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Abstract: This work proposes a neural network based 
iterative Maximum Likelihood Sequence Estimation 
(MLSE) equalizer, able to equalize signals in M-arry 
Quadrature Amplitude Modulation (M-QAM) 
modulated systems in a mobile fading environment with 
extremely long channels. Its computational complexity is 
linear in the data block length and approximately 
independent of the channel memory length, whereas 
conventional equalization algorithms have compu-
tational complexity linear in the data block length but 
exponential in the channel memory length. Its 
performance is compared to the Viterbi MLSE equalizer 
for short channels and it is shown that the proposed 
equalizer has the ability to equalize M-QAM signals in 
systems with hundreds of memory elements, achieving 
matched filter bound performance with perfect channel 
state information (CSI) knowledge in uncoded systems. 
The proposed equalizer is evaluated in a frequency 
selective Rayleigh fading environment. 
 
Index Terms: Equalization, computational complexity, 
neural network, MLSE. 
 
 
I. INTRODUCTION 
 

Traditional MLSE equalizers used to mitigate the 
effect of multipath in single-carrier communication 
systems, based on the Viterbi Algorithm (VA) [1], [2] 
and the Maximum A Posteriori Probability (MAP) 
algorithm [3], have computational complexities linear 
in the data block length and exponential in the channel 
memory length. When these equalizers are used in 
systems that have large delay spreads, their 
computational complexities become extremely high, 
rendering them unfeasible in practical systems. The 
VA and MAP algorithms can therefore not be applied 
in systems with moderate to high bandwidth, due to 
the exponential relationship between the channel delay 
spread and the computational complexity.  

It is often necessary to revert to suboptimal 
equalization techniques in order to alleviate the 
computational strain of these optimal algorithms. 
Decision feedback equalization (DFE) techniques are 
often used, where a Minimum Mean Square Error 
(MMSE) feed-forward filter is used in conjunction 
with a feedback filter to perform symbol-by-symbol 
detection. [5] proposes a Delayed Decision Feedback 
Equalization (DDFE) [4] technique where the first few 
taps are equalized using a reduced state trellis, while a 
feedback loop is used to mitigate the inter-symbol 
interference (ISI) caused by the rest of the taps in the 

CIR. DFE techniques are suboptimal, since noise 
enhancement limits their performance.  

Two popular techniques often used to overcome 
the ISI introduced by long fading channels are 
Orthogonal Frequency Division Multiplexing 
(OFDM) [6] and Turbo Equalization [7]. By 
exploiting the orthogonality properties of the Fourier 
matrix, OFDM modulation can almost completely 
eliminate the effect of multipath on the system 
performance while maintaining trivial per symbol 
complexity. OFDM, however, is very susceptible to 
Doppler shift, suffers from a large peak-to-average 
power ratio (PAPR), and requires large overhead 
when the channel delay spread is very long compared 
to the symbol interval. The process of Turbo 
Equalization uses an iterative equalizer/decoder 
structure, comprised of a sub-optimal low complexity 
soft output MMSE equalizer and a soft-in-soft-out 
MAP decoder. By iterating the system a number of 
times, the bit-error rate (BER) per- formance can be 
increased greatly, but at the cost of computational 
complexity and a substantial overhead due to error-
correction coding.  

In this paper a neural network based iterative M-
QAM MLSE equalizer is proposed with performance 
comparable to that of the VA and MAP algorithms, 
but with computational complexity linear in the data 
block length N and almost independent of the channel 
length L. Results show that the proposed equalizer 
can equalize 4-QAM signals is systems with channel 
lengths of L = 200 near-optimally. It also is shown 
that a signal transmitted by a system employing 16-
QAM modulation, with a channel length of L = 400, 
can be equalized by the proposed equalizer with 
relative ease, while for Viterbi MLSE the trellis 
would have required some 16399 states per transmitted 
symbol in the trellis.  

