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Abstract

The matching required between the two directions through a retrodirective cross-eye jammer is considered

using both the traditional phase-front analysis and an extended analysis. The design parameters to achieve a

specified tracking error are derived and an optimal design is proposed. The results for the extended analysis

show that the tolerances required to induce large angular errors in a monopulse radar are not as strict as the

traditional analysis suggests.
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I. INTRODUCTION

Cross-eye jamming is an Electronic Attack (EA) technique that can be used to induce an angular error in

the radar being jammed [1]–[9]. Angular deception is most often required in the final stages of an engagement

where a platform is attempting to protect itself against radar-guided missiles. Cross-eye jamming has a number

of benefits over other angular deception techniques, including the fact that it is effective against monopulse

radars. A cross-eye jammer works by artificially recreating the worst-case glint error.

Glint is a phenomenon that arises when a radar is not able to resolve a number of scatterers and which can

cause significant angular errors [10], [11]. However, a number of assumptions inherent in glint analyses are

inaccurate for retrodirective cross-eye jamming [9]. An extended analysis of retrodirective cross-eye jamming

that overcomes the limitations of glint analyses was recently published [8].

In this paper, closed-form solutions for the required amplitude and phase matching of the two directions

through a retrodirective cross-eye jammer are derived. This is done for both the traditional phase-front analysis

and the extended analysis. These models can be used to perform a system tolerance study to determine the

matching required between the two paths through a retrodirective cross-eye jammer to achieve a specified

angular error.

Closed-form solutions for the matching required from the two directions through a retrodirective cross-eye

jammer are derived in Section II. Results are presented and compared in Section III, and a brief conclusion is

provided in Section IV.
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II. THEORETICAL ANALYSIS

The effect of system tolerances on the performance of a retrodirective cross-eye jammer system is analysed

below by determining the relative amplitude and phase shift of the two directions through a cross-eye jammer

that achieve a specified angular error.

The basis of this analysis will be determining the angle where the monopulse indicated angle is zero. This

angle will be referred to as the “settling angle.” The settling angle is trivial to determine for the phase-front

analysis considered in Section II-A, but as demonstrated in [8], does not exist for the extended analysis under

certain conditions outlined in Section II-B.

The performance of a cross-eye jammer implementation can be characterised by an “angle factor” defined as

Gθ =
∣∣∣∣θsθe
∣∣∣∣ (1)

where θs is the settling angle and θe is half the angular separation of the jammer antennas from the radar’s

perspective as shown in Fig. 1. When the angle factor is greater than one, the apparent target created by a cross-

eye jammer will be outside the physical extent of the cross-eye jammer – an extremely desirable characteristic

for a self-protection system – at all except very short ranges where the angular separation of the jammer

antennas becomes large enough for the radar to resolve them.

The cross-eye gain is used extensively below and is given by [7]

GC =
1− a2

1 + a2 + 2a cos (φ)
(2)

where GC is the cross-eye gain, and a and φ are the relative amplitude and phase shift of the two directions

through the cross-eye jammer respectively. The value of the cross-eye gain is the same for φ = π + φ0 and

φ = π − φ0, while only the sign of the cross-eye gain changes between a = x and a = 1/x. Therefore, the

discussion below is limited to positive values of cross-eye gain.

The angle factor and the magnitude of the cross-eye gain will be shown to be identical in the phase-front

analysis case (the motivation for the definition of cross-eye gain), but not for the extended analysis. To avoid

confusion, the term “angle factor” will be used when the relationship between settling angle and jammer antenna

separation is intended, while the term “cross-eye gain” will only be used to refer to the relationship in (2).

A. Phase-Front Analysis

The indicated angle obtained using the phase-front analysis is given by [2]–[4], [6], [7]

θi ≈ θr + θeGC (3)

where θi is the monopulse indicated angle and θr is the angle from the radar’s boresight to the centre of the

cross-eye jammer as shown in Fig. 1.

The relationship between the cross-eye gain and the settling angle for phase-front analysis can be determined

by substituting θs for θr and solving (3) for θi = 0 giving

GC = −θs
θe

(4)

showing that the magnitude of the cross-eye gain is equal to the angle factor defined in (1) for the phase-front

analysis.
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Fig. 1. The geometry of a cross-eye jamming scenario.

