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Abstract—This work proposes a near-optimal hard output
neural network based iterative Maximum Likelihood Sequence
Estimation (MLSE) equalizer, based on earlier work by the
authors, able to equalize single carrier 4-QAM signals in un-
derwater acoustic channels with extremely long delay spreads.
The performance of the proposed equalizer is compared to a
suboptimal equalization technique, namely Decision Feedback
Equalization (DFE), via computer simulation for a number of
power delay profiles. Results show unparalleled performance at
a fraction of the computational cost of optimal, yet impractical,
equalization methods. The superior computational complexity of
the proposed equalizer is due to the high parallelism and high
level of neuron interconnection of its foundational neural network
structure.

I. INTRODUCTION

In recent years, much attention has been given to the
equalization of underwater acoustic signals with long delay
spreads. Due to the nature of the underwater acoustic channel
(UACQ), the inter-symbol interference (ISI) caused by multipath
may extend over hundreds of symbols for moderate to high
data rates, for single carrier systems. Also, the rapidly varying
nature of the UAC introduces Doppler shifts, resulting in a fast
varying CIR, complicating equalization even more [1].

Many equalization techniques for signals in the doubly
dispersive UAC have been proposed over the last two decades
[2]. Due to the high delay spread encountered in the UAC,
classic equalization algorithms such as the Viterbi (VA) [3], [4]
and Maximum A Posteriori Probability (MAP) [5] algorithms
are practically infeasible, as their computational complexities
are exponentially related to the number of interfering symbols,
rendering them computationally infeasible for UAC equaliza-
tion. Attention has therefore been drawn to developing compu-
tationally efficient equalization techniques at the cost of BER
performance. Various single carrier DFE based techniques
have been developed, where symbol-by-symbol decisions are
made and fed back to be used in the next decision phase
[6]. Although these techniques provide some performance
improvement, the decision-and-feedback process causes noise
enhancement, resulting in sub-optimal equalization.

As in the case of mobile wireless communication systems,
multi-carrier (MC) modulation techniques, such as orthogonal
frequency division multiplexing (OFDM) [7], have also been
proposed for use in the UAC. The rationale behind using multi-
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carrier techniques is to increase the symbol period in order
to alleviate the detrimental effects of ISI on the transmitted
signal, facilitating trivial equalization complexity. Even when
ISI cannot be eliminated completely, less ISI will ease the
effort of equalization in each subcarrier. However, the use of
MC signals in the UAC is not flawless. If the symbol interval is
increased, it necessitates a corresponding decrease in the car-
rier spacing in order to adhere to the data rate and bandwidth
conditions and restrictions. Decreased carrier spacing will
render the system more susceptible to UAC-inherent Doppler
shifts, resulting in inter-carrier interference (ICI) which will
inevitably lead to degraded system performance [2].

Evidently there are a number of challenges to overcome
in order to design an equalizer for a spectrally efficient
underwater communication system. In summary: For single
carrier systems, because there can be hundreds of interfering
symbols, the symbol period can be increased to reduce the ISI
span, leading to computationally efficient optimal equalization,
while reducing the data rate and hence the spectral efficiency
of the systems. Also, in MC systems, increasing the sym-
bol period requires a corresponding reduction in the carrier
spacing if the spectral efficiency is to be preserved, which
will result in ICI due to Doppler shifts. The efficient transfer
and detection of data in acoustic communication systems is
therefore a difficult task due to the doubly spread nature of
the UAC.

In this paper a near-optimal hard output Hopfield Neural
Network (HNN) [8] based iterative MLSE equalizer is pro-
posed to equalize single carrier 4-QAM modulated signals in a
highly spread UAC. The proposed equalizer has computational
complexity linear in the data block length and approximately
independent from the CIR length, whereas conventional opti-
mal equalizers have complexity linear in the data block length
but exponential in the CIR length. Due to the high level of
neuron interconnection and the parallelism of the single-layer
recurrent neural network that forms the basis of this equalizer,
it is able to effectively mitigate the effects of ISI caused
by hundreds of interfering symbols, with relatively small
computational cost. The performance of the proposed equalizer
is compared to that of a DFE, for different delay spread
profiles, and the results show that the proposed equalizer
greatly outperforms the DFE. The computational complexity
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of the proposed equalizer presented to emphasize its significant
computational complexity.

