
Qualitative and quantitative predictions of environmental exposure to nanomaterials from nanowaste streams

N. Musee Natural Resources and Environment, South Africa

our future through science

4th International Conference on Nanotechnology – Occupational and Environmental Health (NANOEH09)

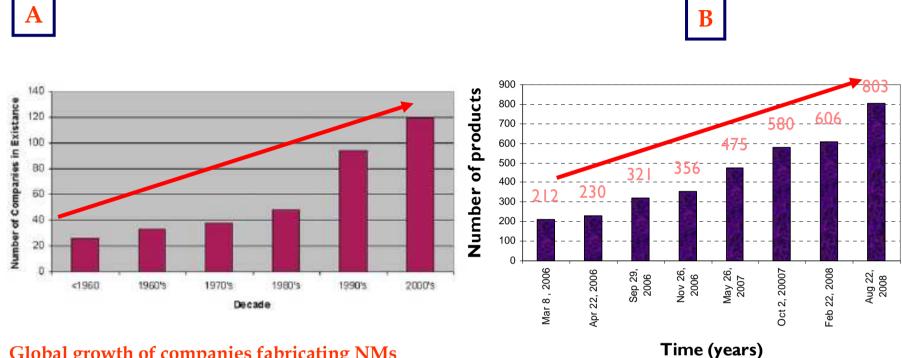
26-29 August, 2009, Paasitorni, Helsinki, Finland

our future through science

Ideal environmental conditions... how do NMs behave here?

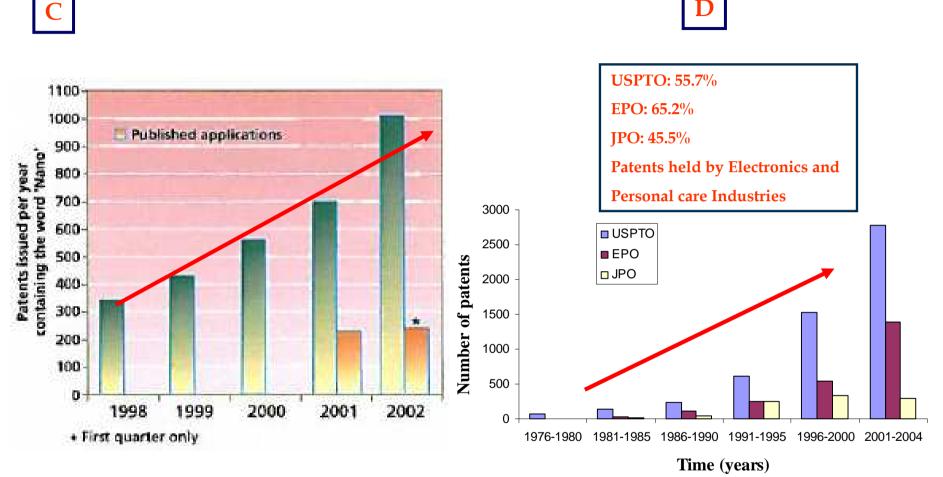
Why Nanowastes Now?

- Most probable vehicle of introducing NMs into the environment
- Current numerous waste management problems with macroscale chemicals/pollutants, and NMs may exacerbate the problem
- Janus-faced character of NMs: what makes them novel may generate a new/unique challenges to the waste management
- Absence of scientific data to elucidate the capabilities/effectiveness of the current waste management systems to deal with nanowaste streams adequately <u>assumed to be effective</u> <u>though no scientific proof</u>


QUESTION: Is it probable that <u>treatment technologies</u> developed <u>without</u> taking into account the novel nanoscale properties can prove to be <u>efficient and</u> <u>effective</u> for handling, storing, transporting, treating, and disposing nanowaste streams? <u>Most unlikely...</u>

- Is there evidence of increasing quantities of nanowaste streams into the environment?
- Are there published quantities presently?

