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Abstract

In this paper, we implement the method of Proper Orthogonal Decomposition (POD) to gen-
erate a reduced order model (ROM) of an optimization based mesh movement technique. In
the study it is shown that POD can be used effectively to generate a ROM, that accurately
reproduces the full order mesh movement algorithm, with a decrease in computational time
of over 99%.

1 Introduction

The numerical simulation of flow across a boundary arises in many engineering related prob-
lems, e.g. flutter simulations of wings, blood flow through veins and arteries and parachute
dynamics. These, and other fluid-structure interaction (FSI) problems involve flow induced
moving boundaries, and in order to accurately complete these unsteady flow simulations it
becomes necessary for the computational grid to conform to the new domain. To this end, sev-
eral methods or algorithms have been developed that can cheaply adapt unstructured meshes
to the new displaced boundary, including the spring analogy [4], solving a set of Laplacian or
Bi-harmonic equations [7], radial basis function (RBF) interpolation [3, 15] or through mesh
optimization [1, 6].

Despite the successes of these algorithms in reducing the frequency and necessity for re-
meshing, they still account for a significant percentage of CPU time for any FSI simulation.
The aim of this paper is to attempt to generate effective reduced order models for these mesh
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movement strategies in the hope of reducing their associated cost, while not sacrificing the
quality of the resulting meshes. The reduced order modeling technique that we make use
of is the method of Proper Orthogonal Decomposition (POD), also commonly referred to as
Principal Component Analysis (PCA), Singular Value Decomposition (SVD) or Karhunnen-
Loéve (KL) decomposition.

Proper Orthogonal Decomposition (POD) is a mathematical procedure aimed at finding low-
dimensional approximate descriptions of high-dimensional systems. POD is in essence an
empirical spectral method, similar to Fourier decomposition, where field variables are ap-
proximated using expansions of a set of projected basis functions or modes. POD obtains
these basis functions from a set of observations, where these observations can be obtained
either experimentally or through numerical simulations of a real system. What makes POD
remarkable is that the selected modes are not only appropriate but make up the optimal linear
basis for describing any given system.

POD has been applied in a wide range of disciplines including image processing [16], data
compression, control in chemical engineering and oceanography. The first use of POD in
the field of Fluid Mechanics was by Lumley [12] as a post processing step for determining
coherent structures within turbulent flow. Since then POD has successfully been applied to
many engineering problems including the characterization of dominant turbulent flow prop-
erties [8, 14], aircraft flutter prediction [11] and reduced order models for multidisciplinary
optimization [5, 10].

2 Proper Orthogonal Decomposition

The governing theory, derivation and application of the POD method can readily be found
in literature, and for a comprehensive discussion on the method refer to Holmes et al. [8],
and Chatterjee [2] for an easy to understand introduction. In order to keep this paper as self
contained as possible, we provide a brief overview of POD, and the method of snapshots.

Consider that we have a set of system observations, or snapshots,
�
xk

�
, where for mesh

movement, these snapshots are the nodal co-ordinates of the mesh at various instances of
boundary displacement. The method of POD extracts the predominant variances of these
system observations in the form of optimal linear basis modes

�
ϕj

�
, and allows for an

approximation of
�
xk

�
through the following linear combination:

�
xk

�
=

M�

j=1

αk
jϕj, (1)

where {αj} is an appropriate set of expansion coefficients and M is the number of retained
modes.

The POD modes themselves may be computed using the “method of snapshots” developed
by Sirovich [18]. The kernel of the POD modes is a finite dimensional autocorrelation matrix
of the form

461



R =
1

M
XXT , (2)

where X is an observation matrix of size M × N , where each row vector of the matrix
represents a snapshot. N is the total number of x and y nodal co-ordinates within the mesh
and M is the number of snapshots. The eigenvectors a of R is computed as an intermediate
step from

Ra = λa, (3)

where the POD basis modes can then be computed as the linear combination

ϕk =
M�

i=1

akix
i for k = 1, 2, ...,M, (4)

where aki is the ith element of eigenvector ak corresponding to λk. For the mesh movement
problem, the eigenvalues λ have no physical interpretation, save that their magnitudes provide
an indication as to how much of the system information is captured by the associated POD
mode. Ordering λ and the associated POD modes in order of descending magnitude, we may
reproduce the approximation in (1) by retaining only first K most dominant modes.

It should also be noted, that if the coefficients in (1) are chosen as the eigenvectors ak,
corresponding to the kth POD mode, then we would generate an approximation of the kth

snapshot. If however we would like to compute an approximation of the mesh movement
based on boundary displacements other than those used in the training snapshots, we would
require the computation of an appropriate set of expansion coefficients {α}.