The BPSK version of the proposed equalizer! was first
proposed by the authors in [9] for the equalization of BPSK
signals in wireless communication systems with extremely
long delay spreads in mobile fading channels. It was shown
that the equalizer in [9] was able to equalize BPSK signals
with CIR lengths of 200 with near-optimality at a fraction
of the computational cost of an optimal equalizer. This is a
significant result. The near-constant computational complexity
of the equalizer proposed in this paper is only twice that of
the BPSK version proposed by the authors in [9].

This paper is organized as follows. The neural network
based hard output iterative MLSE equalizer is presented in
Section 2 while an optimization technique is presented in
Section 3. Section 4 presents the computational complexity
proposed equalizer. In Section 6 the performance of the pro-
posed equalizer is evaluated for different power delay profiles
and compared to the performance of the DFE. Conclusions
are drawn in Section 7.

II. THE ITERATIVE MLSE EQUALIZER
To find the most probable transmitted sequence in a single
carrier wireless communication systems, the cost function
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must be minimized [10]. Here N is the data block length, L
is the CIR length, 7, denotes the kth received symbol, sj_;
denotes the (k — j)th most likely transmitted symbol, h; is
the jth coefficient of the estimated CIR, assumed to be time-
invariant for a given data block, and nj is the kth Gaussian
noise sample N(0,02). The Viterbi MLSE equalizer [10] is
able to minimize (1) in order to produce the maximum likeli-
hood sequence of transmitted symbols s = {s1, s2,- -+ , sy},
where 7 denotes the transpose operation. However, the com-
putational complexity involved in solving this problem exactly,
scales linearly with an increase in N and exponentially with
an increase in L, therefore rendering the problem infeasible
for systems with large L.

Any algorithm used to perform MLSE equalization in a sin-
gle carrier wireless communication systems must therefore be
able to minimize (1). The proposed iterative MLSE equalizer
minimizes (1) to find the most probable transmitted sequence
with near-optimality at very low computational cost.

A. System Model

By expanding (1) and ignoring the exponential terms > (1)
can be written in the form

1
L= —isTTs—ITs, 2)

The proposed 4-QAM equalizer is an extension of the one proposed in
[9].

2This step is valid, since the exponetial terms only provide a positive offset
to the cost of (1).

where I is a column vector with N elements, T is a square
correlation matrix of size N, and T denotes the Hermitian
transpose. The cost function in (2) is in the exact form of
the HNN proposed in [8], that was demonstrated to solve
various optimization problems, among which were the well-
know traveling salesperson problem (TSP) and analog-to-
digital (A/D) conversion. Therefore, by expanding (1) and
mapping it to (2), the problem of MLSE equalization can
be solved with the use of the HNN, given T and I in (2).
Systematic derivationsof T and I are presented in the next
section.

For systems employing M-QAM modulation schemes, (2)
needs some treatment to account for the complex terms.
Therefore the variables in (2) must be adapted as follows:

u = [uf[ug],

s = [s7}s1],

1= 1|1,
rxlx
a [ Xe X }’

where s; and s, denote the respective real and complex
sequence estimate component vectors, X; and X, are sym-
metrics square matrices of size N, and I; and I, are vectors
with N elements.

1) Systematic derivation: When (1) is expanded, for CIR
lengths from L = 2 to L = 6, and mapped to (2) for each case,
a pattern emerges in X;, X,, I;, and I;. By following the logic
of the pattern, X;, Xg, I;, and I, can be determined for the
general case. For an M-QAM (M-arry Quadrature Amplitude
Modulation) system X; is given by

0 o o, 0
o, 0 o,
: o 0 .. Do,
X; = — S , P )
o, , . oy :
' o, 0 «a,
L 0 Qp Q, _

where o = {1, s, -+ ,ar_1} is determined by

L—k—1 L—k—1
Ak = Z hi jhijr + Z hq,jhq,j+ks 4)

=0 =0

where £ =1,2,3,...,L —1 and ¢ and j denote the real and
complex components of the CIR coefficients. Similarly X is
given by
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where v = {v1,72, - ,yL—1} is determined by
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where again £k = 1,2,3,...,L — 1 and ¢ and j denote the
real and complex components of the CIR coefficients. Also,
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provided that the L — 1 tail symbols added to both sides of
the data block are equal to 0 + ;0.

2) Training: Since the proposed iterative MLSE equalizer
is based on a neural network, it has to be trained. The neural
network is trained for every received data block, by using
the coefficients of the the estimated CIR. Therefore, X;, X,
I;, and I, fully described the structure of the equalizer for
each received data block. X; and X, describe the connection
weights between the neurons, and I; and I, represent the bias
input of the neural network.