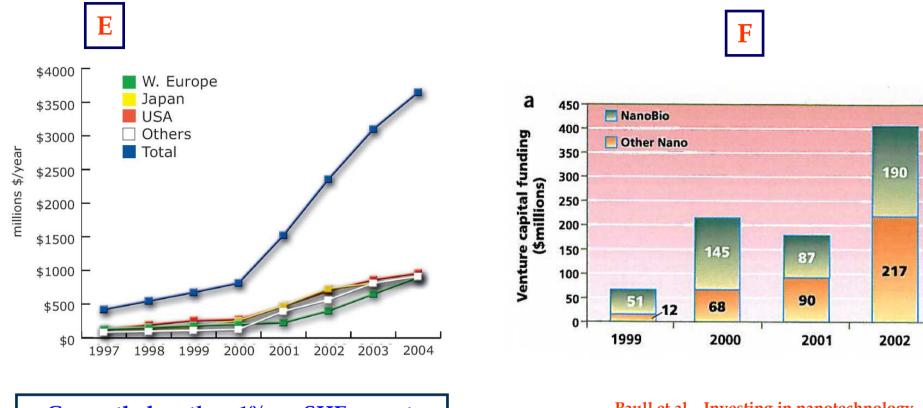
Company and Nanoproducts Growth


Global growth of companies fabricating NMs (Pitkethly, 2003)

Consumer nanoproducts (Woodrow Wilson International Centre for Scholars, 2008)

Comment: Trend for nanowastes generation is obvious

Growth of Nano-related Patents



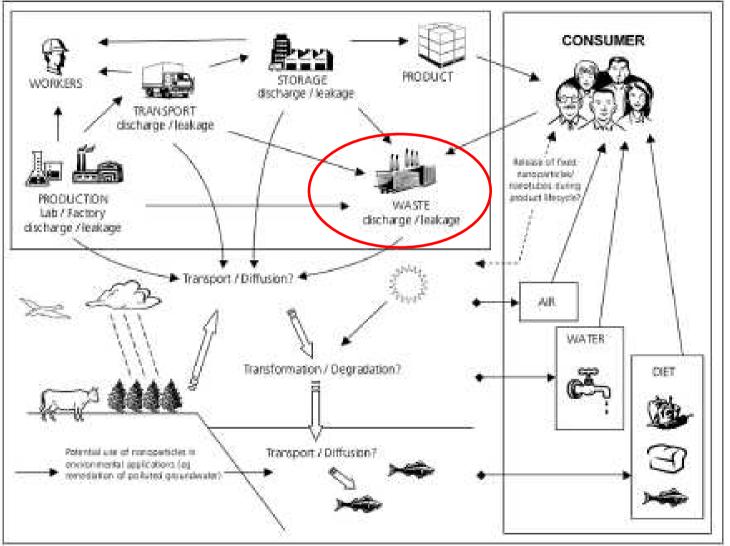
Nano-related IPs (Li et al., 2007; Huang et al., 2004)

CSIR our future through science

Comment: Trend for nanowastes generation is obvious

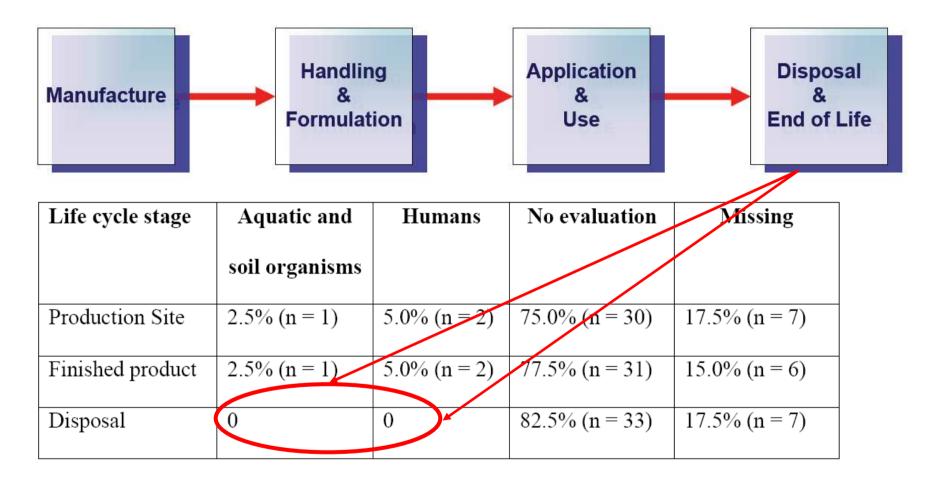
Global Nano R&D and Venture Capital

- Currently less than 1% on SHE aspects
- Recommended level ca. 10%
- South Africa no funding yet


Paull et al., Investing in nanotechnology, Nat Biotechnol 2003;21(10), 1144–1147..

