High yielding cascade enzymatic synthesis of 5-methyluridine using a novel Purine Nucleoside Phosphorylase, from Bacillus halodurans

DANIEL VISSE1,2, FRITHA HENNESSY1, KONANANI RASHAMUSE1, PETRUS VAN ZYL1, GREG GORDON1, KGAMA MATHIBA1, MOIRA BODE1, BRETT PLETSCHE2 AND DEAN BRADY1

1CSIR Biosciences, Modderfontein, South Africa.
2Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown South Africa.

E-mail: dvisser@csir.co.za

INTRODUCTION

5-Methyluridine (5-MU) is a non-natural nucleoside that can be used as an intermediate in the synthesis of thymidine, and in the synthesis of nucleoside analogues AZT and stavudine, both of which are used in Highly Active Anti-Retroviral Treatment (HAART) of HIV/AIDS patients. 5-MU can be synthesised through the transglycosylation of D-ribose-1-phosphate, using guanosine as a donor, and thymine as receptor (Figure 1). However, the reagents guanosine and thymine are relatively insoluble, resulting in particulate substrates with poor reaction kinetics, and the most effective method of solubilising these materials is in hot aqueous solutions. It would therefore be preferable to utilize thermostable enzymes. The present work investigated the purine nucleoside phosphorylase (BHPNP1) present in the moderately thermophilic and alkaliphilic organism, Bacillus halodurans Alk36.1,2 We report on the combination of that enzyme with the uridine phosphorylase from E. coli in a one-pot cascade reaction to produce 5-methyluridine in high yield.

METHODOLOGY

- Cloning and Expression of Nucleoside Phosphorylases - BHPNP1 and E. coli UP were amplified as pression cassettes into E. coli BL21(DE3) was used as the expression host.
- Production of Enzymes in Batch Fermentations - E. coli UP and B. halodurans BHPNP1 were produced in batch fermentations using GM0 media. Crude extracts of the enzymes were prepared by the combination of high-pressure cell disruption, ultrafiltration (30 kDa cut-off membrane) and lyophilisation.
- Characterization of BHPNP1 - Kinetic and physical characteristics of BHPNP1 were determined using guanosine as a substrate.
- Transglycosylation for the preparation of 5-MU - Reaction (650 ml) contained 1.5% m/m loading of guanosine and thymine in 50 mM sodium phosphate buffer (pH 8.0) with 200 U L-1 of each of the biocatalyst (E. coli UP and BHPNP1). Reactions were performed at 40°C in round bottomed flasks with stirring at 500 rpm. Reaction components were measured by HPLC.

CHARACTERISATION OF BHPNP1

BHPNP1 was successfully expressed and purified. Physical and kinetic characteristics of the enzyme are given in Table 1. BHPNP1 showed highest amino acid similarity to bovine PNP, and was therefore homology modeled on that structure (Figure 2).3

TRANSGLYCOSYLATION

Application of a crude enzyme preparation of BHPNP1 in combination with E. coli UP to the transglycosylation reaction gave a 5-MU yield of 79% mol. mol-1 in under 8 h in a slurry-based reaction medium (Figure 3).

CONCLUSIONS

- The biocatalytic reaction described here indicates that a novel combination of nucleoside phosphorylases (B. halodurans PNP1 and E. coli UP) can facilitate the production of pyrimidine nucleosides from purine nucleosides in high yields.
- Partially purified enzyme preparations were applied in a two step transglycosylation reaction for the production of 5-methyluridine in a one-pot synthesis step with a yield of 79.1% mol/mol on guanosine at a productivity of 1.37 g L-1 h-1.
- This represents the first example of a free-enzyme transglycosylation giving high yields in a slurry-based reaction for the production of 5-MU.

BIBLIOGRAPHY


Presented at Biocat2010, Hamburg, 29 Aug – 2 Sep 2010