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Abstract—Structure from motion is a widely-used technique in
computer vision to perform 3D reconstruction. The 3D structure
is recovered by analysing the motion of an object, based on its
features, over time. The typical steps involved in SFM are feature
detection, feature matching and determining the motion and pose
of the cameras. For each step, a number of different algorithms
may be used.

Little research has however been done into the effectiveness of
the different feature detection algorithms such as Harris corner
detectors and feature descriptors such as SIFT (Scale Invariant
Feature Transform) and SURF (Speeded Up Robust Features)
given a set of input images. This paper implements state-of-the-
art feature detection algorithms and evaluates their results on a
given set of input images. The evaluation will be preformed by
comparing the calibration data, the fundamental matrix and the
rotation and translation errors extracted from each algorithm
with ground truth data.

I. INTRODUCTION

Structure from motion (SFM) is used to recover the 3D
structure and camera motion from a set of moving images.
SFM techniques are used in applications ranging from pho-
togrammetric survey [1] to the automatic reconstruction of
virtual reality models from video sequences [2] and for the
determination of camera motion for use in augmented reality.

SFM algorithms involves a number of different steps which
include feature detection, feature matching and estimation of
the camera motion and pose. For each step various algorithms
may be used. Feature detection is a low-level process which is
most often the starting point for computer vision applications.
Thus, the success of an algorithm depends substantially on
this initial step. Ideally for SFM, feature detectors need to be
robust and be able to locate the same features in successive
images irrespective of image rotation, scaling or changes in
illumination. The features detected are then matched across
images. This allows for the estimation of the calibration matrix
of the camera, the fundamental matrix and to predict the
camera motion. Therefore the accuracy and robustness of the
feature detector and matching algorithm, have a direct impact
on the accuracy of these estimations.

The algorithms implemented in this paper are Harris corner
detectors, the Kanade-Lucas-Tomasi (KLT) feature tracker,
SIFT and SURF. Evaluations have been conducted using
different feature detection and descriptor algorithms but no
evaluations have been done on how the performance of these
algorithms impact on SFM algorithms. A standard correlation

matching algorithm was used. Input images were captured
using a single Prosilica camera mounted on an autonomous
vehicle which was then driven around the CSIR campus. The
images were dewarped to remove radial distortion and then
used in the experiments.

The layout of the paper is as follows; The next section looks
at the background literature for feature detectors. In Section
III we discuss the different feature detection and descriptor
algorithms implemented for the experiments. Section IV de-
scribes the experiments conducted. In Section V we discuss
the results obtained and conclude in Section VI.

II. BACKGROUND

A comprehensive overview of the current methods for
the extraction of features can be found in [3]. Schmid [4]
accomplished a practical comparison of feature detectors using
the original implementations of the authors. The operators of
Forstner [5], Cottier [6], as well as Harris [7] were evaluated
quantitatively. It was found that the Harris operator was the
most stable of all. Hall [8] formalized a definition of saliency
under scale changes and evaluated the Harris, Lindeberg [9]
and Harris-Laplacian corner detectors as well.

Lowe [10] described image feature generation with SIFT.
Mikolajczyk [11] compared SIFT descriptors, steerable filters,
differential and moment invariants, complex filters and cross-
correlation for different types of interest points. He observed
that SIFT descriptors perform best and steerable filters come
second. Zuliani [12] proposed a unifying description and
mathematical comparison of the Harris, Noble, Kanade-Lucas-
Tomasi(KLT) and Kenney point detectors.

In [13] the performance of feature detectors and descriptors
for images of 3D objects viewed under different viewpoints,
lighting and scaling conditions were evaluated on a large
database. The detectors evaluated were the Harris detector,
Hessian detector and difference of Gaussian filters. The de-
scriptors used were SIFT, PCA SIFT, steerable filters and
shape context descriptors. They found the best overall choice
was using an affine-rectified detector followed by SIFT or a
shape-context descriptor. These detectors and descriptors were
the best when tested for robustness to changes in viewpoint,
change in lighting and change in scale. However, the selection
of an optimal procedure remains difficult, since the results
substantially depend on the respective implementation.



III. FEATURE DETECTORS AND DESCRIPTORS

A feature is used to denote a piece of information which is
relevant for solving the computational task related to a certain
application. It can refer to specific structures in the image
itself, ranging from simple structures such as points or edges
to more complex structures such as objects. Some detection
algorithms such as SIFT also use a feature descriptor which
is used to uniquely describes a feature in an image. This aids
in the matching process as it helps to reduce ambiguities.