When r � dc, θe can be written as [9]

θe ≈
dc
2r

cos (θc) (5)

where dc is the spacing of the jammer antennas, r is the range to the jammer and θc is the jammer rotation as

shown in Fig. 1. The settling angle can be written as

θs ≈
do
r

(6)

when r � do where do is the distance from the apparent target to the point in the middle of the jammer

antennas as shown in Fig. 1. Substituting (5) and (6) into (4) gives

|do| ≈ GC
dc
2

cos (θc) (7)

which suggests that a cross-eye jammer induces a linear offset that does not vary with range [1], [7]. This

property of cross-eye jamming is particularly valuable because a fixed angular offset would not cause a missile

to miss its target [1].

Relationships between a and φ that give a specified angle factor can now be derived by solving (2) for a to

give

a =
−GS cos (φ)±

√
1− [GS sin (φ)]2

1 +GS
(8)

and for φ to give

φ = ± arccos

[
1
2a

(∣∣1− a2
∣∣

GS
− 1− a2

)]
(9)

where GS is the magnitude of the specified cross-eye gain (which is identical to the angle factor for the

phase-front analysis). Substituting φ = π ± φ0 into (9) gives

φ0 = ± arccos

[
− 1

2a

(∣∣1− a2
∣∣

GS
− 1− a2

)]
(10)

which restates the phase result in terms of how close φ must be to 180◦. These results can be used to determine

the amplitude matching required to obtain a specified cross-eye gain for a given phase match, and the phase

matching required to obtain a specified cross-eye gain for a given amplitude match.

Equations (8) to (10) give the matching required to achieve exactly the specified cross-eye gain GS . The

cross-eye gain will be larger than GS when a is between the two solutions to (8) and when φ0 is between the
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two solutions to (10). This can be verified by evaluating (2) with a = −GS cos (φ) / (1 +GS) and φ0 = 0

(φ = 180◦) to confirm that |GC | > GS in these cases.

Equations (9) and (10) give the same result when a = x and when a = 1/x. These two cases are equivalent

because they both signify that gain of one direction through a cross-eye jammer differs from the gain in the

other direction by the factor x. Equation (8) only gives values of a with magnitudes less than 1, but the inverse

of these results is clearly also valid. Values of a with magnitudes greater than 1 can be obtained from (8) by

using −GS instead of GS .

A very important result that arises from (8) is that the range of values of a for a given φ that gives a

cross-eye gain magnitude of greater than GS does not include a = 1 unless φ = 180◦. This supports the

notion that designing for an amplitude mismatch between the two directions through a retrodirective cross-eye

jammer allows a given angular error to be achieved with greater tolerance of phase mismatches between the

two directions through the jammer [1], [4].

B. Extended Analysis

The monopulse indicated angle obtained using the extended analysis presented in [8]is given by

tan
[
β
dr
2

sin (θi)
]

=
sin (2k) + sin (2kc)GC

cos (2k) + cos (2kc)
(11)

k = β
dr
2

sin (θr) cos (θe) (12)

kc = β
dr
2

cos (θr) sin (θe) (13)

where β is the free-space phase constant and dr is the spacing of the radar antennas as shown in Fig. 1. The

forms of k and kc in (12) and (13) differ from the forms provided in [8] because the assumption that θe is

negligibly small was not made here.

Clearly the relationship between the settling angle and the jammer parameters is more complex for the

extended analysis than for the phase-front analysis in the previous section. However, the problem of determining

the settling angle is greatly simplified by noting that only the numerator of (11) has to be considered because

the denominator cannot be infinite.

As noted in [8], there are conditions under which the monopulse indicated angle will never become zero, so

the settling angle does not always exist. This occurs when the magnitude of the second term of the numerator

in (11) is greater than 1 for all values of θr within the sum-channel’s main beam. Determining whether this

occurs requires a knowledge of how kc varies within the sum-channel’s main beam.

The signal received in the sum channel is given by [8], [9]

Sr = Pr (θr − θe)Pc (θc − θe)Pr (θr + θe)Pc (θc + θe)×
1
2
(
1 + aejφ

)
[cos (2k) + cos (2kc)] (14)

where Sr is the received signal, and Pr (θ) and Pc (θ) are the patterns of the antenna elements comprising

the radar and jammer respectively. From (11), it can be seen that the only portion of (14) that remains after

monopulse processing is the trigonometric sum in the square brackets. The first nulls of the radar’s sum-channel

beam will thus be when the denominator of (11) is equal to zero.
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Substituting (12) and (13) into the denominator of (11) gives

cos (2k) + cos (2kc) = 2 cos
[
β
dr
2

sin (θr + θe)
]

cos
[
β
dr
2

sin (θr − θe)
]

(15)

after some manipulation. The radar must not be able to resolve the two antennas comprising the cross-eye

jammer, so θe must be much smaller than the value of θr where the sum-channel pattern becomes zero. This

value can thus accurately be approximated by setting (15) equal to zero, assuming θe is negligible and solving

for θr to give

θrz ≈ ± arcsin
(
λ

2dr

)
(16)

where θrz is angle of the first null of the sum-channel pattern and λ is the wavelength. This result is slightly

conservative because a nonzero value of θe will make the first sum-channel pattern zeros slightly nearer boresight

than suggested by (16).

