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A challenge for breeders and wood quality researchers of today is to appropriately respond to a complex 

environment demanding more productivity, higher quality, and a quicker adaptation of their crops to rapid 

changes. This is mirrored in the typical modern commodity trends of the need for increasing quality; 

decreasing costs; and of increasing rate of change of the markets, surrounding technologies and the 

environment. 

 

The result of such demands is that tree breeders are faced with a growing ‘shopping list’ of traits for which to 

breed, and in a shorter time period. This is a perilous situation, because, as the list of selection criteria 

increases, so too does the size of the breeding effort increase, or alternatively, the breeder may have to 

reduce the level of improvement in the traits. This problem is accentuated in the clonal situation, where the 

market expects all criteria to be met in a single genotype.  

 

In a recent study, with the selection target of only four traits, one tree met all criteria in a trial of 475. In 

another exercise, zero trees were found to be in the top 20% for all four selection traits in 773 trees. Further 

to these traits, there was a need to select for rooting ability and various disease resistances. This highlights 

the need to model and understand the impact of multi-trait selection on clonal breeding strategies. 

  

Future breeding developments are likely to: 1. Limit selection traits to those anticipated to be required 

despite changing needs, and weight them in consideration of the associated risks of changing needs. 2. 

Design strategies and adopt technologies which will enable more effective selection of multiple traits. 3. 

Adopt strategies which will allow effective response to the rapidly changing market, technological and 

natural environments. 

 

Challenges for wood specialists in response to the above scenarios may be to: 1. Identify a few ‘generic’ 

traits, likely to robustly address a spectrum of possible needs of the future. 2. Provide cost effective early 

screening techniques (biotechnology may compete here) 3. Develop technologies which will enable the 

effective deployment (eg matching the predicted phenotype to the site), harvesting and processing of the 

‘residual’, non-genetic, diversity of the wood resource (matching the realised phenotype to the processing).  
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INTRODUCTION 
 

Given the modern, rapidly changing environment, the question may be posed: “Why invest in tree breeding? 

By the time the product is planted and grown to maturity, technology, the markets and the natural 

environment will have changed so much that our efforts will have been futile.” Further to this question, if it 

makes sense to genetically improve our tree crops, which, of the dozens of characteristics for which to breed, 

will still be in demand at the time of deployment (planting) and at the later time of harvesting? 

 

Plantation forestry is a long-term business, relative to many other industries. Tree breeding for a particular 

generation of commercial forests will typically be initiated at the equivalent of one and a half to two 

generations’ time prior to establishment of the improved varieties.  

 

The forestry sector finds itself in a rapidly changing natural environment. It has been estimated that the 

atmosphere will warm by as much as 5.8º C during the current century (Beerling & Berner 2007), and with 

this come the challenges to adapt the genetic base of the plantations accordingly (Wang et al. 1994). It was 

shown that in the case of Loblolly pine and Norway spruce, models predicted a loss of about 5 to 10% in 

height growth below that expected for a genetically adapted seed source, if the average yearly temperature 

increases by 4°C (Schmidtling & Scarascia-Mugnozza 1993). Climate change will also create new pest and 

disease regimes, and the tree breeder needs to develop the suitable genetic resource to survive these new 

scenarios.  

 

Most industries are faced with the challenge of adapting to the fast- moving man-made environment of 

markets and of new technologies. Forestry is also exposed to such dynamics, and the rate of change in the 

man-made environment can be even quicker than that experienced in the natural sphere.  

 

There is a need for “rapid response to change” in the forestry sector in general, and in particular, in the 

development of tree breeding and deployment technologies and strategies (Verryn & Hettasch 2002). “Time-

to-market” (TTM) is a measure used in other industries (Wikipedia contributors 2007), and it should become 

central to the tree breeder’s way of thought. If the tree breeder can not respond quickly enough, it may well 

be argued that there is no need then to respond at all. 

