incubated in mycolic-acids-containing or empty liposomes was kept constant at 1/250 in all the experiments. The results showed that the chosen serum dilution range of 1/4000 to 1/500 responded in an almost linear positive correlation between antibody binding signal and serum concentration with a slight running out at 1/4000 that indicates that the lower limit of the serum concentration was reached. The results obtained in Fig. 8 gave a positive linear correlation with a coefficient (r^2) of 0.9749 between the serum concentrations and their signal binding response over the range measured, which is a requirement for a successful MARTI-assay.

Figure 8

The 1/4000 and 1/2000 dilutions were adequate for the first serum exposure, leaving enough room for a positive binding event at second serum exposure.

Second serum exposure with liposome pre-incubation

P129 (TB positive) was used to optimize the dilution of the second exposure to pre-incubated serum in mycolic acid-containing, or empty liposomes for inhibition studies, following on a first serum exposure to immobilized antigen at a dilution of either 1/4000 or 1/2000. The first exposure should avoid the saturation of antigen with antibody before the addition of pre-incubated serum. Different dilutions (1/250, 1/500, 1/1000 and 1/2000) of pre-incubated serum in mycolic acid containing and empty liposomes were applied by 35 µl addition to either 1/4000 or 1/2000 of first serum exposure in PBS/AE, after 10 min. of incubation. This was followed by washing away of the unbound antibody with 5 times 100 µl PBS/AE.
The TB positive patient P129 serum showed a significant decrease of signal when the serum was pre-incubated in mycolic acid containing liposomes, compared to empty liposomes over a range of 1/250, 1/500 or 1/1000 dilution (Fig. 9) after a first serum exposure at 1/4000. There was no inhibition of antibody by mycolic acid pre-incubation observed when 1/2000 dilution of serum was used and binding response signals were also too low. This shows that the lower limit of serum concentration was reached at 1/2000 dilution to measure the inhibition of anti-MA antibody binding.

The results in Fig. 10 indicate that inhibition values of 17%, 19% and 41% were obtained at 1/250, 1/500 and 1/1000 dilutions of serum in liposome solution respectively, after first serum exposure at 1/2000 dilution. At first sight, it appeared that a better value was obtained by using a first serum exposure of 1/2000 dilution, followed by a second, antigen pre-incubated serum dilution at 1/1000 dilution (numerical difference: 12.50 millidegrees). However, when looking at the numerical signal difference between MA-inhibited and empty liposome inhibited serum, then the 1/4000 dilution of first serum exposure followed by second serum exposure at 1/500 still gave the best value (numerical difference: 21.53 millidegrees). In addition, the significance of the difference between antibody binding inhibition with MA-liposomes and empty liposomes was significant at 1/250, 1/500 and 1/1000 dilution of serum after first serum exposure at 1/4000 dilution, while only the 1/1000 dilution of inhibited serum produced a significant difference after a first serum exposure of 1/2000 dilution (P-value limit of 0.05). The 1/2000 dilution of first serum exposure appears, therefore, to restrict the workable range of serum dilutions at the second critical serum exposure that provides the inhibition end-result. This was confirmed when another TB positive - HIV negative serum (P96) was tested and for which a better
inhibition response was obtained at the preferred serum dilutions of 1/4000 and 1/500 for first and second serum exposures, respectively, compared to the result obtained with first exposure at 1/2000. At the preferred serum dilutions of exposure, the TB negative - HIV negative serum P94 gave the expected zero inhibition value, with a P-value of 0.9863.

Regeneration of the ODT coated gold discs

After dissociation of the unbound serum antibodies to mycolic acids, the surface was regenerated with 100 µl mixture of isopropanol and 50 mM NaOH (2:3, v/v) for 2 min. and finally washed with 100 µl of 99% (absolute) ethanol. The surface was washed 5 times with 100 µl of PBS/AE after each regeneration step to prepare it for a next round of liposome coating on the stable ODT layer.

Cleaning of cuvette and needles

A flow wash sequence was used to clean the needles after analyzing approximately 30 sample runs. Sequential washes with 0.5% (w/v) sodium dodecylsulphate (SDS), 6 M urea, 1% (v/v) acetic acid, 0.2 M sodium hydrogen carbonate (NaHCO$_3$) and ddd H$_2$O are done in order to maintain the quality of the SPR signals during repeated measurements.