Source: M.C. Roco. 2004. Nanoscale Science and Engineering: Unifying and Transforming Tools. AIChE Journal, Vol. 50, Issue 5, pp. 890-897.

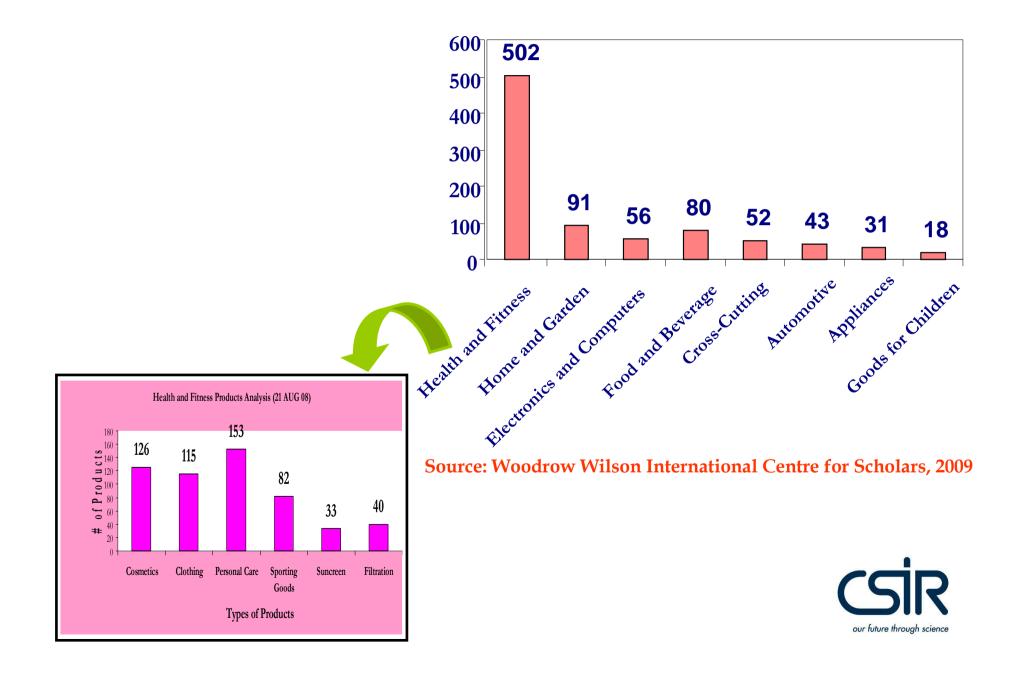
Comment: Trend for nanowastes generation is obvious


Exposure Pathways from Nanowastes

Source: Royal Society and Royal Academy of Engineering Report on Nanotechnology (2004)

Risk Assessment of NMs in Nanoproducts

Helland et al., Environ. Sci. Technol., 2008;42(2):640-646



Just Few Cosmetic Products...

our future through science

Cosmetics Products

Qualitative Model

What likely classes of nanowastes are we likely to encounter presently and coming years?