A. Harris Corner Detector

Corner detection was originally proposed by [14]. The
algorithm tests each pixel in the image to see if a corner is
present, by considering how similar a patch centered on the
pixel is to nearby, largely overlapping patches. The similarity
is measured by taking the sum of squared differences (SSD)
between the two patches. A lower number indicates more
similarity. The corner strength is defined as the smallest SSD
between the patch and its neighbors (horizontal, vertical and
on the two diagonals). If this number is local maximum , then
a feature of interest is present. As pointed out by Moravec,
one of the main problems with this operator is that it is not
isotropic i.e. if an edge is present that is not in the direction
of the neighbours, then it will not be detected as an interest
point. Harris and Stephens [7] improved upon Moravec’s
corner detection algorithm by considering the differential of
the corner score with respect to direction directly instead of
using shifted patches.

B. SIFT

SIFT was first described by [10]. It is used to detect and
describe features in images. The SIFT features are local and
based on the appearance of the object at particular interest
points and are invariant to image scale and rotation. They
are also robust to changes in illumination, noise and minor
changes in viewpoint. The steps involved in SIFT are:

• Scale-space extrema detection: Interest or keypoints are
detected in this step.

• Keypoint Localization: Scale-space extrema detection
produces too many keypoint candidates, some of which
are unstable. A detailed fit to the nearby data for accurate
location, scale, and ratio of principal curvatures is done.
This information allows points to be rejected that have
low contrast (and are therefore sensitive to noise) or are
poorly localized along an edge.

• Orientation Assignment: Each keypoint is assigned one
or more orientations based on local image gradient di-
rections. This is the key step in achieving invariance to
rotation as the keypoint descriptor can be represented rel-
ative to this orientation and therefore achieve invariance
to image rotation.

• Keypoint Descriptor: This step creates a histogram of
local oriented gradients around the interest point and
stores the bins in a 128-dimensional vector to compute
highly distinctive descriptors for the keypoints.

C. SURF

SURF is a scale and rotation invariant interest point detector
and descriptor [15]. It is inspired by the SIFT descriptor. The
standard version of SURF is faster than SIFT and claimed
by its authors to be more robust against different image
transformations than SIFT.

First, interest points are selected at distinctive locations in
the image, such as blobs and T-junctions. Next, the neigh-
bourhood of every interest point is represented by a feature
vector. This descriptor has to be distinctive and, at the same
time, robust to noise, detection errors, and geometric and
photometric deformations. Finally, the descriptor vectors are
matched between different images. The matching is often
based on a distance between the vectors, e.g. the Mahalanobis
or Euclidean distance.

The descriptor describes a distribution of Haar-wavelet
responses within the interest point neighbourhood. Integral
images are used here for speed gains and only 64 dimensions
are used, reducing the time for feature computation and
matching, and increasing simultaneously the robustness.

D. Kanade-Lucas-Tomasi

KLT feature tracker, which is sometimes referred to as
the Kanade-Tomasi corner detector, is based on the early
work of Lucas and Kanade [16] and was later developed
fully by Tomasi and Kanade [17]. Here good features are
located by examining the minimum eigenvalue of each 2 by
2 gradient matrix, and features are tracked using a Newton-
Raphson method of minimizing the difference between the
two windows. Multiresolution tracking allows for relatively
large displacements between images. The corner detector is
strongly based on the Harris corner detector. The authors show
that for image patches undergoing affine transformations, the
minimum of the two magnitudes of eigenvalues is a better
measure of corner strength than the function suggested by
Harris.

IV. EXPERIMENTS

The implemented feature detection algorithms were applied
to a set of input images (1152x864 resolution) obtained from
a Prosilica camera mounted on an autonomous vehicle which
was driven through a portion of the CSIR. Figure 1 is an
example of an input image used in our experiments. The
images obtained were dewarped to remove radial distortion
around the edges. This step requires that the camera be accu-
rately calibrated. The calibration matrix contains the intrinsic
parameters of the camera such as the focal length, image
format and principal point.

