Challenges and advances in genetically improving trees for the plantation forestry sector

Paper TI01-PA

SD Verryn & CL Snedden (with acknowledgement to CSIR Tree Improvement Researchers)

31 August 2010

Outline of presentation

- South African plantation forestry sector: contributions and improvement in productivity
- Acquiring the genetic diversity
- Selected challenges and advances in genetically improving trees
- Transforming the value of the plantation
- Looking to the future

South African roundwood production per planted area and genetic gains of *E. grandis* at seed orchard release

Based on FSA 2009, Verryn 2002, Verryn et al 2007

www.csir.co.za © CSIR 2010 Slide 3

Acquiring the genetic diversity

How should we breed and deploy material?

- Understanding the underlying genetics
 - Inheritance patterns in *E. grandis*

Estimated additive (A) and non-additive (NA) variances as a percentage of total genetic variance for height at 66 months over generations (F₁ and F₂) for the three scenarios considered.

Cloned breeding population

our future through science

How do genotypes respond to different environments?

Genotype by Environment Interaction (GEI)

Linear regressions depicting predicted *E. grandis* clone means across site at 5 years of age

Figure 1. Map of the eastern portion of South Africa showing the locations of the GEI trials

Are the genetic rankings reliable?

- First empirical confirmation of the negative impact of collinearity
- Simulation studies using BLP (Best Linear Prediction)
- 80% of cases showed lower genetic gains than alternative techniques

Overcoming hybrid hurdles

- Prediction of clonal performance in eucalypt hybrids
 - Are the methods we use to select in hybrid populations efficient?
 - Results
 - BLUP seems to give sufficiently reliable results for the prediction of clonal performance in hybrids
 - ... but prediction difficult for wide hybrids

Mitigating risks through genetics

- Example of risks
 - Biotic
 - Abiotic
- Recovery of the Mapiep Breeding Orchard post fire

Overcoming hybrid hurdles

- Reproductive barriers in the production of hybrid seed
 - Producing seed a critical step in hybrid production
 - Recent studies include
 - Incompatibility barriers in
 P. elliottii x P. caribaea hybrid
 - Improving controlled pollination techniques

Trees for marginal areas

- Limited land for afforestation
- Commercial viability in marginal areas depends on ability to productively produce timber on these sites
- Germplasm for marginal sites
- A hybrid success story
 - Swaziland trials

GxC at Salique

E.camaldulensis (unimproved)

E.grandis x E.camaldulensis hybrid

The polyploid journey of discovery

- Potential
 - Reduce fertility
 - Increase biomass
 - Wood properties
- Producing polyploid eucalypts

Transforming the value of the plantation

- High value products for growers
- Tools for breeding
- Sharing the knowledge & technologies

Looking to the future

- Breeding today for future needs
- New challenges & opportunities
 Some of these include
 - Bioenergy
 - Carbon sequestration
 - Climate change
 - New landowners and small scale forestry growers
 - New technologies for timber utilisation

Acknowledgements

Our stakeholders and collaborators

Your are invited to visit our demonstration in celebration of 20 years of Tree Improvement Research at the CSIR

Thank You