Qualitative risk assessment of nanowastes

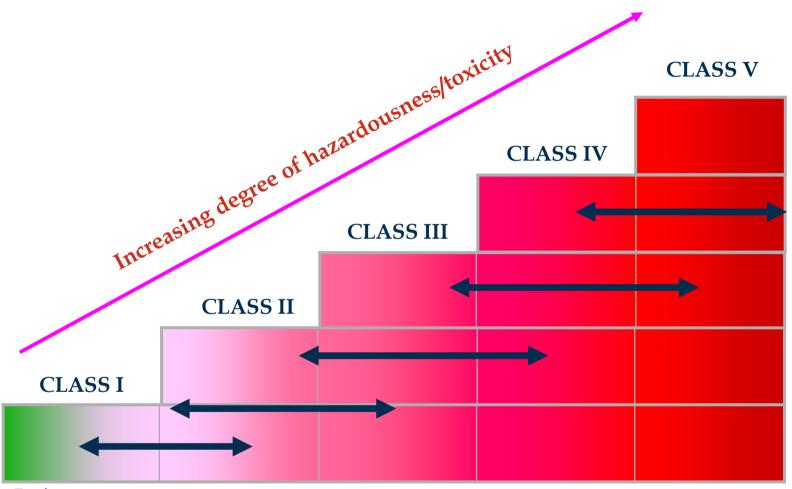
- Risk is a function of anticipated hazard and exposure potency
 - Expected hazard (toxicity) owing to constituent NMs (end-points results of *Bacillus subtilis, Daphnia magna, Oncorhynchus mykiss, P. subsapiata, Micropterus salmoides, etc*)
 - Likelihood of exposure (normally computed using bioaccumulation and biopersistence) – loci of NMs in products/applications is currently applied as exposure potency computed suing bioaccumulation and persistence is currently unavailable.

Qualitative quantification of toxicity levels

NMs type	Examples	Hazard (toxicity) ¹		
Carbon based	Fullerenes	High		
	Singled-walled carbon nanotubes (SWCNT) Multi-walled carbon nanotubes (MWCNT)	High High		
Metal oxides	Zinc oxide (ZnO)	Medium		
	Titanium oxide (TiO ₂)	Low		
	Aluminium oxide (Al_2O_3)	Medium		
	Yttrium iron oxide (Y ₃ Fe ₅ O ₁₂)	Low		
	Silicon dioxide (SiO ₂)	Low		
	Iron oxide (Fe ₂ O ₃)	Medium		
Metals	Silver (Ag)	Medium		
	Gold (Au)	High		
	Silica (Si)	Low		
Quantum dots	Cadmium-selenide (CdSe)	High		
	Cadmium telluride (CdTe)	High		
Others	Silicon nanowires	Low		
	Nanoclay particles	Low		
	Dendrimers	Medium		

¹ Classification based on Globally Harmonized System (GHS, 2003; Silk, 2003) aquatic toxicity can be expressed in five classes namely; extremely toxic (<0.1 mg/l); very toxic (0.1-1 mg/l); toxic (1-10 mg/l); harmful (10-100 mg/l); and none toxic (>100 mg/l) which were reduced into the three classes (high, medium and low).

