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Improving Land Cover Class Separation using an
Extended Kalman Filter on MODIS NDVI Time

Series Data
W. Kleynhans, J.C. Olivier, K.J. Wessels, F. van den Bergh, B.P. Salmon and K. Steenkamp

Abstract—It is proposed that the NDVI time-series derived
from MODIS satellite data can be modelled as a triply (mean,
phase and amplitude) modulated cosine function. Secondly,a
non-linear Extended Kalman Filter is developed to estimatethe
parameters of the modulated cosine function as a function oftime.
It is shown that the maximum separability of the parameters for
natural vegetation and settlement land cover types is better than
that of methods based on the Fast Fourier Transform (FFT) using
data from two study areas in South Africa.

I. I NTRODUCTION

Land cover classification based on multi-temporal satellite
data can capitalize on seasonal variation in land surface
reflectance due to vegetation phenology to provide better
classification than single-date imagery [1], [2]. Multi-temporal
coarse resolution satellite imagery such as Moderate-resolution
Imaging Spectroradiometer (MODIS) and Advanced Very
High Resolution Radiometer (AVHRR) have been widely used
to map land cover at regional to global scales [3], [4], [5].
Land cover classification methods are often based on a series
of secondary metrics derived from the Normalized Difference
Vegetation Index (NDVI) time-series and include Principal
Component Analysis (PCA) [2], [6], [7], phenological metrics
[8] or Fourier (spectral) analysis [9], [10]. Fourier (spectral)
analysis expresses a time-series as the sum of a series of
cosine waves with varying frequency, amplitude and phase
[11]. The frequency of each cosine component is related to the
number of completed cycles over the defined interval. The Fast
Fourier Transform (FFT) is an effective and computationally
efficient algorithm to compute the Discrete Fourier Transform
(DFT) [11] and is often used when evaluating NDVI time-
series data [12], [13], [10], [14]. In many applications where
the FFT transformation of NDVI time-series data is used
for classification and segmentation, only the first few FFT
components are considered as they tend to dominate the
spectrum [10], [12], [13]. The reason for this is because of
the strong seasonal component and slow variation relative to
the sampling interval of the time-series (8 days for MODIS).
It has been found that even when considering only the mean
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and seasonal FFT components [10], reliable class separation
can be achieved. A drawback of using FFT-based methods is
that the underlying process is assumed to be stationary. This
assumption is often invalid in the case of NDVI time-series
data, especially if a land cover change is present. The extended
Kalman Filter (EKF) is a non linear estimation method that can
potentially be employed to estimate unobserved parameters
(process model) using noisy observations of a related mea-
surement model. EKF techniques in remote sensing have been
used for parameter estimation of values related to physical,
biogeochemical processes or vegetation dynamics models [15],
[16]. In this letter it is firstly proposed that the NDVI time-
series be modeled as a single, but triply modulated cosine
function, where the meanµ, amplitudeα and the phaseφ are
functions of time. Secondly, it is proposed that a nonlinear
EKF be used to estimate these parameters as a function of
time for each NDVI time-series.

Using MODIS MOD43 data from two study areas, the
paper shows that theµ, α, and φ parameter streams over
time are similar for same class land cover types and dissimilar
for different land cover types representing natural vegetation
and settlement land cover types in the Limpopo province of
Southern Africa. The parameter sequence can thus be used to
determine the level of similarity between NDVI time-series
belonging to different land cover types.

II. DATA DESCRIPTION

A. Study Area

The Limpopo province is located in northern South Africa
and is mostly covered by natural vegetation while a large
number of informal settlements are rapidly expanding through-
out the province. The proposed method was tested in two
regions in the Limpopo province. The first study area (Region
A) is centred around latitude24◦17′21.43′′S and longitude
29◦39′42.96′′E and is 43 km south east of the city of Polok-
wane. Region A covers a geographic area of approximately
190 km2, 42 natural vegetation and42 settlement pixels were
selected for analysis. Region B is centred around latitude
24◦19′51.50′′S and longitude29◦18′04.07′′E and is 47 km
south west of the city of Polokwane. Region B covers a
geographical area of100 km2, 76 settlement and52 natural
vegetation pixels were selected. The study regions that where
considered had settlements and natural vegetation areas in
close proximity which ensured that the rainfall, soil type and
local climate were similar. Each of the MODIS pixels were
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evaluated using SPOT5 high resolution data to ensure that none
of them had experienced any land cover change during the
study period.