3 Mesh Movement Through Optimization

Of the various available mesh movement techniques, mesh optimization arguably produces
the highest quality meshes at a high computational cost, making it a prime candidate for the
concepts of reduced order modeling. For the purposes of our POD demonstrator and snapshot
training, we therefore make use of the mesh movement method based on optimization.

Mesh movement through mesh quality optimization is not so much a mesh movement tech-
nique but rather a mesh smoothing operation. At each instance of domain boundary move-
ment, the mesh is regularized or smoothed by allowing each of the mesh vertices to relocate,
through the use of some optimization algorithm. The mesh is optimized according to an
objective function which in some fashion describes the overall quality of the elements. For-
mally, the mathematical optimization problem is stated as follows:

minimize
w.r.t x

F (x), x = [x1, x2, ..., xn]
T (5)
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where F (x) is the objective function to be optimized and x is the x and y co-ordinates of the
interior mesh vertices that are allowed to move.
For this particular study we limit ourselves to 2D unstructured triangular meshes, where the
mesh quality is defined by the shape-size metric

F =
�

elements

�
rout

rin

��
1

fsize

�
, (6)

where rout and rin are the radii of the circumscribed and inscribed circles of a triangle re-
spectively, and the quotient (rout/rin) is a measure of the element shape. Assuming isotropic
physics, the perfect triangular element shape is an equilateral triangle, for which the quotient
is 3, and tends to infinity as the element deteriorates. fsize is a size metric that relates the
volume of an element in its deformed state, wd, to the original volume in the starting mesh,
wo, defined by

fsize =
2τ

1 + τ 2
, (7)

where τ = wd/wo. The range of fsize is 0 ≤ fsize ≤ 1, where 1 implies an exact match, and the
quotient (1/fsize) ranges between 1 and ∞ for perfect and degenerate elements respectively.
The quality metric (6) is a combination of metrics proposed by Braess et al.[1] and Knupp
[9].
Two gradient based optimization algorithms were made use of, namely the Conjugate gradi-
ent method and Newton’s method with line search. A line search is implemented in conjunc-
tion with Newton’s method to reduce starting point dependency. The quality metric defined
in (6) is continuous and differentiable everywhere, allowing for the first derivatives and the
Hessian required by the optimization algorithms to be computed analytically. To take advan-
tage of the sparsity of the Hessian matrix, only the non-zero entries are saved and a sparse
matrix solver with LU factorization is implemented along with node re-numbering to produce
LU factors with near minimal bandwidth.

4 Test Case

To test the applicability of POD applied to mesh movement we make use of a 2D unstructured
triangular mesh with extreme rotation and translation. The test problem consists of a 200 ×
200 unit square domain with a small inner rectangle that is rotated 60◦ counter-clockwise and
translated by �x = 30 and �y = 30 units, with the initial mesh shown in Figure 1(a). The
contour plots use an element shape-size quality indicator defined in [9], where 0 ≤ fss ≤ 1,
for degenerate and perfect elements respectively.

4.1 Snapshot Generation

The first requirement for generating a POD model is to acquire a set of snapshots. A POD
based model can usually only reproduce information within close proximity to the informa-
tion contained in these snapshots. The boundary movements must therefore be chosen to
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(a) Initial mesh, generated using NETGEN [17]. (b) Full order mesh optimization.

(c) ROM: Coefficient Interpolation. (d) ROM: Coefficient Optimization.

Figure 1: Rotation and translation test case. Mesh quality contour plots using quality metric 0 ≤ fss ≤ 1 [3].

closely mimic the expected movement in an actual simulation. This inherently means that a
certain a priori knowledge is required as to how the actual system will behave. Fortunately,
in most engineering problems, a substantial amount of information relating to a problem,
such as the predominant physics at play, is usually known, or can be estimated prior to the
simulation.

As a side note, it is certainly possible, for the current application of POD to mesh movement,
to generate the snapshots adaptively rather than as a pre-processing step. In so doing, we
make use of the POD model to move the mesh until the mesh quality deteriorates below some
lower limit, at which point a full order mesh optimization step is performed. The results of
the full order mesh movement can then be used as an additional training snapshot to update
the ROM.

For the current test problem, we generate 60 snapshots as a pre-processing step, where the
magnitudes of rotation and translation of the inner rectangle is chosen via the method of
Latin hypercube sampling (LHS). LHS is often used in uncertainty analysis, and was devel-
oped primarily to generate a distribution of plausible collections of parameter values from a
multidimensional distribution [19, 13]. In essence, LHS allows for random selections of the
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displacement and rotation magnitudes, with uniform distribution.