UN Future through science

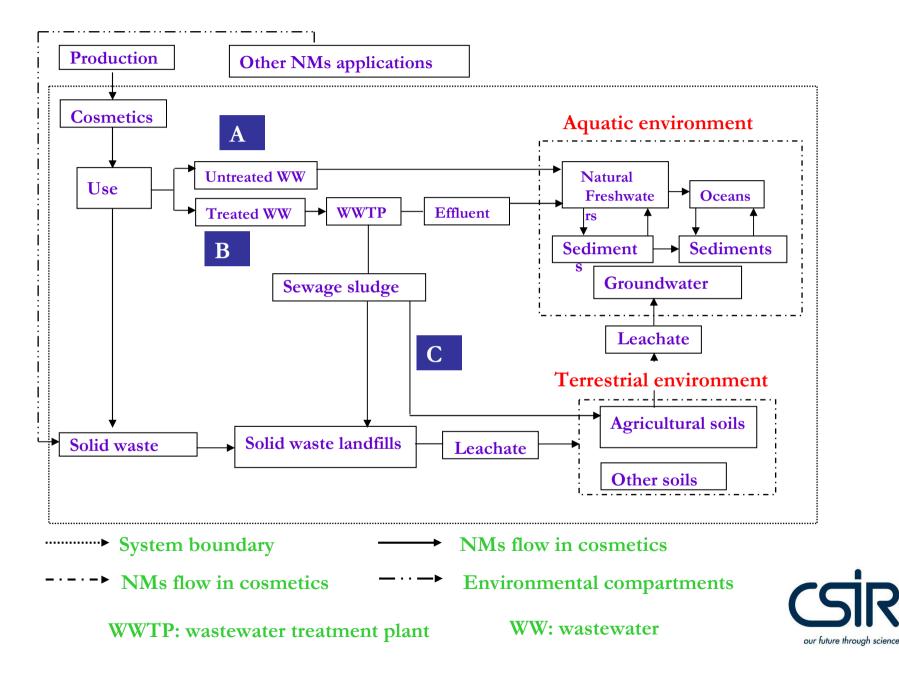

Exposure Potency: Loci of ENMs in Products

Nanomaterials classification framework (Hansen et al. 2007)

Pictorial nanowaste classification

- Benign
- Minimum cost

- Extremely toxic
- Very expensive


Quantitative Model

What quantities of nanomaterials will result into the environment from nanoproducts?

Case of Johannesburg in SA

Probable Environmental NMs flows in SA Scenario

Quantitative Risk Assessment of NMs in Environment

- Computation of the predicted environmental concentrations (PEC)
- Determination of predicted no effect concentration (PNEC)
- Risk profile of a given NM pollutant

$$RQ = \frac{PEC_{NMi}}{PNEC_{NMi}}$$

RQ: Risk Quotient

Case Study: City of Johannesburg

Quantities of NM in JHB computed based on the expression:

$$JHB_{NM} = SW_{NM} \bullet cf_1 \bullet cf_2 \bullet cf_3 \bullet \frac{GDP_{JHB}}{GDP_{SA}}$$

cf: correction factor

$$cf_1 = \frac{POP_{SA}}{POP_{SW}}$$
 :Population ratio of SA to SW

 $cf_2 = \frac{GDP/capita(SA)}{GDP/capita(SW)}$: GDP ratio of SA to SW (0.391) -2007

 $cf_3 = Market - penetration : 3 scenarios (0.1, 0.25, 0.40)$

Total NMs into Aquatic Environment

$$NM_{Water,inputi} = NM_{WW,Totali} \bullet (1 - f_{STPi}) + NM_{WW,Totali} (f_{STPi} - f_{STPi} \bullet f_{Removali})$$

Untreated wastewater Treated wastewater (effluent)

$$NM_{Water,inputi} = NM_{WW,Totali} \bullet (1 - f_{STPi} \bullet f_{Re\,movali})$$

Calculation of CSTPs, PECs & PNECs

$$C_{WW} = C_{STP} = \frac{NM_{i,WW,STP} \times 10^{12}}{WW_{percapita} \bullet f_{STP} \bullet POP}$$
$$PEC_{i} = \frac{NM_{i,Water} \bullet 10^{12}}{POP \bullet WW_{percapita} \bullet D_{k}} = C_{STP} \bullet \frac{NM_{i,Water}}{NM_{i,WW,STP}} \bullet \frac{f_{STP}}{D_{k}}$$

PNECs derived from the literature: 40 & 1 ug/l for nAg and nTiO2, respectively

JHB WWTP (High Efficient Plants)

WWTP efficiency 20-30% less values reported by Westehoff et al., 2008

our future through science

NMs in JHB Aquatic Environment (Higher Eff)

	Variable	MIN-E _{JHB}	PRO E _{jhb}	MAX E _{JHB}
	Ag_{total} : total silver released into WW (kg/a)	7.77	52.79	306.58
	: fraction of WW treated in WWTPs	0.80	0.70	0.60
	: fraction of Ag removed in WWTPs	0.79	0.70	0.55
A ~	Ag_{STP} : silver entering into WWTPs in (kg/a)	6.22	36.95	183.95
Ag	Ag _{STP,removed} : silver removed in WWTP (Ag in sludge) (kg/a)	4.91	25.87	101.17
	Ag _{STP,removed} : silver released effluents from WWTPs (kg/a)	3.93	11.09	82.78
	$Ag_{untreated}$: silver in untreated WW (kg/a)	1.55	15.84	122.63
	Ag _{water} : silver that enters into aquatic environment (kg/a)	2.86	26.92	205.41
	$TiO2_{total}$: total TiO_2 released into WW (kg/a)	7.03	47.73	1 289.38
	: fraction of WW treated in WWTPs	0.80	0.70	0.60
	: fraction of TiO ₂ removed in WWTPs	0.80	0.65	0.60
T	TiO_{2STP} : TiO_2 entering into WWTPs in (kg/a)	5.62	33.41	773.63
TiO ₂	TiO _{2STP,removed} : TiO ₂ removed in WWTP (Ag in sludge) (kg/a)	4.50	21.72	464.18
	TiO _{2STP,removed} : TiO ₂ released effluents from WWTPs (kg/a)	1.12	11.69	309.45
	$TiO_{2, untreated}$: TiO_{2} in untreated WW (kg/a)	1.41	14.32	515.75
	TiO_{2water} : TiO_2 entering into the aquatic environment (kg/a)	2.53	26.01	825.21