B. MODIS Data

The NDVI time-series data was derived from 8 daily com-
posite MCD43 bidirectional reflectance distribution function
(BRDF)-corrected, MODIS data with a spatial resolution of
500m [17] for the period 2001/01 to 2008/01. Figure 1
shows the mean NDVI time-series for natural vegetation and
settlement pixels in Region A.

III. M ETHODOLOGY

A. FFT Method

As discussed in section I, the Fourier analysis of the NDVI
time-series has proved to be insightful because the signal can
be decomposed into a series of cosine waves with varying
amplitude, phase and frequency. The DFT can be written in
matrix form as:

Y = FNy, (1)

whereyT = [y0 y1 y2 ... yN−1] is the NDVI time-series of
length N in vector form,YT = [Y0 Y1 Y2 ... YN−1] is the
DFT of y andFN is the DFT matrix in the form:

FN (r, c) =

[
1√
N

e
−2πi

N

](r−1)·(c−1)

, (2)

whereFN (r, c) is the value of rowr and columnc of theFN

matrix [11]. The first 30 FFT components of a typical seven
year natural vegetation NDVI time-series is shown in figure
2. As expected, the majority of signal energy is contained
in the mean and the annual component which relates to FFT
component zero and seven respectively. As proposed in [10],
the similarity of any two arbitrary NDVI timeseries can be
evaluated by computing their FFT transformation respectively
and then comparing the first and seasonal FFT component of
each FFT series. A distance metric based on the mean(µ)
and seasonal(α) FFT component difference for any two FFT
series can then be formulated as follows:

DFFT
µ = ‖Y 1

0 − Y 2
0 ‖, (3)

and

DFFT
α = ‖2(Y 1

7 − Y 2
7 )‖ (4)

whereDFFT
µ andDFFT

α is the Euclidean distance between the
mean and annual FFT components respectively of two NDVI
time-series.

B. New EKF method

It is proposed that a NDVI time-series for a given pixel can
be modelled by a triply modulated cosine function given as

yk = µk + αk cos(ωk + φk) + vk, (5)

whereyk denotes the observed value of the NDVI time-series
at timek andvk is the noise sample at timek. The noise is

Fig. 1. Mean NDVI Time Series for Natural Vegetation and Settlement
landcover in region A

additive but with an unknown distribution. The cosine function
is based on a number of parameters (that are not directly
observable), namely the frequencyω, the nonzero meanµ, the
amplitudeα and the phaseφ. The frequency can be explicitly
computed asω = 2πf where f is based on the annual
vegetation growth cycle. Given the 8 daily composite MCD43
MODIS data,f was calculated to be 8/365. The values ofµk,
αk andφk are functions of time and must be estimated given
yk for k ∈ 1, . . . , N . The estimation of these parameters is
non-trivial and require a non-linear estimator. Accordingto
the EKF formulation, for every increment ofk (the discrete
time) a state vectorxk is defined containing the parameters
to be estimated in the formxk = [µk αk φk]T . The relation
betweenxk andxk−1 is given byv, a known but possibly non-
linear function. The state vectorxk is related to the observation
vectoryk via a non-linear measurement functionh. Both these
models are possibly nonperfect, so the addition of processwk

and measurementvk noise is used. This is expressed as [18]

xk = v(xk−1) + wk, (6)

and
yk = h(xk) + vk. (7)

The state vector parameters may be estimated over timek by
recursive iteration [18] based on the observation datayk up
to time k. In the observation equation (7),yk is the predicted
measurement. Functionh is used to compute a measurement
given the predicted state, andvk is the observation noise
vector.
The estimated values forxk = [µk αk φk]T over time k

effectively results in a time-series for each of the three param-
eters. The next step was to define metrics to measure class
separability corresponding to land cover type. As shown in
[10], substantial separability can be achieved when comparing
mean and annual FFT components of NDVI time-series of
different land cover types. In the proposed EKF framework,
the mean FFT component (i.e FFT component 0) corresponds
to µ and the annual FFT component (i.e FFT component 7 for
the seven year NDVI time-series) corresponds toα. Hence it



3

Fig. 2. First 30 FFT components of the mean natural vegetation NDVI series
for region A

is proposed that within the EKF framework a separability or
distancemetric between two NDVI time-series be defined as

DEKF
µ = max{µk,1 − µk,2}, 1 ≤ k ≤ N (8)

and

DEKF
α = max{αk,1 − αk,2}, 1 ≤ k ≤ N. (9)

DEKF
µ is the maximum distance between the first (µ1) and

second (µ2) parameter sequence over timek. DEKF
α is cal-

culated in a similar manner finding the maximum distance
between the annual amplitude parameter sequence.