B. Iterative MLSE Equalization

To minimize (2) in order to obtain the MLSE estimate of
the transmitted symbols s, (2) is differentiated with respect to
u. This leads to the dynamic system

du

dt

where 7 is an arbitrary constant and u = {uy, ua, - - -
which can be iterated to find the MLSE estimated s.

It was shown in [8] that (2) is a Lyapunov function where
B — oo for the dynamic system in (9). By definition of a
Lyapunov function, this system is guaranteed to converge to
a steady state u so that s will minimize the cost function in
(2). s is therefore the MLSE sequence estimate.

An iterative solution for (9) is given by

u™ b = s 4 1
s = (BN ()

:—;+Ts+1, ©)

7uN}T9

(10)

where n indicates the iteration number and g(Buy), where
the gain § = 1, is a bipolar decision function. The system is
iterated until the system energy converges to a minimum, after
which the MLSE estimates are presented in s.

ITII. ANNEALING
( is updated for each iteration cycle according to

2(n— Z+1)

B =5 : (11)

shown in Fig. 1, where Z indicates the number of iterations
and n denoted the iteration number. This causes (3 to start at a
near-zero value and to exponentially converge to 1 with each
iteration. This process is called simulated annealing, and it
enables the system to escape less optimal local minima in the
solution space. The effect of annealing on the neurons during
the iteration cycle is shown in Fig. 2, with the slope of the
sigmoid function increasing with each iteration. From Fig. 3
it is clear that the use of annealing on the neurons minimizes
the energy of the system more effectively, therefore achieving
better performance.

L) é ; : § : : .

0.2 : : f : : .

N i i B N
2 4 i 3 10 12 14 16 18 20
Iteration number

Fig. 1. [B-updates for Z =1 to Z = 20.
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Fig. 2. Simulated annealing updates for Z = 1 to Z = 20.
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Fig. 3. Energy minimization for Z =1 to Z = 20.

IV. COMPUTATIONAL COMPLEXITY

For an M-QAM system with with M > 2, a block of
N transmitted symbols s = {s1,$2,---,$n}, a CIR length
L, and Z iterations,? the computational complexity* of the
proposed MLSE equalizer is 4Z N (N +3)+8L(N +1)+2L?.
> The Viterbi MLSE equalizer has computational complexity
o« NM©=1)  Fig. 4 shows the computational complexity of
the proposed equalizer for L = 2 to L = 1000 for a data block
length of N = 1200.

37 = 20 iterations are used per data block

4The computational complexity of an M-QAM iterative equalizer is inde-
pendent of the number of symbols in the modulation alphabet for M > 2.

SFor N >> L the effect of L becomes negligible.

Murnber of computationg

1000

I 1 I i | 1 1 i
100 200 300 400 500 BOO 700 a0 00
CIR. length (L)

Fig. 4. Computational complexity for L = 2 to L = 1000.

For communication systems with large delay spreads, as
in the case of UACs, the computational complexity of the
proposed equalizer is almost independent of the CIR length
L. This allows the proposed MLSE equalizer to equalize
ISI-corrupted signals in systems with hundreds of interfering
symbols near-optimally with relative ease. The significant
computational complexity of the proposed equalizer is due to
the high parallelism of its underlying neural network structure
and the high level of interconnection of the neurons.

V. SIMULATION

The proposed iterative MLSE equalizer was evaluated for
different modulation schemes and for different channel delay
profiles. All simulation where carried out for a carrier fre-
quency f. = 15 kHz with symbol interval of Ts = 50 us, for
various CIR lengths from L = 50 to L = 1000, corresponding
to delay spreads of 2.5 ms to 50 ms, with a data block length
of N = 1200 symbols and a Doppler frequency of Fp =5
Hz.% L —1 known tail symbols were appended and prepended
to the data block. Also, to simulate the fading effect of each
tap, the Rayleigh fading simulator proposed in [11] was used
to generate uncorrelated fading vectors. Perfect channel state
information (CSI) was assumed, by using the center value of
each fading vector to construct the CIR for each data block.