A standard correlation matching algorithm was then applied.
MLESAC [18] was the used to remove outliers and find
the maximum likelihood to estimate the fundamental matrix.
This was then followed by a non-linear refinement step.
The fundamental matrix is a 3x3 matrix which expresses
the relationship between any two images of the same scene
that restricts where the projection of points from the scene
can occur in both images. Using the fundamental matrices



Fig. 1. An example of an input image

Fig. 2. The vehicle odometry fused with the GPS data to produce the ground
truth odometry

extracted from each algorithm we calculated the reprojection
error generated by each feature detector. The reprojection error
is the geometric error related to the image distance between a
projected point (using the data extracted from the algorithms)
and a measured one (ground truth data).

The autonomous vehicle used to capture the images has
built-in odometry. To ensure the accuracy of this data, a GPS
was also placed on the vehicle. This GPS data was then
fused with the odometry from the vehicle to obtain a fairly
accurate plot of the path taken by the vehicle. The rotation
and translation vectors were extracted from this data and
used as rotation and translation ground truth. These were then
compared against the results extracted from each algorithm.

Figure 2 displays the ground truth odometry of the path
taken by the autonomous vehicle.

Fig. 3. An input image with detected features and matches

TABLE I
AVERAGE TRANSLATION ERROR

Feature Detector Avg. Translation Error X Avg. Translation Error Y
Harris Corner Detector 0.848 0.1942

KLT Tracker 0.3985 0.04835
SIFT 0.3786 0.4073
SURF 0.7787 0.545

V. RESULTS

Each algorithm implemented was run on the same set of
input images. Figure 3 depicts an input image with the features
detected indicated in green and those which have been matched
to features in a previous image are highlighted in light blue.

A. Experiment 1

The rotation and translation vectors for each image were
extracted. The euclidean distance was taken between the
ground truth translation and rotation data and those extracted
from each algorithm after all the data was normalised. The
results were then averaged over the number of input images.
The results for the translation errors are displayed in Table I
and in Table II for rotational errors.

SIFT and the KLT tracker have the lowest errors for both
translation and rotation. This indicates that for this set of
inputs, these two detectors are more accurate and robust in
detecting features in each image than SURF and Harris corner
detectors i.e they were able to track the camera motion more
accurately.

B. Experiment 2

The fundamental matrix estimated by each algorithm was
also inspected. Traditionally the accuracy of the fundamental

TABLE II
AVERAGE ROTATION ERROR

Feature Detector Avg.Rotation Error X Avg.Rotation Error Y
Harris Corner Detector 0.815 0.9854

KLT Tracker 0.8192 0.0119
SIFT 0.5949 0.2230
SURF 1.5257 1.2398



TABLE III
REPROJECTION ERROR FOR EACH DETECTOR

Feature Detector Reprojection Error
Harris Corner Detector 7.89

KLT Tracker 7.21
SIFT 6.923
SURF 9.134

TABLE IV
AVERAGE EPIPOLE DISTANCE

Feature Detector Epipole Distance
Harris Corner Detector 10.3232

KLT Tracker 9.6872
SIFT 9.0372
SURF 15.895

matrix was assessed by checking how well the parameters fit
the observed data, but as pointed out in [19] this is the wrong
criterion as the aim is to find the set of parameters that best fit
the unknown true data. The parameters of the fundamental ma-
trix themselves are not of primary importance, rather it is the
structure of the corresponding epipolar geometry. Therefore it
makes little sense to compare two solutions by directly com-
paring the difference in their fundamental matrices. Thus, we
compare the differences in the associated epipolar geometry
weighted by the density of the given matching points. This is
done using the estimated fundamental matrix to calculate the
reprojection error. The results are displayed in Table III.

SIFT has the lowest reprojection error. Hence, the funda-
mental matrix estimated by SIFT is closest to the ground truth.

We also used the fundamental matrix to calculate the
average distance in pixels from the true point in each image
to that yielded by the estimate of the fundamental matrix.

Here the Harris corner detector, KLT and SIFT all perform
relatively well. SURF descriptor has the worst performance in
both experiments involving the fundamental matrix indicating
that the fundamental matrix estimated by SURF is far from
the ground truth.

VI. CONCLUSION

The set of input images used in these experiments were
captured in an outdoor environment during the day with
changes in illumination and speed of the vehicle. Using this
specific dataset we have shown that SIFT performs better
than Harris corner detectors, SURF and the KLT tracker.
It’s translation and rotation errors were the lowest, indicating
that it was able to successfully locate the same features in
consecutive images and thus fairly accurately estimating the
camera motion. The fundamental matrix estimated by the SIFT
algorithm was also closest to the ground truth.
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