The paper is organized as follows. The iterative 
MLSE equalizer is presented in Section 2 while the 
the multilevel neuron is discussed in section 3, 
followed by a discussion on optimization techniques 
in Section 4. Section 5 presents a computational 
complexity analysis of the proposed equalizer and the 
Viterbi MLSE equalizer, and comparisons are drawn. 
In Section 6 the uncoded BER performance of the 
proposed iterative MLSE equalizer is presented for 4-
QAM and 16-QAM for different channel lengths in 
frequency selective Rayleigh fading channels. 
Conclusions are drawn in Section 7. 
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II. THE ITERATIVE MLSE EQUALIZER 
 

For systems employing single-carrier modulation 
in a multipath fading environment, the received 
symbols are described by [2], [8] 
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where sk denotes the kth complex symbol in the 
transmitted sequence of N symbols chosen from an 
alphabet D containing M complex symbols. rk is the 
kth received symbol, nk is the kth Gaussian noise 
sample, and hj is the jth coefficient of the estimated 
CIR [5].  

To find the most likely transmitted sequence 
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needs to be minimized. The Viterbi MLSE equalizer is 
able to solve this problem exactly, with computational 
complexity linear in N and exponential in L [8]. The 
proposed iterative equalizer also minimizes the cost 
function in (2), with computational complexity linear 
in N but almost independent of L, thus enabling it to 
perform near-optimal sequence estimation in systems 
with extremely long CIR lengths with very low 
computational cost. 

 
A.  System Model 

 
In [9] the authors stated that (2) can be written as 
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where I is a column vector with N elements, T is a 
square matrix with N rows and N columns, and H 
implies the Hermitian transpose. The derivation of the 
iterative BPSK equalizer proposed in [9] was trivial 
and (3) could be used as is. When a system employing 
a complex modulation alphabet is considered, 
however, (3) needs some treatment to account for the 
complex terms in the received sequence, the estimated 
CIR and the most likely transmitted sequence. 
Therefore, for M-QAM, (3) is rewritten as 
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where si and sq denote the estimated in-phase and 
quadrature sequence vectors respectively, Xi and Xq 
are square matrices of size N, symmetric and banded 
with the width of the band of non-zero elements 
determined by L, and Ii and Iq are vectors with N 
elements. Here T denotes the transpose operation. It is 

clear that (4) is in the form of (3). By expanding (2) 
and mapping the result to (4), a generalized model 
can for (4) be derived. Xi is a function of � = { �1, �2, 
…, �L-1 }, determined by  
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with k = 1, 2, 3,…, L - 1 and i and j denoting the real 
and complex components of the CIR coefficients 
respectively.  Similarly  Xq  is  a  function  of  � = { 
�1, �2, … , �L-1} determined by 
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where again k = 1, 2, 3,…, L - 1 and i and j denote the 
real and complex components of the CIR coefficients. 
Ii and Iq are functions of the observations  r = {r1, r2, 
…, rN+K-1}T, � and �.  

For a single-carrier system with a data block of 
length N and CIR of length L, with the data block 
initiated and terminated by L - 1 known tail symbols,3  
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3  The tail symbols are equal to 0.7071 + j0.7071. 
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and 
 
 
 
 
 
 
 

          ,       (10) 
 
 
 
 
 
 
 
 
where � = 0.7071 and � = { �1 , �2, …., �N } is 
determined by 
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and  � = { � 1 , � 2, …., � N } is determined by 
 

jq

L

j
kjiji

L

j
kjqk hrhr ,

1

0
,,

1

0
, ��

−

=
+

−

=
+ +=ω ,        (12) 

 
where k = 1, 2, 3, …, N with i and q again denoting 
the real and complex components of the respective 
vectors. 
 
B.  Iterative MLSE Equalization 
 
It was shown in [10] that (3) is a Lyapunov function in 
the high gain limit, where the neuron threshold 
function approaches a sgn-function, for the dynamic 
system given by 
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where � is an arbitrary constant and u = { u 1 , u 2, …., 
u N } . Starting from a zero initial state, the system will 
converge to a steady state denoted u* so that s*, a 
function of u*, will minimize the cost function E in 
(3). s* is therefore the MLSE sequence estimate. 