A. Power Delay Profiles

Three different power dealy profiles were used to charac-
terize the channel delay spread in the UAC. The nominal CIR
weights’ were chosen as h = {HhTOH, ﬁ, e hHLh‘Hl} such that
hT™h = 1, where L is the CIR length, and h is a column

vector of length L. After normalization, the coefficients of h

6 Although the simulations were performed in baseband, the settings of fe,
Ts, and Fp were used to generate realistic Rayleigh fading vectors.
"The coefficients of h are determined by the power delay profile.
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were used to scale the respective Rayleigh fading vectors used
to simulate the multipath effect, in order to produce realistic
UAC simulation results. The power delay profile models are
described in turn below:

1) Exponential decay: The exponential decaying power
delay profile coefficients are determined by

‘7k7maz) (12)

where £ =0,1,2, ..., L — 1, Tjnae is the channel delay spread
duration, and 7, is the time constant of the profile, determined
by

—Trmax

zn(lop‘ﬁfﬁ”’) ’

where Py, is the relative power drop between ¢ = 0 and
t = Tmaz, With a value of —30 dB. The normalized exponential
power delay profile coefficients are shown in Fig. 5 for L =
50.
2) Linear decay: The linear decaying power delay profile
coefficients are determined by
L—k
hi, = -
where k = 0,1, 2, ..., L—1. The normalized linear power delay
profile is shown in Fig. 6 for L = 50.
3) Random decay: The random decaying power delay
profile coefficients are determined by

13)

Te =

(14)

hi = Random(), (15)

where £ = 0,1,2,...,L — 1 and the function Random()
generates uniformly distributed random numbers such that hy
€ [0;1]. Fig. 7 shows a normalized random power delay profile
for L = 50.
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Fig. 5. Exponential power delay profile for L = 50.
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Fig. 6. Linear power delay profile for L = 50.
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Fig. 7. Random power delay profile for L = 50.

B. Numerical Results

The proposed iterative MLSE equalizer was simulated for
the exponential-, random- , and linear channel delay profiles,
for 4-QAM modulation, in a frequency-selective Rayleigh
fading environment. Frequency hopping was employed, by
generating unique uncorrelated fading vectors for each fading
channel, for each transmitted data block, to improve sys-
tem performance. CIR lengths of L = 50 to L = 1000,
corresponding to channel delays of 2.5 ms to 50 ms, were
evaluated. Fig. 8 to Fig. 12 show the 4-QAM performance
of the proposed iterative MLSE equalizer. It is clear that
the proposed MLSE equalizer effectively equalizes the ISI-
corrupted received symbols for systems with extremely long
CIR lengths, recombining the signal energy spread by the
UAC among the channels. The performance of the equalizer
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is lowest for the exponential decaying power delay profile,
since most of the signal energy is concentrated in the first
few taps of the CIR. However, when the linear- and random
power delay profiles are considered, the performance improves
significantly, indicating that the proposed equalizer performs
well when the signal energy is spread among the CIR taps.

Fig. 13 to Fig. 15 show the performance of the proposed
equalizer for CIR lengths from L = 50 to L = 1000 for
the exponential-, random-, and linear power delay profiles,
compared to the performance of a non-adaptive DFE in each
case. The proposed iterative MLSE equalizer clearly outper-
forms the DFE, as it is able to effectively recombine the ISI-
corrupted received symbols, producing near-optimal estimates
of the original transmitted symbols.

These results confirm that the proposed iterative MLSE
equalizer is able to equalize signals in systems where the trans-
mitted signal is corrupted by hundreds of interfering symbols,
a phenomenon that is prevalent in underwater communication
systems. The error floors observed in the simulation results are
due to inaccurate CIR estimates caused by the time varying
nature of the UAC during the transmission of one data block,
becoming more severe as the Doppler frequency increases.

VI. CONCLUSION

In this work a low complexity neural network based iterative
MLSE equalizer was proposed, with computational complexity
linear in the data block length and approximately independent
of the CIR length. This approximated independence enables
the it to equalize signals in UACs with hundreds of multipath
elements, as the dominant term in the computational complex-
ity of conventional equalization algorithms is the CIR length
L. The proposed MLSE equalizer can be extended to enable
the equalization of any M-QAM signal constellation, without
an increase in the computational complexity.® Conventional
equalizers rely heavily on linearization techniques to alleviate
the computational strain, but the high parallelism of the
underlying neural network structure of the proposed equalizer,
together with the high level of interconnectivity of its neurons,
enable nonlinear equalization at a fraction of the computational
complexity of conventional optimal equalizers. The proposed
iterative MLSE equalizer is therefore a major step forward in
the field of single carrier MLSE equalization in highly spread
UAC:s.
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