The optimized MARTI-assay

With the lesson learnt of avoiding degassed buffers after liposome coating and the conditions optimised for the blocking of the liposome layer with saponin, titrations of the optimal dilutions for first exposures to serum and second exposure to antigen inhibited serum dilutions were done. It was concluded that best results were obtained with 1:4000 dilution of serum at first exposure and 1:500 dilution of serum at second exposure. In the second exposure, the serum was pre-incubated with antigen in order to effect an inhibition of binding signal, as graphically demonstrated in Fig. 11.
The SPR dips (Fig. 11 inserts) between 0 – 10% reflectivity that were associated with the binding profiles proved that the sensor surfaces remained intact and fully activated during the run of the experiments. Using this optimised protocol, four serum samples were selected from the Schleicher et al. (2002) collection and assessed for the presence of anti-MA antibodies. In Table 2, the MARTI-assay results are presented and compared with that obtained on ELISA by Schleicher et al. (2002).

Table 2

From Table 2, P129 and P96 tested false negative on ELISA and true positive on ESPRIT biosensor, while P94 tested equivocally on ELISA and true negative on ESPRIT biosensor, as it was previously shown on the IAsys biosensor (Thanyani et al., 2008). The MARTI-assay on IAsys biosensor was successfully validated to an accuracy of 82% for the serodiagnosis of active pulmonary TB. The IAsys biosensor system applied to the MARTI-test has a weakness in that the channels often do not give matching results, while the cuvettes are ten times more expensive than the gold discs provided for the ESPRIT biosensor. The ESPRIT biosensor is provided with an adjustable laser setting to compensate for differences in the channel readings as well as an automated pipettor system that reduces variance from one sample to the next.

The MARTI-assay as applied in the ESPRIT biosensor has now reached the stage where a result of sample analysis can be guaranteed within 4 hours of receipt of the serum. This is the first time that such reliability has been achieved. However, more sera need to be analyzed to confirm the reproducibility of the assay among the HIV positive population, to prove the value of the MARTI-test against the many studies reported of low sensitivity and specificity with HIV positive samples using standard
techniques of TB diagnosis (Antunes et al., 2002; Hendrickson et al., 2000; Schleicher et al., 2002).

The cholesteroid nature of MA demonstrated on the ESPRIT biosensor

In our previous studies we have provided evidence for a structural relationship and attraction between free mycolic acids (MA) and cholesterol (Benadie et al., 2008). This was supported by demonstrating the interaction between MA and Amphotericin B - an antifungal macrolide agent known to bind to cholesterol (Baginski et al., 2002) – on the IAsys biosensor system. The same principle was confirmed with the ESPRIT biosensor as demonstrated below, in an attempt to determine what the effect of labelling of MA would be on its manifestation of cholesteroid nature.

For the preparation of the different liposomes, phosphatidyl choline stock solution (90 µl, 100 mg/ml chloroform) was added to an amber glass vial containing either mycolic acid (1 mg) or an equimolar amount of 5-BMF labeled mycolic acid (1.35 mg). For the preparation of cholesterol containing liposomes, phosphatidyl choline stock solution (60 µl, 100 mg/ml chloroform) was added to a cholesterol solution (30 µl, 100 mg/ml chloroform). The samples were mixed well until dissolved, then dried under a stream of N₂ gas at 85 ºC. Saline (2 ml) was then added and the sample was heated on a heat block for 20 min. at 85 ºC. The sample was then vortexed for 1 min, sonicated with a Virsonic probe sonicator until a clear solution formed to indicate vesicle formation, aliquoted at 0.2 ml per vial, lyophilized and stored at -70 ºC until use. Before use, lyophilized liposomes were reconstituted with buffer (2 ml). The liposomes were placed on a heat block for 30 min. at 85 ºC, vortexed for 2 min. and sonified. The final liposome concentration was 500 µg lipid/ml.
The binding interaction between Amphotericin B and either cholesterol-, MA- or 5-BMF labeled MA-containing immobilized liposomes were tested. An octadecanethiol coated gold disk was mounted in the ESPRIT instrument and the individual liposomes immobilized as described before. The instrument was operated and reagents used at RT. The liposomes were washed 5 times with non-degassed PBS/AE, and left for 5 min. with mixing to obtain a baseline. Amphotericin B (1 x 10^{-4} M) was added to the liposome layer and the direct interaction was recorded for 10 min. after which the disk was washed 5 times with non-degassed PBS/AE, and left for 5 min. The results (Fig. 12) confirmed the ability of the ESPRIT biosensor to demonstrate that Amphotericin B recognizes both cholesterol and MA, as was previously shown with the IAsys biosensor. In addition, it shows for the first time the intolerance of the system for fettering with the structure of MA by adding a bulky label on its carboxylic acid group.