An iterative solution for (13) is given by 
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where n indicates the iteration number and g(�uk), 
where the gain � = 1, is the decision function. After a 
few iterations the source symbol estimates are read 
from s. For the proposed two dimensional M-QAM  
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III. MULTILEVEL NEURON 
 

The BPSK equalizer proposed in [9] uses a 
bipolar neuron to estimate the transmitted symbols. 
For M-QAM modulation, however, there are multiple 
signal levels per dimension for M > 2. Therefore a 
neuron with multiple decision levels has to be used. A 
multilevel neuron is realized by adding multiple 
bipolar sigmoid functions, each shifted by a certain 
amount. The multilevel neuron used for the iterative 
16-QAM equalizer is given by 
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where � is a scaling factor used for optimization, and 
	 is the value by which the neurons are shifted, 
determined by  
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Fig. 1 shows the multilevel neuron described by (15) 
for � = 1 and � = 15. 
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Fig. 1 – The multilevel neuron for Z = 1 to Z = 20. 

 

IV. OPTIMIZATION 
 

As the system iterates, � is updated systematically 
according to the exponential function  

Z
Zn )1(2

5
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where Z denotes the number of iterations and n 
denotes the iteration number, to ensure that the 
system converges to a near-optimal local minimum in 
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the solution space. This causes � to start at a near-zero 
value and to exponentially converge to 1 with each 
iteration. This process is called simulated annealing 
[11]. The effect of annealing on the neurons during the 
iteration cycle is shown in Fig. 1, with the slope of the 
multilevel neuron increasing as � is updated with each 
iteration. Simulated annealing, together with 
asynchronous neuron updates, ensure near-optimal 
sequence estimation. These techniques allow the 
system to escape less optimal local minima in the 
solution space, leading to increased system 
performance. 

 
V. COMPUTATIONAL COMPLEXITY 

 
It is assumed that a block of N transmitted symbols s = 
{s1, s2, …, sN}T is subjected to ISI in a multipath 
fading channel with a CIR length of L and is equalized 
by the proposed equalizer. The equalizer requires Z 
iterations.4 For a M-QAM modulation alphabet,5 the 
computational complexity of the proposed MLSE 
equalizer is 4ZN(N + 3) + 8L(N+1) + 2L2.6  The 
Viterbi MLSE equalizer has computational complexity 
proportional to NM(L-1). Fig. 2 shows the com-
putational complexity of the proposed equalizer and a 
16-QAM Viterbi MLSE equalizer for L = 2 to L = 6 
for a data block length of N = 200. Also, Fig. 3 shows 
the computational complexity of the proposed 
equalizer for L = 2 to L = 1000 for a data block length 
of N = 1000.  
 

2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x 10
6

CIR length (L)

N
um

be
r 

of
 c

om
pu

ta
tio

ns

 

 
Iterative MLSE (16−QAM)
Viterbi MLSE (16−QAM)

 
Fig. 2 – Complexity comparison for L = 2 to L = 6. 

 
 

For communication systems with large delay 
spreads, and therefore with large L, it is clear that the 
computational complexity of the proposed equalizer is 

                                                 
4  Z = 20 iterations are used. 
5  The complexity is independent of the modulation alphabet 
size for any M-QAM equalizer realized with this model, for 
M > 2. For M = 2 (BPSK) the complexity is halved. 
6  For N >> L the contribution of L becomes negligible.  
 

almost independent of the CIR length L, therefore 
enabling it to equalize signals in systems with 
extremely long memory seamlessly, while offering 
near-optimal performance. The computational 
significance of the proposed equalizer is due to the 
high parallelism of its underlying neural network 
structure [10]. 
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to L = 1000. 
 

 
VI.  NUMRERICAL RESULTS 

 
The proposed equalizer was evaluated for uncoded 4-
QAM and 16-QAM modulated systems with 
extremely long memory.7 To simulate the fading 
effect on each tap, the Rayleigh fading simulator 
proposed in [12] was used to generate uncorrelated 
fading vectors. In all simulations the nominal CIR 
weights were chosen as such that hTh = 1, where h is 
a column vector of length L. Least Squares (LS) 
channel estimation was used to determine the CIR for 
the 4-QAM system, in order to include the effect of 
imperfect CSI in the simulation results. Perfect CSI 
was assumed for the 16-QAM system, by taking the 
average of each fading vector to construct the CIR 
vector for each data block, to demonstrate optimal 
reconstruction of transmitted symbols from the ISI-
corrupted received symbols. The equalizers were 
simulated at a carrier frequency fc = 900 MHz with a 
symbol period of Ts = 3.7 �s, a mobile speed of v = 3 
km/h and Z = 20 iterations, for various CIR lengths, 
for all scenarios.8  

