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ABSTRACT

This paper shows that a feedforward Multilayer Perceptron
(MLP) operating over a temporal sliding window of multi-
spectral time series MODerate-resolution Imaging Spectrora-
diometer (MODIS) satellite data is able to detect land cover
change that was artificially introduced by concatenating time
series belonging to different types of land cover. The method
employs an iteratively retrained MLP that is a supervised
method, and thus captures all local environmental patterns.
Depending on the length of the temporal sliding window used
in the short-term Fourier transform, an overall change detec-
tion accuracy of between 87.62% and 97.02% was achieved.
It is shown that for this type of simulated land cover change,
where land cover change was abrupt, a short-term FFT win-
dow of 18 months or less, using only the two NDVI spectral
bands of MODIS data was sufficient to detect change reliably.

Index Terms— Classification, feedforward neural net-
works, satellites, time series

1. INTRODUCTION

Automation of monitoring land cover change at regional or
global scales using hyper-temporal multi-spectral coarseres-
olution satellite data has been a highly desired, but often
elusive goal of environmental remote sensing [1]. Land cover
change often indicates land use change with major socio-
economic impacts, while the transformation of vegetation
cover (e.g. deforestation, agricultural expansion, urbanisa-
tion) have signicant impacts on hydrology, ecosystems and
climate [2, 3]. Digital change detection encompasses the
quantification of temporal phenomena from multi-date im-
agery that is most commonly acquired by satellite-based
multi-spectral sensors [4]. For regional applications, these
methods need to be sufficiently automated when processing
exceptionally large volumes of data [5]. As global datasets
become more accessible and computational resources become
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more affordable, such global or regional automated change
detection systems should become more attainable. Due to the
complex and non-parametric nature of land cover classication
and change detection, machine learning methods are widely
regarded as the most viable option for automated change
detection [5].

This paper presents a different approach towards achiev-
ing the goal of automated land cover change detection. The
method uses a supervised MLP that incorporates a sliding
window that capitalizes on the high temporal sample rate of
coarse resolution satellite data. This allows the observation
of seasonal land surface reflectance patterns which facilitates
distinguishing different land cover types and provides a sig-
nal for applying advanced time series analysis [6]. The Mul-
tilayer Perceptron (MLP) has been shown to be able to learn
the complex interdependecies of the multi-spectral time se-
ries and was thus used for land cover classification rather than
maximum likelihood (ML) detection [7].

The paper is organized as follows. Section 2 will present
the key ideas behind the MLP, including the use of the tem-
poral sliding window and short term Fast Fourier Transform.
Section 3 presents the results for the automated change detec-
tion on simulated land cover change. Section 4 presents the
conclusions.

2. CHANGE DETECTION USING A SUPERVISED
MLP AND A SLIDING WINDOW FFT

A supervised MLP was used for change detection and thus
the classifier requires training data. A training set must be
defined for each study area to ensure that the classifier cap-
tures local patterns. Study areas were selected where settle-
ments and natural vegetation occur in close proximity to en-
sure that the rainfall, soil type and local climate were similar
over both landcover types. The study areas were: 1) Koele-
mansrus (28.85E, 24.23S) - 17km south-west of Makopane
and 2) Seshego (29.40E,23.81S) -10km north-west of Polok-
wane. Training areas were selected using visual interpretation



Table 1. Number of pixels per land cover type, per study area for training, validation and testing sets.
Study Area Training Time Series Validation Time Series Simulated Change Time Series
Area1 - Natural 225 225 84
Area1 - Settlement 82 82 84
Area2 - Natural 42 43 42
Area2 - Settlement 162 162 42
Total - Natural 267 268 126
Total - Settlement 244 244 126

of SPOT5 high resolution images (2006) to ensure that none
of the time series experienced any land cover change during
the study period. The number of time series selected for each
class, per study area, is given in Table 1. These training sets
represent the two valid classes for the MLP in training mode.
The MLP also relies on independent (not included in training
phase) validation sets to verify the perceptron’s generalization
[8]. The separation between the training set and validation
set was done using a pseudorandom sequence to partition the
time series.