Figure 12

Conclusion

Antibodies to mycolic acid in serum as surrogate markers of active TB could be detected by making use of liposomes as MA antigen carriers in a waveguide evanescent field biosensor (Thanyani et al., 2008). However, SPR biosensors are more generally in use, more amenable to high throughput screening, have lower running costs and provide more comparable binding signals in twin cell cuvettes. The more preferred technique of SPR biosensor technology, using standard methods to form a hydrophobic surface onto the gold disks on which the MA containing liposomes could be immobilized, is reported here. This demonstrates the use of liposomes in biosensors to detect large biomolecules such as antibodies. By using Amphotericin B as a small ligand to bind cholesterol and MA in a waveguide biosensor the cross reactivity of antibodies to mycolic acids in ELISA could be
explained (Benadie et al., 2008). This could also be demonstrated using a SPR biosensor. The biosensor antibody detection approach (MARTI –TB serodiagnostic test) remains unaffected by the antibody cross reactivity between MA and cholesterol.

ACKNOWLEDGEMENTS

This research was supported by a Marie-Curie Early Stage Training Fellowship (Molfun) to Y. Lemmer, the Cancer and Polio Research Fund and the North West Cancer Research fund, Adcock Ingram Limited (South Africa), the National Research Foundation of South Africa (Technology and Human Resources for Industry Programme). The European and Developing Countries Clinical Trial Partnership Grant no. 2004.1.R.d1 and by the Medical Research Council of South Africa. Dr. ten Bokum held a Claude Harris Leon Foundation Postdoctoral Fellowship.

References

Table 1: Liposome compositions with various concentrations of cholesterol

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>5.63</th>
<th>11.25</th>
<th>22.5</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cholesterol (µl from 100 mg/ml stock)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PC (µl from 100 mg/ml stock)</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>5-BMF-MA (µg)</td>
<td>125</td>
<td>125</td>
<td>125</td>
<td>125</td>
<td>125</td>
</tr>
<tr>
<td>Unlabeled MA (µg)</td>
<td>125</td>
<td>125</td>
<td>125</td>
<td>125</td>
<td>125</td>
</tr>
</tbody>
</table>

Figure 1. Titration of the maximum amount of MA that can be incorporated in liposomes consisting of egg phosphatidyl choline, with or without cholesterol. A: Liposomes consisting of egg phosphatidyl choline (99% pure) only. B: Liposomes consisting of egg phosphatidyl choline (99% pure) and cholesterol. The shaded part of the bars represent the percentage MA recovered from the wall of the vessel in which the liposomes were prepared. Each bar represents the mean of 3 samples and the SD.
Figure 2. Size (A) and fluorescence (B) of MA containing liposomes containing various amounts of cholesterol according to Table 1 as determined with flow fluorometry. Flowset beads (3.6 µm) were used as a marker for the size distribution of the liposomes.
Figure 3. Relative sizes of PC/cholesterol and PC/mycolic acid liposomes and a mixture of the two liposomes. All liposome types contained 9 parts of phosphatidyl choline and either 4.5 parts of cholesterol, or 0.25 parts of MA, or both.