Noting that kc reaches it maximum value when θr = 0 and substituting (16) into (13) gives

β
dr
2
θe

√
1−

(
λ

2dr

)2

< kc ≤ β
dr
2
θe (17)

in the sum-channel main beam. The square-root factor in (17) will be very close to 1 because 2dr is significantly

larger than a wavelength in tracking radars, so it can be assumed that kc does not vary appreciably within the

sum-channel main beam.

The monopulse indicated angle will never become zero in the sum-channel main beam when the magnitude

of the cross-eye gain is greater than a specified minimum magnitude denoted GSI given by

GSI >

∣∣∣∣ 1
sin (2kc)

∣∣∣∣ (18)

'
1

sin (βdrθe)
(19)

where the simplest form of kc in (17) is used to give a simpler, but slightly optimistic result. Expanding θe

using (5) allows (19) to be rewritten as

GSI '
λ

πdr
× r

dc cos (θc)
(20)

assuming that the angular separation of the jammer antennas (θe) is much smaller than the radar beamwidth

(determined by the factor βdr). The values of a, φ and φ0 can now be obtained from (8) to (10) by using GSI

for GS .

The settling angle will exist when the above conditions are not satisfied. Again using the fact that kc is

essentially constant in the sum-channel beam, expanding k and kc under the assumption that θe is small, and

substituting θs for θr gives

GC = − sin (2k)
sin (2kc)

(21)

≈ − sin [βdr sin (θs)]
sin (βdrθe)

(22)

which reduces to (4) when both θs and θe are much smaller than βdr. This result is approximate and slightly

conservative because the largest possible magnitude of the denominator was used.
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Fig. 2. The angle factor for a cross-eye jammer antenna element spacing of 5.0% of the radar beamwidth.

Noting that GS = |GC | by definition and that |θs| = Gθθe from (1), allows (22) to be rewritten as

GS ≈
sin [βdr sin (Gθθe)]

sin (βdrθe)
(23)

allowing the values of a, φ and φ0 for a specified angle factor to be obtained from (8) to (10).

Unlike the phase-front case in (7), it is not possible to obtain a simple relationship between the linear error

and either the cross-eye gain or the angle factor for the extended analysis. However, the results for the extended

analysis converge to those of the phase-front analysis (GS ≈ Gθ) when the induced angular error (Gθθe) is

much smaller than the radar antenna beamwidth (determined by βdr).

III. RESULTS AND COMPARISON

The results derived above for the phase-front and extended analyses are compared in this section by consid-

ering a representative example.

The following parameters typical of a missile threat to a ship or aircraft [8] will be used:

• 10◦ radar beamwidth (dr = 2.54 wavelengths, and each radar element is a uniformly-excited aperture 2.54

wavelengths long),

• 1 km jammer range (r = 1 km),

• 10 m jammer element separation (dc = 10 m), and

• 30◦ jammer rotation (θc = 30◦).

The jammer antenna element angular spacing as seen by the radar is 0.50◦ (θe = 0.25◦) which is 5.0% of the

radar beamwidth. In all cases the relative amplitude and phase shift of the two directions through the jammer

are provided on the figures.

The relationship between a and φ is generally represented using a plot of the angle factor as a function of

φ for a number of values of a (e.g. [2], [6]) as shown in Fig. 2. Similar graphs are found in the glint literature

(e.g. [11]) reflecting cross-eye jamming’s origin.
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(a) Phase-front analysis.
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(b) Extended analysis.

Fig. 3. Contours of constant angle factor for a cross-eye jammer antenna element spacing of 5.0% of the radar beamwidth.

From Fig. 2, the agreement between the results using the two analyses is excellent when the relative phase

shift of the two directions through the jammer is far from 180◦. However, there is a significant difference

between the phase-front and extended analyses when the relative phase shift approaches 180◦ [8].