Since information on known land cover change is scarce
and land cover change is a rare event within a regional land-
scape [4], the land cover change was simulated, which made it
possible to control both the type, rate and timing of change in
order to evaluate the change detection methods. The type, rate
and timing of the land cover change are functions of anthro-
pogenic activities and environmental conditions, and could
be encompassed within a model where these parameters are
known. However, since examples of change are so poorly
documented and mapped, it is very hard to feasibly train a su-
pervised MLP on examples of change, or to model change by
introducing all permutations of the afore-mentioned parame-
ters.

Land cover change was simulated by concatenating the
time series for a pixel from a natural vegetation class (class 1)
to that of a pixel from a human settlement (often informal and
unplanned) (class 2). Control sets containing no change were
also created by concatenating a set of time series from a nat-
ural vegetation class (settlement class) to another set of time
series also from a natural vegetation class (settlement class ).
Hence there were four testing data subsets based on concate-
nating time series of different combination of time series:

• subset 1: natural vegetation time series (class 1) spliced
to settlement time series (class 2);

• subset 2: settlement time series (class 2) spliced to nat-
ural vegetation time series (class 1);

• subset 3: settlement time series (class 2) spliced to an-
other settlement time series (class 2);

• subset 4: natural vegetation time series (class 1) spliced
to another natural vegetation time series (class 1).

These four subsets were used to produce a confusion matrix
to test if the operational MLP can detect change reliably in
an automated fashion on subsets 1 and 2, while not falsely
detecting change for subsets 3 and 4. This particular splic-
ing method produced an abrupt change, which does not nec-
essarily represent the reality of human-induced change such
as settlement expansion, that may take several months to de-
velop. The notion of a blending period (linear blend over12
and24 months) from one land cover time series to another
was initially considered. The blending model does not reflect
all models of actual land cover change but it does illustrate
that the blending period does not affect the ability to correctly
detect change but merely delays the period before the MLP
stabilizes into the correct class.

The MLP was required to process time series data and
detect land cover change as a function of time. This requires
a temporal sliding window that operates on a subsequence of
the time series for the two NDVI spectral bands (Figure 1).
The sliding window has a lengthQ of 6, 12 and 18 months and
was moved at8-day increments through the time series. Since
the delay in change detection in the initial training periodwas
determined by the length of the windowQ, the effect of its
length on the accuracy of automated change detection was

Fig. 1. Temporal sliding window used to define a subse-
quence of the time series for classication and change detec-
tion.



Table 2. Classification accuracy of the iteratively trained MLP on the validation set. The table reports on the average classifi-
cation accuracy and standard deviation for each of the classes for temporal sliding windows of various lengths.

Area Study Area 1 : Koelemansrus (28.85E, 24.23S)
Sliding window length 6 months 12 months 18 months
Vegetation validation 96.76% 97.04% 97.73%

(2.35) (2.17) (1.96)
Settlement validation 88.24% 90.70% 91.18%

(5.28) (3.39) (3.15)
Overall validation 94.48% 95.35% 95.98%

Area Study Area 2 : Seshego (29.40E, 23.81S)
Sliding window 6 months 12 months 18 months
Vegetation validation 75.16% 81.98% 84.79%

(11.08) (6.74) (6.15)
Settlement validation 96.67% 97.22% 97.74%

(2.15) (2.14) (1.85)
Overall validation 92.16% 94.02% 95.02%

studied. Longer sliding windows spanning multiple months
were expected to compensate for the effects of seasonal cli-
mate variability, but at the cost of delayed change detection.

The Fast Fourier Transform (FFT) [9] was computed over
the Q-length time sequence to produce the frequency spec-
trum. The first20 components were the dominant compo-
nents in the spectrum (10 dominant components forQ =
6 months) and were extracted from the two NDVI spectral
bands to represent the feature vector inputs to the MLP. Note
that in this paper change detection was only performed on
a per pixel basis, and contextual information in relation to
neighboring time series was not included.