 

One of the areas of rapid change is that of wood processing. As processing technologies advance, and the 

processors change their expectations regarding the quality and uniformity of the wood properties, so too do 

the tree breeder’s need to re-assess the list of priorities with respect to breeding for wood quality. For 

example, in the past, wood processors tended to demand absolutely straight logs for sawntimber. Any 

deviation from straight logs would translate into lost timber production. In modern times, the sawing and 

drying technologies have advanced to the point where stem straightness may not be as important any more. 
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In addition, there is a move to the use of smaller logs- for example, in South Africa, small pine logs (such as 

those with as little as 10cm small end diameter, from plantation thinnings), which were previously sent to 

pulp mills, are now being used for solid wood products. In the pulp and paper industry, issues such as that of 

limiting the environmental impact of the processing, of transport costs, and of the productivity of the mills, 

may require appropriate changes in the characteristics of the wood resource. There is, for example, a 

premium paid for species of superior wood density and pulp yield, such as E.globulus. 

 

The tree breeder is faced with a growing ‘information overload’ with regards to what is required of the 

genetic resource (eg, up to 10 traits in a P.radiata programme (Jayawickrama & Carson 2000)), and there is 

a need to react to such demands at an ever-increasing speed. Some options available to tree breeders to 

respond to these challenges, and the potential consequences of choices made, are  discussed. 

 

MULTI-TRAIT SELECTION 

 

Inevitably, there is a need for selection and breeding for more than one characteristic. It can be shown that 

the most rapid strategy to achieve the best net improvement of a portfolio of economic goals in all the traits 

of interest in a breeding population, is to concurrently select for all the traits by means of selection index 

(Falconer 1989; Gjedrem 1971). It has, however, also been shown, that as one increases the number of 

selection traits, so too is there an inevitable ‘dilution’ of the rate of breeding progress in the traits under 

selection (Fins et al. 1992). These conclusions are population-based, and valid as such. The ‘dilution’ of 

individual trait breeding progress due to multi-trait selection is justified in index selection on the assumption 

that the traits have been allocated appropriate economic weights (Hazel et al. 1994; Lin 1978). Incorrect 

economic weights have been shown to cause significant rank changes in some cases, and insignificant 

changes in others (Beard 1988). 

 

In the case of clonal selection for plantation deployment purposes, we may find it difficult to satisfy all the 

minimum criteria (or expectations) in a single individual. A selection process with an increased number of 

traits, and with more stringent the criteria, will have a diminished likelihood to successfully identify such a 

clone (or clones). As a rough illustration, using a completely random, probabilistic approach, if Pi is the 

probability of finding an individual meeting the minim criterion for trait ‘i’ in a population, ie 

Pi = (number of individuals meeting the criterion of trait ‘i’ / population size). 

Assuming a random association between traits and a genetic correlation of zero between traits, the 

probability (PC ) of finding a clone satisfying all ‘r’ trait’s criteria would be: 

 PC = P1 * P2 * P3 * ….Pr  

Assuming we have five traits, each with a probability of 0.1 (ie in the top 10%) that the ith criterion for a 

production clone would be met in that population, then PC = 0.00001. So, in order to select one suitable clone 

we would need a population of 100 000, and for five suitable clones, we would need a population of 500 000. 

The requirement of five traits may be conservative in a eucalypt clonal program, where we may select for 
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growth, stem form, resistance to a disease (or two), wood density (and/or other wood properties), and rooting 

ability.  

 

In recent studies on data from an experimental population of 475 trees, with the selection target of only four 

traits, no tree met the test criterion of being within the top 10% for all traits (Louw 2006). When the selection 

criteria were relaxed to ‘commercially acceptable’ thresholds of being in the top 15% (eg. diameter at breast 

height), 20% (stem form), 15% (wood end-splitting) and 30% (wood density) of the population of 475, for 

each of the four traits (PC= 0.00135 or 1.35 in 1000), then one tree met all criteria in the trial. In another 

exercise, zero trees were found to be in the top 20% for all four selection traits in 773 trees. Further to these 

four traits, there was a need to select for at least two other traits (rooting ability and various disease 

resistances). This could translate into a probabilistic value of PC = 0.00135 * 0.5 * 0.25 = 0.000169, or 1,69 

in 10 000 trees.  