There is no way of knowing prior to an actual analysis how many snapshots are required to
adequately describe the system, and the choice of 60 snapshots is simply an educated guess.
The mesh movement for each of the LHS specified locations is performed using the mesh
optimization method, with a minor modification. For the optimization method, the largest
incremental boundary displacement is limited to the smallest elements sizes located along
the moving boundary. Deformations larger than these elements result in element inversion,
and the subsequent failure of the optimization algorithm to find an appropriate minimum.
As a consequence, large boundary movements have to be broken into smaller increments.
Each of these increments involves the solution of a full order optimization problem, which is
highly expensive. To minimize the associated cost we make use of the method of radial basis
function interpolation (RBF), to provide an initial guess, followed by optimization.

RBF interpolation is currently one of the more popular mesh movement methods available,
as it results in comparably good quality meshes, at relatively cheap computational costs. For
the sake of brevity, we will not discuss the details regarding the RBF method, but for more
information refer to de Boer et al. [3] or Rendall et al. [15]. RBF interpolation moves the
internal mesh nodal co-ordinates according to an interpolation function based on the motion
of the boundary nodes. If used on its own, RBF interpolation requires several displacement
increments in order to attain high quality final meshes. For our particular application, we are
not interested in the quality of the mesh provided by RBF, save that the method deforms the
mesh from its original position to the LHS specified point without any element inversion. To
this end, a single RBF increment is used before the the mesh is smoothed using full order
optimization.

4.2 POD Based Reduced Order Model of the Optimization Mesh Movement Method

With the snapshots generated, we are able to compute the POD basis modes, where Figure
2(a) shows the ordered eigenvalues associated with the POD modes. From the magnitudes of
the eigenvalues it may be noted that the first 8 POD modes contain over 99% of the system
information. For our POD model we choose to retain the first 10 modes, essentially reducing
the degree of freedom of the problem from 2N , the total number of grid points, to just 10.

By substituting the approximation for x in (1) into (5), we can now solve our original opti-
mization problem, but now only in terms of our expansion coefficients α, and the 10 POD
modes,

minimize
w.r.t. α

F (x(α)), α = [α1,α2, ...,αn]
T . (8)

The objective function (8) based on α is populated with a large set of local minima. To
illustrate, an example of the function profile is shown in Figure 2(b), generated by altering
α1. Because of these local minima, there is no gradient based optimization routine available
that will guarantee convergence of the solution to the global minimum, unless the starting
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Figure 2: (a) Ordered eigenvalues, provides an indication to the percentage of system information captured by
associated POD modes. (b) Example function profile for objective function as a function of expansion
coefficients {α}.

points are chosen to be close to the exact solution, or more appropriately, within the valley of
the global minimum.

The presence of the local minima is attributed to element inversion. A similar problem is
present within the full mesh optimization, but never arises as a full computational issue. The
optimization algorithm individually moves each of the nodal co-ordinates, and allow none
to be moved to locations that result in element inversion. When defining the objective cost
function in terms of the coefficients α, these local minima are an acute problem, because even
a minor change in one of the expansion coefficients has an effect on all the nodal co-ordinates.

We propose the use of an interpolation method to obtain an approximation to the coefficients
as an initial guess. The interpolation method used is through RBF interpolation, primarily
as it is adept at handling scattered data of highly non-linear relationships, and an already
working RBF code is available from the mesh movement work. Interpolation is used to
equate a function relating the expansion coefficients to the moving boundary nodes based on
the generated set of snapshots.

4.3 Results

Figure 1 depicts the final meshes produced, for the mesh rotation and translation, by the full
order mesh movement scheme and ROMs, based on coefficient interpolation, and coefficient
optimization. The results themselves appear to be promising, with little noticeable difference
between the ROMs and the full order mesh movement; furthermore there appears to be little
difference between the two ROMs.

To physically quantify the comparison between the ROMs and the full order mesh movement,
histogram plots in Figure 3 are shown comparing the percentage difference in terms of size
and shape between each of the mesh elements compared to the full order solution. For the
ROM based solely on coefficient interpolation, 97.8% of the elements differ by less than
5% in terms of size and 86.1% of the elements shapes differ by less than 5%. By further
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(a) POD ROM with coefficient interpolation only.
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(b) POD ROM with coefficient optimization.

Figure 3: Histogram plot of the percentage difference in shape and size for each element in the mesh of the
ROMs compared to the full order mesh optimization. For �x = 30, �y = 30, φ = 60◦CCW.

optimizing the coefficients, a minor improvement of 98.7% and 88.3% of the elements differ
by less than 5% in terms of size and shape respectively.