CSIR our future through science

Quantitative RQs Results (Higher Eff)

Parameters		MIN-E _{JHB}		PRO-E _{SW}		MAX-E _{SW}	
nAg	Concentration in STP ($\mu g/\ell$)	4.8E-03	7.68E-03	36.28E-03	90.58E-03	23.268E-03	1038.48E-03
	Dilution factor: 10 (PEC, $\mu g/l$)	0.2E-03	0.3E-03	1.8E-03	4.6E-03	15.6E-03	69.6E-03
	Dilution factor: 3 (PEC, $\mu g/\ell$)	0.6E-03	0.9 E-03	6.2E-03	15.4 E-03	52E-03	231.9E-03
	Dilution factor: 1 (PEC, $\mu g/\ell$)	1.8E-03	2.8E-03	18.5E-03	46.2E-03	155.9E-03	695.7E-03
	RQ (D=10) (no units)	4.44E-06	7.01E-06	4.62E-05	1.15E-04	3.90E-04	1.74E-03
	RQ (D=3) (no units)	1.48E-05	2.34E-05	1.54E-04	3.85E-04	1.30E-03	5.80E-03
	RQ (no dilution) (no units)	4.44E-05	7.01E-05	4.62E-04	1.15E-03	3.90E-03	1.74E-02
	Concentration in STP ($\mu g/\ell$)	4.4E-03	6.9E-03	32.7E-03	81.8E-03	977.2E-03	4 361.9E-03
nTiO ₂	Dilution factor: 10 (PEC, $\mu g/l$)	0.2E-03	0.3E-03	1.8E-03	4.5E-03	62.5E-03	279.2E-03
	Dilution factor: 3 (PEC, $\mu g/l$)	0.5E-03	0.8E-03	5.9E-03	14.9E-03	208.5E-03	930.5E-03
	Dilution factor: 1 (PEC, $\mu g/\ell$)	1.6E-03	2.5E-03	17.8E-03	44.6E-03	625.4E-03	2791.6E-03
	RQ (D=10) (no units)	1.57E-04	2.48E-04	1.78E-03	4.46E-03	6.25E-02	2.79E-01
	RQ (D=3) (no units)	5.24E-04	8.26E-04	5.95E-03	1.49E-02	2.08E-01	9.31E-01
	RQ (no dilution) (no units)	1.57E-03	2.48E-03	1.78E-02	4.46E-02	6.25E-01	2.79E+00

Under each scenario, first column results based on calculated WW per capita, and second column based on values provided by experts in WWT in SA

JHB WWTP (Low Efficient Plants)

WWTP efficiency 25 - 40% values by experts in WW in SA

JHB WWTP (Low Efficient Plants)... cont...

JHB WWTP (Low Efficient Plants)... cont...