The 4-QAM equalizer was simulated firstly for 
short CIR lengths and compared to the Viterbi MLSE 
equalizer’s performance. A data block length of N = 

                                                 
7 The only difference between the 4-QAM and 16-QAM 
equalizers is the decision function. 4-QAM uses a bipolar 
neuron; 16-QAM uses the multilevel neuron in (15).  
8 Although the simulations were performed in baseband, the 
settings of fc, Ts, and v were used to generate realistic 
Rayleigh fading vectors. 
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200 was used and the CIR lengths were chosen as L = 
2, L = 6, and L = 10, and 0.3N pilot symbols were 
used for channel estimation. Fig. 4 shows the BER 
graphs for these simulations.  
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Fig. 4 – 4-QAM performance for CIR lengths 2, 6 and 10  
for Rayleigh fading channels. 

 
 

It is clear that the Viterbi MLSE equalizer 
outperforms the 4-QAM equalizer for L = 6 and L = 
10. It was concluded in [9] that the Viterbi MLSE 
equalizer performs better in short channels than the 
iterative BPSK equalizer propose therein, of which the 
4-QAM equalizer is an extension. 

The 4-QAM equalizer was also evaluated for long 
CIR lengths L = 20, L = 50, L = 100, and  L = 200, for 
a data block of length  N = 1000 and 3L training 
symbols for channel estimation. Fig. 5 shows the 
performance of the 4-QAM equalizer. From Fig. 5 it is 
clear that the equalizer effectively equalizes the 
signals corrupted by hundreds of interfering symbols. 
Note that this would have required 4199 states per 
transmitted symbol for L = 200 had the Viterbi MLSE 
equalizer been used. 

The iterative 16-QAM MLSE equalizer was 
simulated for long channel lengths only, since its 
performance in short channels is not comparable to 
that of the Viterbi MLSE equalizer. The equalizer was 
evaluated for various CIR lengths from L = 50 to L = 
400, corresponding to delay spreads of 185 �s to 1.48 
ms, for a data block length of N = 500. The simulation 
results are shown in Fig. 6 and it is clear that proposed 
equalizer effectively equalizes the corrupted symbols.  

Fig. 7 shows the convergence of the estimated 
symbols in the 16-QAM equalizer for each iteration 
during equalization for L = 50 at Eb/N0= 14 dB. For 
extremely long channels, the iterative MLSE equalizer 
optimally recombines the energy of ISI-corrupted 
received signal, producing optimal 16-QAM 
performance without the use of error-correction 
coding. This is a significant result. Here the Viterbi 
MLSE equalizer would have required 16399 states per 
transmitted symbol for L = 400; clearly an impossible 
task. 
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and 200 for Rayleigh fading channels. 
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VII. CONCLUSION 
 

In this paper a neural network based low complexity 
iterative M-QAM MLSE equalizer was presented and 
evaluated by computer simulation in a frequency-
selective Rayleigh fading environment. Results 
showed that the performance of the proposed equalizer 
does not match that of the Viterbi MLSE in short 
channels, but it was clear that for both the 4-QAM and 
16-QAM versions, the equalizer was able to 
effectively equalize signals corrupted by hundreds of 
interfering symbols. The computational complexity 
analysis showed that the proposed M-QAM equalizer 
has superior complexity over conventional optimal 
equalizers, for single-carrier systems with moderate to 
high bandwidth, in that it has computational 
complexity linear in the data block length and almost 
independent of the channel memory length, due to the 
high parallelism of its underlying neural network 
structure. The approximate independence of the 
complexity from the channel memory is significant, as 
the CIR length is the dominant term in the complexity 
of all optimal equalizers. Also, the complexity of any 
M-QAM equalizer realized with the proposed model 
will be identical for M > 2, as the complexity is 
dependent only on the data block length and the 
number of dimensions, and only weakly dependent on 
the channel memory length. The proposed iterative M-
QAM MLSE equalizer can be applied to a number of 
wireless communication systems, among which 
underwater-, CDMA- , and multiple transmit antenna 
communication systems are being investigated. 
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