For the present case it was assumed that the state vector
x does not change significantly when time is advanced by
one, hencev = 1 and the process model is linear. The
measurement model, however, contains the cosine term, and
as such is evaluated via the standard Jacobian formulation,
thereby linearising the non-linear measurement model around
the current state vector [18].

IV. RESULTS

Taking the FFT of two NDVI time-series and comparing
the Euclidean distance between their first and annual FFT
components respectively, produces a scalar quantity in each
case. When using the EKF to estimate theµ andα parameter
sequence for each NDVI time-series, the difference between
the parameter sequences fluctuates over the 7 year period. This
is illustrated in figure 3 where theµ sequence estimated using
the EKF is shown along with the FFT mean component for
two typical NDVI time-series belonging to each of the two
classes in region A. Theµ sequence for the settlement and
natural vegetation time-series clearly vary in similarity(Figure
3). This is to be expected as land cover classes tend to be more
similar during certain parts of the season than others. This
characteristic was exploited by only considering the maximum
distance between each parameter sequence as given in (8) and
(9).
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Fig. 3. Comparing the EKF derivedµ parameter with the FFT mean
component for natural vegetation and settlement for regionA

To evaluate the performance of the proposed EKF algorithm,
an all-to-all comparison was made between the NDVI time-
series of each pixel in the natural vegetation class with each
pixel in the settlement class.

The initial state parameters as well as the observation and
proses noise estimates were determined off-line based on
known training data from the study areas. The training data
was a random selection of5% of the total number of pixels
per region. The initial state parameters were calculated using
the FFT mean and annual components of the training data as

µ1 =

Z∑

i=1

Yi
0

Z
, (10)

α1 =
Z∑

i=1

2‖Yi
7‖

Z
, (11)

φ1 =

Z∑

i=1

∠Yi
7

Z
. (12)

WhereZ is the total number of training time-series andYi
n

is then’th FFT component of time-seriesi. The observation
noise was determined as

σv =

Z∑

i=1

std(ei)

Z
(13)

ei = ‖ŷi − yi‖ (14)

Where σv is the estimated standard deviation of the obser-
vation noise,std(ei) is the standard deviation of a vector
containing the difference between the original time-series yi

and a filtered version̂yi calculated as

ŷi = F−1
N Ŷi. (15)

WhereŶi is defined as
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TABLE I
INITIAL EKF STATE PARAMETER VALUES

Region µ1 α1 φ1

A 0.3008 0.0835 0.2700

B 0.3447 0.1185 0.1708

TABLE II
EKF OBSERVATION AND PROCESS NOISE VALUES

Region σv σµ σα σφ

A 3.8 × 10−2 8 × 10−5 8 × 10−5 1.5 × 10−2

B 4.4 × 10−2 9 × 10−5 9 × 10−5 1.7 × 10−2

Ŷ i(k) =






Y i(k), k = {0, 7}
0, 1 ≤ k ≤ 6
0, 8 ≤ k ≤ N

, (16)

and F−1
N denotes the inverse DFT operation.̂Yi is thus

a copy of Yi but with only the mean and seasonal FFT
components, all other components were set to zero.

The initial state parameters as well as the observation and
process noise standard deviation for region A and B is shown
in table I and II respectively. The values ofµ1, α1 and φ1

in table I were calculated using equations (10), (11) and (12)
respectively. In table II, the observation noise varianceσv was
calculated using equations (13) and (14) while the process
noise varianceσµ, σα andσφ were estimated by maximizing
the class separability on the training data for each region.

Once determined, the parameters were kept fixed for all
numerical results relating to the specific region.

The distance metricsDEKF
α andDEKF

µ were recorded and
the consequent distributions of the values of these distance
metrics were calculated. The distribution and values of the
FFT distance metricsDFFT

α andDFFT
µ were also calculated

for comparison. Figure 4 shows the distribution of the FFT
and EKFDα values for region A.
Table III gives the Bayesian decision error for both the FFT
and EKF distance metrics for each region defined as

PFFT
e (α) =

∫ Df∗

α

Dα=0

p(Dα|df ) +

∫
∞

Dα=D
f∗

α

p(Dα|sf ) (17)

PEKF
e (α) =

∫ Dk∗

α

Dα=0

p(Dα|dk) +

∫
∞

Dα=Dk∗

α

p(Dα|sk) (18)