Of more importance than the physical differences between the meshes is rather whether they
are appropriate for the use in an actual simulation. In Table 1, we compare the minimum
and mean element qualities for each of the movement models, based on the quality metric
0 ≤ fss ≤ 1 [9]. While the ROMs are by no means an exact replication, they are certainly
no less suitable than the full order optimization. Neither of the ROMs result in degenerate
elements, and according to the metric fss, the ROM based only on coefficient interpolation
produces a better final mesh than the full optimization.

Initial Full Coefficient Coefficient
Mesh Optimization Interpolation Optimization

min (fss) 0.7917 0.3812 0.3770 0.3563
mean (fss) 0.9743 0.8306 0.8326 0.8299
F (x) - 3.9540×105 5.0750×105 5.0527×105

Table 1: Minimum and mean element qualities in terms of 0 ≤ fss ≤ 1, as well as the minimized objective
function, for the mesh movement depicted in Figure 1.

The fact that the coefficient interpolation ROM yielded better results does not mean that it
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produced a better approximation of the full order mesh movement. The metric fss is not
the same mesh metric as was used in the cost function. By comparing the cost function, we
find that the best solution is obtained by the full optimization with the closest approximation
attained by optimizing the coefficients. We make use of fss to evaluate the appropriateness
of the mesh qualities because it is well bounded between 0 and 1 and allows for nice intuitive
comparisons; the cost function metric on the other hand ranges from 0 to ∞, where the actual
values have little meaning, save that they should be as low as possible. As a side note, fss is
a poor choice for an optimization cost function because the extremes are not harsh enough.
If used in a gradient based optimization routine, it leads to several elements becoming near
degenerate for an overall improvement in mesh quality.

In short, both ROMs produce acceptable quality meshes. Unless a higher degree of accuracy
is desired for the replication, using only an interpolation method to compute the expansion
coefficients is more than sufficient for the purposes of generating an effective mesh movement
ROM.

4.4 Computational Efficiency

To determine the computational cost associated with the POD method, a ROM is imple-
mented and tested on the same square domain with small inner rectangle for a range of mesh
sizes. The results of the CPU and memory scaling is shown in Figure 4.

The Conjugate gradient method is known to scale well with problem size, and for large prob-
lems is expected to outperform second order methods. For the full-order mesh movement
problem, we find that Newton in fact performs better for an increase in problem size. The
reason for this is based on the manner in which the two methods obtain their respective search
directions. The Conjugate gradient method utilizes only first order, local gradient informa-
tion. As a result, elements far away from one another have no inter-relating information.

For example, if the elements along the inner rectangle boundary are distorted, the elements
further away at the edge of the domain have no gradient information regarding this distortion.
It takes several iterations for this information to propagate through the mesh. On the other
hand, Newton obtains search directions based on a Hessian, which incorporates information
for the whole mesh domain; while being more expensive per iteration, Newton requires sub-
stantially fewer iterations to reach convergence.

A further benefit is the sparsity of the Hessian. For the mesh in Figure 1, the size of the
Hessian matrix is [1132× 1132], while containing only 13200 non-zero entries, accounting
for just a little over 1% of the total number of entries in the full matrix. The effect of using
a sparse solver on such a sparse matrix, is that Newton scales at a near one to one ratio as a
function of problem size, in terms of both CPU and memory usage.

If we now compare the computational cost of the ROMs to the full order Newton, we find
that using coefficient interpolation as the starting point, and then further optimizing, that we
have a total CPU savings ranging from 87.35% to 96.51% for the smallest to largest mesh
respectively. While these cost reductions are significant, an even greater saving of up to
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99.99% is found by using interpolation alone, and more importantly a cost scaling factor of
0.032.

Computing the ROM coefficients through interpolation does not require the solution of any
equations, but only equating a set of interpolation functions. The cost of these interpolation
functions is based only on the number of grid points along the moving boundary and the
number of retained POD modes. The number of nodes along the inner boundary is orders less
than the total DOF of the mesh, and the number of modes and coefficients is kept constant
at 10. As a result, we now have a mesh movement solution methodology, with an associated
cost that essentially remains constant as the mesh problem size increases.
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Figure 4: Comparison of the CPU and memory scaling.

5 Conclusion

In this paper we demonstrated the ability of the method of POD to generate effective reduced
order models of mesh movement algorithms. We implemented and tested the method to an
optimization mesh movement scheme, though the method itself is just as easily applicable
to any movement method. The POD model was trained as a pre-processing step to a simple
combined rotation and translation test case, and it was found that computing the POD expan-
sion coefficients using interpolation alone resulted in comparably good quality final meshes,
with CPU cost reductions in excess of 99.99%.
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