 

 

TIME, RISK AND TREE BREEDING 

 

Given the long-term nature of forestry, and particularly tree breeding, there is a case for the inclusion of time 

scaling in breeding and selection. In general, economic weights of breeding programmes are calculated with 

present values. However, in the future we may experience more sophisticated economic modelling in forest 

tree breeding. There may be a need to model economic trends and the impacts on the relative importance of 

selection traits. For instance, in E.grandis breeding we may model that it takes 10 years to develop a new 

clone for deployment, then an additional 2 years for nursery bulk up, followed by deployment in plantations, 

and harvest 8 years later.  The relative economic importance of a trait after the total period of 20 years to 

harvest may be significantly different to today’s value. In other words, there is an associated risk with this 

forecast relative value. The long time periods, together with the ‘rapid change’ environment, make the risk of 

large forecast errors, potentially high.  

 

Normally, economic weights of selection indices (and Best Linear Unbiased Prediction or BLUP) are 

considered absolute values, with no margin for error. It is suggested that, in forestry, where there are variable 

degrees of certainty in our predictions of economic worth of the different traits at time of harvest, the 

economic weights should be risk-adjusted. For instance, it may be argued that there is a high degree of 

certainty that a trait, such as the rate of tree growth, is likely to carry a significant economic value in years to 

come, however, there is less certainty that the pulping technology will require similar wood properties to the 

present. The BLUP equation may be expanded to include a risk adjustment factor, R, for the economic 

weight vector, a: 

ŵ )ˆ('' 1 βXyVCRa −= − ,  

where: 

X β̂  = the Generalised Lease Square Mean estimate, with X,  
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the design matrix relating y to the fixed effects 

ŵ = the vector of predicted genetic worth 
y = the vector of observed value of individuals 
V = the phenotypic (co)variance matrix    
C = the genotypic (co)variance matrix between the observation and the predicted traits 
R = the economic weight risk adjustment square matrix  
a = the (predicted) economic weight vector 
 

 

IMPLICATIONS FOR TREE BREEDING 

 

The selection of clones for nursery production purposes in the above examples illustrates the impact which 

additional traits, together with their selection intensities, have on the size and potential efficiency of a 

breeding program.  Assuming that the tree breeder has a limited budget, he or she will be faced with the 

challenge of trying to meet minimum requirements for some characteristics, whilst breeding for the broad 

portfolio of traits and managing the risk of changing needs. There are many possible strategies to address this 

challenge, of which the following are a few: 

1. To limit the number of selection traits, especially for production purposes. The breeder may do well 

to carefully interrogate the real value and relevance of the traits in future years, given changes in 

technology, the markets and the environment. 

2. Relax the selection criteria for some less crucial production traits. If, for instance, certain threshold 

values are non-negotiable, then the selection intensities of other traits may have to be relaxed in 

order to have sufficient candidate clones. The assumption that all the traits have linear economic 

benefits in relation to their values, is often not valid, and deviations from the linear assumption needs 

to be taken into account (Greaves et al. 1997; Meuwissen & Goddard 1997). The relaxing of 

selection criteria will most likely result in a loss of genetic gains for that trait. 

3. Breeding and production strategies may need to be tailored for effective multi-trait selection. For 

instance, certain screening may take place in the nursery with large numbers of candidates, allowing 

selection of other traits at a later stage. In addition, the sizes of populations and trials need to be 

designed for the number of traits to be selected, together with their selection intensities. 

4. Design breeding populations and strategies in such a way as to build in the ability to respond to the 

risk of a sudden change in the selection needs. A new disease, market need, or technology need may 

require an initial rapid response from the tree breeder. In order to address this, the tree breeder may 

have a conservation plan for a number of species, or may maintain a rather robust and large breeding 

population, from which customised, sub-populations may be derived. 