Figure 4. Titration of the optimal concentration of MA/cholesterol containing liposomes for immobilisation on a non-derivatised IAsys biosensor cuvette.
Figure 5. Testing of the octadecanethiol coated ESPRIT biosensor gold surface against sequential times of regeneration with a mixture of isopropanol and 50 mM NaOH (2:3, v/v) using cyclic voltammetry. The voltamograms for the different surfaces are shaded to better identify the one from the other.
Figure 6. Effect of degassed (A) and non-degassed (B) buffer on immobilized mycolic acids liposomes in the ESPRIT biosensor. The arrows indicate where washing cycles with PBS/AE were introduced before allowing a baseline to be reached with mixing before substitution of cell content.

Figure 7. Optimization of saponin concentration to avoid non-specific binding on immobilized mycolic acids on the Au surface coated with octadecanethiol. Accumulation of saponin was performed for 5 min. (A) and washed with PBS/AE (B). The error bars indicate the standard error of the mean (SEM) and $n = 3$.
Figure 8. Optimization of the dilution of serum (P135) for the first exposure to antigen in the MARTI-assay, after 0.0125% saponin blocking of the mycolic acid liposome coat of the ESPRIT biosensor. The error bars indicate the standard deviation. Correlation co-efficient (r^2) = 0.9749, $n \geq 3$.

Figure 9. MARTI-antibody binding inhibition response of pre-incubated TB pos. P129 serum dilutions inhibited with mycolic acids (MA) containing and empty (PC) liposomes after first serum exposure of 1/4000 on immobilized mycolic acids. The error bars indicate the standard deviation. P129 showed significant MA inhibition signals at 1/250, 1/500 and 1/1000 serum dilutions, with P-values of 0.00014, 0.01411 and 0.0393 respectively, but no significant inhibition at 1/2000 serum dilution (P-value of 0.7857). A 95% (0.05) confidence limit was used, $n = 3$.
Figure 10. MARTI-binding inhibition response of various dilutions of pre-incubated TB positive patient serum (P129) with mycolic acids (MA) containing and empty (PC) liposomes after first exposure serum dilution of 1/2000 to surface immobilized mycolic acids. The error bars indicate the standard deviation. No statistical difference (at 95% confidence limit) was obtained at 1/250 and 1/500 dilutions between MA- and PC inhibited serum, with P-values of 0.116 and 0.356 respectively, while a significant inhibition was observed at 1/1000 (P-value of 0.0086) $n = 3$.
Figure 11. Typical sensorgrams summarizing the process of measuring serum antibody (A = TB positive P129 and B = TB negative P94) binding, or inhibition of binding by mycolic acid-containing and empty liposomes, on an ESPRIT biosensor with ODT coated gold surface and immobilized mycolic acid liposomes. Mycolic acids liposomes were immobilized on the ESPRIT biosensor surface (a), blocked with saponin (b), calibrated with a 1/4000 first exposure of serum (c), and applied to measure the binding and dissociation of 1/500 diluted sera inhibited with empty (thick line) or mycolic acid containing (thin line) liposomes at lesser dilution (d). The arrows indicate washing with PBS/AE.

Table 2: MARTI (ESPRIT biosensor) and ELISA analysis compared for their ability to detect antibody to MA in three selected human sera

<table>
<thead>
<tr>
<th>Patient no.</th>
<th>TB/HIV status</th>
<th>ELISA-assay*</th>
<th>MARTI-assay#</th>
</tr>
</thead>
<tbody>
<tr>
<td>P129</td>
<td>TB+HIV</td>
<td>1.59</td>
<td>25.09</td>
</tr>
<tr>
<td>P96</td>
<td>TB+HIV</td>
<td>1.05</td>
<td>29.53</td>
</tr>
<tr>
<td>P94</td>
<td>TB-HIV</td>
<td>1.69</td>
<td>-0.23</td>
</tr>
</tbody>
</table>

* Signal to background value of absorbance at 450 nm. Values higher than 2 are taken as positive

% inhibition of antibody binding to MA liposomes. Values higher than 20% are taken as positive.
Figure 12. Normalised AmB binding capacity on immobilized lipid antigens cholesterol, MA and 5BMF-MA and binding curves of MA vs cholesterol and 5BMF-MA vs cholesterol. The error bars indicate the standard deviation, $n = 3$ for each set.