NMs in JHB Aquatic Environment (Lower Eff)

	Variable	MIN-E _{JHG}	PROE _{JHB}	MAX-E _{JHB}
	Ag _{total} : total silver released into WW (kg/a)	7.77	52.79	306.58
	: fraction of WW treated in WWTPs	0.80	0.70	0.60
	: fraction of Ag removed in WWTPs	0.45	0.35	0.25
	Ag_{STP} : silver entering into WWTPs in (kg/a)	6.22	37.0	183.95
nAg	Ag _{STP,removed} : silver removed in WWTP (Ag in sludge) (kg/a)	2.80	12.90	46.00
	$Ag_{STP,removed}$: silver released effluents from WWTPs (kg/a)	3.40	24.00	138.10
	Ag _{untreated} : silver in untreated WW (kg/a)	1.60	15.80	122.80
	Ag _{water} : silver that enters into aquatic environment (kg/a)	5.00	39.90	260.90
	$TiO2_{total}$: total TiO_2 released into WW (kg/a)	7.03	47.73	1 289.38
	: fraction of WW treated in WWTPs	0.80	0.70	0.60
	: fraction of TiO ₂ removed in WWTPs	0.45	0.35	0.25
-т:O	TiO_{2STP} : TiO_2 entering into WWTPs in (kg/a)	5.60	33.40	773.60
nTiO ₂	$TiO_{2STP,removed}$: TiO_2 removed in WWTP (Ag in sludge) (kg/a)	2.50	11.70	193.40
	$TiO_{2STP,removed}$: TiO ₂ released effluents from WWTPs (kg/a)	3.10	21.70	580.20
	$TiO_{2, untreated}$: TiO_{2} in untreated WW (kg/a)	1.40	14.30	515.80
	TiO_{2water} : TiO_2 entering into the aquatic environment (kg/a)	4.50	36.00	1 096.0

Quantitative RQs Results (Lower Eff)

	Parameters	MIN-E _{JHG}		PRO-E _{JHB}		MAX-E _{JHB}	
	Concentration in STP (µg/l)	4.8E-03	7.68E-03	36.28E-03	90.58E-03	23.268E-03	1038.48E-03
nAg	Dilution factor: 10 (PEC, $\mu g/l$)	0.3E-03	0.5E-03	2.7E-03	6.8E-03	19.8E-03	88.3E-03
	Dilution factor: 3 (PEC, $\mu g/l$)	1.0E-03	1.6E-03	9.1E-03	22.8E-03	65.9E-03	294.2E-03
	Dilution factor: 1 (PEC, $\mu g/l$)	3.1E-03	4.9E-03	27.3E-03	68.3E-03	197.7E-03	882.6E-03
	RQ (D=10) (no units)	7.72E-06	1.22E-05	6.83E-05	1.71E-04	4.94E-04	2.21E-03
	RQ (D=3) (no units)	2.57E-05	4.06E-05	2.28E-04	5.69E-04	1.65E-03	7.35E-03
	RQ (no dilution) (no units)	7.72E-05	1.22E-04	6.83E-04	1.71E-03	4.94E-03	2.21E-02
nTiO ₂	Concentration in STP ($\mu g/\ell$)	4.4E-03	6.9E-03	32.7E-03	81.8E-03	977.2E-03	4 361.9E-03
	Dilution factor: 10 (PEC, $\mu g/l$)	0.3E-03	0.4E-03	2.5E-03	6.2E-03	83.1E-03	370.8E-03
	Dilution factor: 3 (PEC, $\mu g/\ell$)	0.9E-03	1.5E-03	8.2E-03	20.6E-03	276.9E-03	1 235.9E-03
	Dilution factor: 1 (PEC, $\mu g/l$)	2.8E-03	4.4E-03	24.7E-03	61.8E-03	830.6E-03	3 707.6E-03
	RQ (D=10) (no units)	2.79E-04	4.41E-04	2.47E-03	6.18E-03	8.31E-02	3.71E-01
	RQ (D=3) (no units)	9.31E-04	1.47E-03	8.24E-03	2.06E-02	2.77E-01	1.24E-00
	RQ (no dilution) (no units)	2.79E-03	4.41E-03	2.47E-02	6.18E-02	8.31E-01	3.71E+00

Under each scenario, first column results based on calculated WW per capita, and second column based on values provided by experts in WWT in SA

Summary

- Waste-related issues have begun to challenge present waste management systems.
- Are the current systems adequate for dealing with them?
- Need for more focussed research to quantify the risks owing to these forms of waste streams is imperative, as well as the development of mechanisms to deal with them adequately.

