

A reassessment of problems affecting stabilized layers in roads in South Africa

PHIL PAIGE-GREEN
CSIR Built Environment
Pretoria, South Africa

Background

- Significant research has been carried out in South Africa on the deterioration of stabilized materials since 1981
- The cause was undeniably attributed to carbonation of the stabilized materials (a design and/or construction problem)
- An alternative cause was presented at TREMTI in Paris in 2005

Background

- "Water-driven" reactions (material-related) and not carbonation
- Material problem gives the Contractor reason for an "unforeseen" claim
- This has caused serious problems and unnecessary claims
- This paper reviews the two processes to determine their likelihoods

- Known factor in the deterioration of concrete
 - Loss of stabilizer → carbonates
 - Lowered pH
 - Destabilization of hydrated silicates
 - Can close surface voids
 - Slows down deterioration
- Greater effect on road stabilization

Chemical background

- Affects both lime and cement
- Fundamentally similar stabilization processes
- Lime requires clay minerals (Si & Al)
- Lime and cement both manufactured at high temperatures - CO₃⁺⁺ → O(H⁻) + CO₂
- OH⁻ inherently unstable → Carbonates
- $pH 12.4 \rightarrow 8.3$

REACTIONS WITH CLAY

Rapid

- lon exchange → flocculation → lower PI and φ
- Slow/long term
- High pH
- Increased solubility of Si and Al
- $-Si + CH + H \rightarrow C_3S_2H_3$
- $-AI + CH + H \rightarrow C_4AH_{13}$
- NB. Cement has all ingredients
- Releases Ca(OH)₂
- $-C_2S + C_3S + H_2O \rightarrow C_3S_2H_3 + Ca(OH)_2$

- Lime only stable when P_{CO2} < 3x10⁻¹⁴ atm
- Normal environmental P_{CO2} =3x10⁻⁴ atm
- Absorbs CO₂
- Increase in volume (10 14%)
- Atmosphere has 0.035% CO₂
- Where does it come from
 - "Unlimited" volume
 - Measured 4 13% in pavement layers

2009 - ANTIGUA GUATEMALA - 11-13

- Requires humidity
- Most rapid between (40% & 70% RH)
- Not always detrimental
 - If ITS $< \sigma_T$ microcracking occurs
- Natural and common process

"WATER DRIVEN" REACTION THEORY

Poorly described in TREMTI 2005 (Botha et al)

- Reaction with clay minerals
- $-Ca^{++} + 2(OH)^{-} + H_2O \rightarrow 2Na^{+} + 2(OH)^{-}$
- NaOH is soluble
- Moves to beneath surface (hydrogenesis)
- NaOH is hygroscopic and attracts water
- Ion exchange reaction with remaining clays
- Ca⁺⁺ + 2(OH)⁻ + H₂O + 2Na⁺ → 2Na⁺ + 2(OH)

- NaOH then attacks alumino silicates and fine quartz, destroying cementitious bonds
- If more Ca(OH)₂ is available then CSH and CSA forms destroying matrix by expansion
- Ca(OH)₂ is depleted and pH drops
- High solubility of NaOH allows migration to between base and surfacing and thus pH is still high (sic)
- Essentially typical alkali-silica reaction sometimes occurring in concrete

Assumptions in theory

- That sufficient Na actually exists in the material to be displaced by Ca and form NaOH
- Must come from materials, cement (none in lime) or compaction water
- Earths rocks contain 0 3.5% sodium oxide
 and 0 20% calcium oxide
- Exchangeable Na in SA gravels < 6 meq/kg soil
- SA cements have < 0.3% Na oxide

Tratamiento y Reciclado de Materiales para Obras de Infraestructura de Transporte Unitra estra una del Unitra estra una de Transporte Unitra estra una del Unitra estra una del Unitra est

Assumptions in theory

- Presence of Na actually very low
- Majority of problems encountered have been in calcium rich/saturated materials (calcretes and weathered dolerites)

Other problems

Principle is fundamentally flawed

Fundamental flaws

- 0.5N solution of NaOH is required to dissolve free silica in clay (in steam bath over 4 hours)
- Only amorphous silica and not quartz is dissolved (NaOH must also dissolve AI)
- NaOH from 5 meq/kg and 10% moisture = 0.05N solution (one tenth)
- NaOH attacks fines (mostly colloids or clay fraction)

Fundamental flaws (cont)

- Correctly assumes that Ca ions will displace exchangeable Na ions on clays
- These remain in solution and undergo hydrogenesis in sealed road
- Majority of problems on roads before sealing
- NaOH is probably more susceptible to carbonation than Ca(OH)₂

Fundamental flaws (cont)

- NaOH will absorb water already in solution!
- NaOH attacks alumino silicates and fine quartz destroying cementitious bonds – these aren't reaction products!
- Assumes increase in volume when new CSH form that destroys cementing matrix not known or proved
- Repeated reference to calcium silica aluminates – not referred to in cement chemistry (or even clay mineralogy)

Fundamental flaws (cont)

- No reason why NaOH should attack clays preferentially to Ca(OH)₂
- Alkali silica reaction requires metastable forms of silica – reports of clay reactions (as required for WDR) never substantiated
- "Reacted" layer must be dry and have high pH
- Botha et al state that carbonation is more strength gaining than reducing

REMTI 2009 - ANTIGUA GUATEMALA - 11 -13 Nov

TIME EFFECTS

Attack on gels (during curing)

Months

ABORATORY INVESTIGATIONS

- Field samples can be carbonated (accelerated) in the laboratory
- Standard test in SA

Block sample collected 31/01/02: sealed in two plastic bags on site. Stored in office until 31/05/02 – opened and block broken for ICC testing and pH assessment.

31/05/02 at $12h06 - \theta\theta$ sprayed on freshly opened surface (pH = 13.29)

31/05/02 at 14h26 – first spray almost faded – second sprayed area slightly pink after 1 minute

31/05/02 at 15h00 – first spray almost faded – second sprayed area dark pink after 34 minutes

03/06/02 at 09h06 - both sprays fully faded

03/06/02 at 09h07 – sprayed – no red after 1 minute

03/06/02 at 09h22 - sprayed - no red after 16 minutes or any time thereafter

Carbonation of outside 10 mm of block after 70 hours of indoor exposure to atmospheric air (03/06/02 at 12h00). The ambient temperature during this period never exceeded 20°C. (ph = 11.6)

1µm |----- 2μm Date :21 Aug 2002

WD = 11 mm Mag = 3.58 K X Detector = RBSD EHT = 15.00 kV

FIELD INVESTIGATIONS

Carbonation

Numerous investigations over past 28 years

LABORATORY EVIDENCE

- Water driven reactions
 - Little evidence
 - Attempts to simulate reactions (using granitic material) have failed
 - Even added some dispersive clay
 - Repeated Botha tests
 - -Only weak material was 90% density

LABORATORY EVIDENCE

Tratamiento y Reciclado de Materiales para Obras de Infraestructura de Transporte LABORATORY EVIDENCE

ATEMALA - 11 -13 Nov.

FIELD EVIDENCE

- Water driven reactions
- All problems carefully checked for WDR in field
- Dry weak layer high pH & no CO₃

DISCUSSION & SUMMARY

- Carbonation is a standard reaction
- WDR is not requires sodium source never proved
- Water is needed for hydration and has never been a problem why suddenly?
- WDR possible but unlikely!
 - Process never proved scientifically