The MLP employed comprises an input layer, one hidden
layer and an output layer. The hidden and output layer both
used a tangent sigmoid activation function in each node. The
input layer accepts input vectors for classification, whilethe
output layer represents the likelihood that an input belongs to
a specific class. For example, in the two-class case presented
in this paper, the MLP output is in the range(-1; 1), where
1 represents100% certainty of the input belonging to class
1 (natural vegetation), while a−1 represents100% certainty
of class2 (settlement). An output value of0 indicates the
highest level of uncertainty of class membership and was thus
assigned as the decision threshold. The weights in the training
phase of the MLP were determined using a steepest descent
gradient optimization method, with gradients estimated using
backpropagation [8]. The validation set was used for initial
MLP architecture optimization by testing the generalization
error to identify overfitting of the network for each study area.
A moving average window length of3 was also applied to the
MLP outputs to smooth out all transitory oscillations in class
labels caused by higher uncertainty in the classification.

3. EXPERIMENTAL RESULTS

At a given timei the MLP is trained to recognize data from
the training set at timei in the time series, and will be used
to classify the data from the testing set at timei. Because
of the retraining at each time increment the adaptation of the
weights was fast and of low complexity, as there were only
small MLP weight changes over each 8 day increment.

The classification accuracy results on the validation sets
for sliding window sizes of 6, 12 and 18 months using the
NDVI spectral bands of MODIS are provided in Table 2. Each
entry in Table 2 gives the average classification accuracy for
each area, calculated over 10 independent repeated experi-
ments. The standard deviation for each scenario is given in
parentheses. An overall improvement in classification accu-
racy was observed when the sliding window lengthQ was
increased to18 months.

The outcome of the change detection simulations for both
study areas is summarised in the confusion matrix (Table 3).
The land cover change detection accuracy improves by al-
most5% when the length of the sliding windowQ was in-
creased. The drawback was that more time series acquistions
were needed for this improvement and thus a longer delay
was experienced in change detection. From all the results pre-
sented it is clear that change detection can be ensured when
using the 2 NDVI spectral bands of the MODIS sensor.

4. CONCLUSION

This study demonstrated that a MLP operating on a temporal
sliding window of MODIS time series data was able to detect
simulated land cover change in an automated fashion after
initial training. Experimental results indicated that theMLP
could detect change accurately at rates of higher than87.62%



Table 3. Confusion matrix representing the land cover change detection accuracy for the study areas for temporal sliding
windows of various lengths.

Area Study Area 1 : Koelemansrus (28.85E, 24.23S)
Sliding window length 6 months 12 months 18 months
Change detected 87.62% 90.84% 92.32%
(subset1 & 2)
No change detected 87.56% 90.78% 92.50%
(subset3 & 4)

Area Study Area 2 : Seshego (29.40E, 23.81S)
Sliding window length 6 months 12 months 18 months
Change detected 92.14% 96.91% 97.02%
(subset1 & 2)
No change detected 92.14% 96.91% 95.71%
(subset3 & 4)

for sliding window lengths of 6 months or longer (Table 3).
The temporal sliding window on which the iteratively trained
MLP operates has the advantage of continuously learning the
most recent spectral properties of land cover types, as time
progresses. The iteratively retrained MLP can be optimisedto
ensure it takes cognisance of short-term inter-annual climate
variability and adapts to longer-term trends in climate with-
out confusing any of these with land cover change, which has
often been a problem with other regional land cover change
studies [10]. The temporal sliding window approach can also
be applied in combination with a variety of other classifiers.

Like most other supervised machine learning methods, the
method proposed here is (i) dependent on periodic training
data for redefining the training sets over time and (ii) has to
be robust to land cover changes and other errors occurring
within these training sets [5]. The main operational challenge
will be the automatic generation of training data from the an-
cillary land cover data which is representative of the environ-
mental diversity and diverse land uses contained within such
an extensive area.
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