 

IMPLICATIONS FOR SELECTION FOR WOOD QUALITY 

 

Some of the numerous wood characteristics which are typically considered for genetic improvement 

programmes are: wood density; pulp yield (for different processes); lignin types and content; cellulose 
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configuration; fibre length and fibre wall characteristics; colour; internal wood stresses; wood end splitting; 

interlocking grain; shrinkage; microfibril angle; variability of traits, modus of elasticity, modus of resonance, 

etc. In addition, the markets and processing technologies demand different, changing, and sometimes 

opposing, wood properties. A significant challenge for the wood specialist is, therefore, to guide the tree 

breeder by identifying the key wood properties which, if improved, will give the grower a significant 

competitive advantage in the foreseeable future. These traits should be ‘robust’ enough to be valuable, no 

matter what the likely changes in processing technologies and market needs. If ‘viable’ heritabilities are 

observed for these traits, then they may be included in the breeding programme.  

 

In the case of clonal deployment programmes, it may be necessary to either limit the number of wood 

property selection traits or relax threshold values of the traits, or model the non-linear economic weights of 

traits, in order to ensure that the best selections are obtained within the confined resources of the programme. 

 

Once trait(s) of importance have been identified, and the associated economic weights predicted, there is 

generally a need from tree breeders to screen large quantities of trees, rapidly, accurately, at a young age, and 

usually in a non-destructive manner. Successful research in aid of this requirement can result in a more 

effective breeding programme, and hence greater genetic gains. Globally, there has been significant research 

(and progress) directed at the need for rapid, (cost) effective, early screening, such as the use of near infrared 

spectroscopy (Michell 1995; Michell & Schimleck 1997; Schimleck et al. 1996) and sonar (Schafer 2000). In 

recent years, there has been a growing trend towards applying DNA and proteonic technologies in support of 

rapid screening. These technologies are gaining in accuracy and gradually becoming more cost effective.  

 

A strategic research question is: which of the technologies will most effectively address the screening for 

specific traits in future? For many polygenic traits, screening at a genomic level will require an immense 

amount of knowledge of the interactions of large numbers of genes with each other and with the 

environment. There will still be a need to research, and phenotypically screen, a significant amount of 

individuals, in order to collect this information.  

 

Understanding the interaction between the genotype and the environment is increasing becoming a key 

modelling element for the management of forests. Resource uniformity, in terms of wood properties, can 

have significant economic savings. The phenotype of the tree, as with most biological organisms, is in part 

genetically determined, and part environmentally, and there may be an interaction effect. Once the 

appropriate genotypes are bred, it remains necessary to manage the genotypes in different environments, so 

as to obtain maximum uniformity and productivity.  Various initiatives are investigating these factors and 

interactions in an effort to obtain maximum benefit for the industry. These include the recent research of the 

CRC for Forestry, Australia, and that of CSIR, South Africa, with its collaborators (not published). Here 

logistical mechanisms are put in place with the view to scheduling the harvesting and processing of batches 

of timber of similar characteristics. 
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CONCLUSIONS 

  

The modern breeding programmes need to be able to address increasing needs in a rapidly changing 

environment. This can result in breeding programmes being faced with a large number of selection traits. 

Conventional breeding strategies tend to be based on the fact that simultaneous selection of any number of 

traits is, in the long run, more beneficial than tandem selection. This theory is population-based and assumes 

that there are dependable economic weights attached to the traits.  

 

The inclusion of numerous traits, with strict selection criteria, in clonal programmes can result in the need for 

very large clonal testing programmes, or alternatively, result in few or no clones being deemed suitable for 

deployment. In the latter case, it may become necessary to relax the criteria, resulting in lower genetic gains 

for certain traits.  

 

The rapidly changing environment, market and technologies can also result in the importance of certain 

selection traits changing over the time it takes to develop, deploy, and harvest the genetic material. The risks 

associated economic weights of the different traits, can be included in BLUP models. 

 

It is suggested that the breeder and wood specialists invest in very careful consideration of which traits are of 

key importance, and will still be of such importance in years to come (target deployment and harvesting 

time). ‘Misguided’ inclusion of traits, or ‘erroneous’ economic weights, can be very costly in terms of 

realised benefits from a breeding programme. 
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