PFFT
e (µ) =

∫ Df∗

µ

Dµ=0

p(Dµ|df ) +

∫
∞

Dµ=D
f∗

µ

p(Dµ|sf ) (19)

PEKF
e (µ) =

∫ Dk∗

µ

Dµ=0

p(Dµ|dk) +

∫
∞

Dµ=Dk∗

µ

p(Dµ|sk) (20)

where the value ofDy∗
x , x ∈ {α, µ}, y ∈ {f, k} is the optimal

decision threshold minimizing the probability of errorPe in
each instance. It can be seen that the Bayesian decision error
in region A using the EKF was reduced by5% over the FFT
method when consideringDµ and by1% when considering
Dα (Table III). In region B the Bayes error of the EKF method

TABLE III
ERRORPROBABILITY COMPARISON OF THEFFT AND EKF METHOD

Region P F F T
e (µ) P EKF

e (µ) P F F T
e (α) P EKF

e (α)

A 18% 13% 4% 3%

B 32% 34% 35% 21%

was increased with2% over the FFT method when considering
Dµ, but a significant reduction of14% was achieved when
consideringDα. Thus, overall it may be concluded that the
EKF formulation has a reduced probability of error when
compared to the FFT-based approach on the same data. This
implies that the EKF formulation offers improved separability
of land cover classes for the study areas A and B.

The phase parameterφ was found to provide negligible
additional separability in the classes and thus was excluded
from the results.

V. D ISCUSSION OF RESULTS

The overall improved separability of natural vegetation and
settlement land cover types using the EKF based on a triply
modulated cosine function model over FFT is evident for both
regions A and B. In an effort to improve the results, a sum of
sinusoids model was also considered but preliminary results
showed negligible performance increase with a significant
increase in the complexity as more parameters needed to be
estimated. This corresponds to results shown in [10], whereno
significant added separability was achieved when considering
more sinusoidal components other than the annual component.

Consistent with most EKF implementations, the tracking
of state parameters is not instantaneous and does require a
certain amount of observations. As this period is unknown, an
initial number of state parameter values need to be excluded
when calculatingDEKF

α and DEKF
µ . The average square

difference between the EKF derivedµ parameter and the FFT
mean component is shown in figure 5, it can be seen that the
variation seems to stabilize within the first two years which
relates to approximately 100 samples. It was also found that
when excluding the first100 estimates of the state parameters,
a stable distribution ofDEKF

α and DEKF
µ was obtained.

The first 100 state parameter estimates were consequently
disregarded in all results shown.

The initialization procedure used to determine the initial
EKF parameters as shown in section IV was found to work
well for each region. By using an initial training set and
keeping the EKF initialization parameters constant for each
region, the EKF is effectively adaptable for each region and
requires minimal manual parameter selection.

VI. CONCLUSION

Previous research has found that class similarity can be
evaluated by considering the difference in FFT components,in
particular the mean (µ) and annual (α) FFT components, as
they tend to carry the majority of signal energy [10], [12].
In this paper, the mean and annual frequency components
were estimated for each time step using an EKF. Having
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Fig. 4. Probability distribution functions ofDα using the FFT and EKF
method in region A wherep(Dα|sf ) is the distribution of theDF F T

α values
for NDVI time-series of the same class,p(Dα|df ) is the distribution of the
DF F T

α values for NDVI time-series of different classes,p(Dα|sk) is the
distribution of theDEKF

α values for NDVI time-series of the same class and
p(Dα|dk) is the distribution of theDEKF

α values for NDVI time- series of
different classes.

iterative estimates of these components allows one to exploit
the fact that the mean and annual frequency dissimilarity
is more prevalent during certain parts of the seasonal cycle
than other parts, an effect that is merely averaged out using
the traditional FFT over the entire NDVI time-series. The
variance of the distribution of distance metrics derived using
the EKF, p(Dµ|sk) and p(Dα|sk) is higher than that of the
FFT method (Figure 4). The reason for this is that the EKF
is more sensitive to variability of pixels of the same class
that are separated geographically. Even though the variance
of EKF distance metric is higher, the total probability of
decision error was reduced for both of the regions considered
in this study. A further possible application of this methodis
towards land cover change detection. By following the changes
of the cosine parameters through time and comparing them
with neighboring pixels, a change detection method can be
formulated and this is currently being researched. Finally, note
that the EKF is well suited to multiple observations so that
the EKF can capitalize on all seven bands as opposed to just
the NDVI time-series data to further improve estimates of the
underlying process model. This possibility is also currently
being researched.
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