The plot of the results using the extended analysis with a relative amplitude of 1 dB ends abruptly at a

relative phase shift of 2.95◦ from 180◦ because the settling angle does not exist in this case. This result agrees

well with the value of 2.97◦ obtained by determining φ0 from (10) using the cross-eye gain from (20).

While plots of the angle factor like Fig. 2 are valuable, contour plots based on (8) to (10) and (22) as shown

in Fig. 3 are more useful. The specified angle factor will be achieved whenever the combination of a and φ is

on a constant angle-factor contour and exceeded whenever the combination of a and φ is inside the contour.

Fig. 2 is effectively a number of horizontal cuts through the contour plots in Fig. 3.

The contours in Fig. 3 are plotted using (8) so |a| ≤ 1 making all the decibel values negative. As mentioned

in Section II-A, a = x and a = 1/x represent equivalent cross-eye jammers, so the decibel values in Fig. 3
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Fig. 4. Contours of constant angle factor according to the extended analysis for a jammer antenna element spacing of 1.65% of the radar

beamwidth.

can be interpreted as being either positive or negative.

The fact that improving the amplitude match between the two directions through a cross-eye jammer can

lead to a lower angle factor as discussed in Section II-A is clearly demonstrated in Fig. 3. This means that

designing for a surprisingly large amplitude mismatch is actually the best way to achieve a specified angle

factor [1], [4]. The results in Section II and the contour plots in Fig. 3 give clear quantitative and qualitative

descriptions of this effect.

The amplitude or phase matching required to achieve a specified cross-eye gain for a given amplitude or

phase match is considered in (8) to (10). However, optimum tolerances to both amplitude and phase variations

for a specified cross-eye gain can be achieved by designing the system for the parameters at the centre of the

relevant contour in Fig. 3. From (8) to (10), this requires a relative phase shift of 180◦ and a relative amplitude

of

a =
GS

GS + 1
(24)

where GS is determined either directly for the phase-front analysis, or from (20) or (23) for the extended

analysis. As before, the inverse of the amplitude in (24) represents an equivalent solution.

The extended analysis shows that the tolerance requirements for the scenario considered are less strict than

suggested by the phase-front analysis because contours in Fig. 3(b) are larger than those in Fig. 3(a). This

allows greater parameter variations while still achieving the same minimum angular error in the radar being

jammed.

The assumption that that the maximum angular error that can be caused by a cross-eye jammer is limited to

60% of the radar antenna’s 3-dB beamwidth [1]–[5] (an angle factor of 6 for the scenario considered here) is

also shown to be incorrect because curves with angle factors greater than 6 exist in Fig. 3(b).

As shown in (23), the extended analysis also depends on the angular separation of the jammer antennas (θe),

so an additional set of contours at a range of 3 km is shown in Fig. 4. These curves show better agreement with

the phase-front curves in Fig. 3(a) than the curves at shorter range in Fig. 3(b). Furthermore, the disagreement
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in both cases increases as the angle factor increases. This confirms Section II-B’s assertion that the induced

angular error (the product of the angle factor and the jammer antenna separation by definition in (1)) must be

much smaller than the radar antenna beamwidth for the phase-front analysis to be accurate. This statement is

more general than Vakin and Shustov’s bound which requires a ≤ 0.9 or a ≥ 1.1 and 2θe ≤ 10% of the radar’s

3-dB antenna beamwidth for the phase-front analysis to be accurate [3], [4] because ignoring the relative phase

means that Vakin and Shustov’s bound is incomplete [9].

The traditional analyses of cross-eye jamming ignore the retrodirective implementation of cross-eye jamming

and linearise a number of nonlinear effects [9]. These approximations are the cause of the differences between

the widely-held assumptions about cross-eye jamming and the results presented here.

IV. CONCLUSIONS

Closed-form solutions for the amplitude and phase matching between the two directions through a retro-

directive cross-eye jammer required to achieve a specified angular error are presented. The results were derived

for both the phase-front and extended analyses. Contour plots that give a clear graphical representation of the

relationship between the matching and angular error are provided. Lastly, the combination of jammer parameters

that achieves a specified angular error with the optimum tolerance to both amplitude and phase variations is

provided.

The main conclusion of this work is that the tolerance requirements on a cross-eye jammer system are not

as strict as the literature suggests. In particular, the maximum angular error is not limited to 60% of the radar

antenna’s 3-dB beamwidth as is widely believed.
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