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Abstract—Global Positioning Systems (GPS) provide an effec-
tive means of outdoor localisation. Unfortunately they are subject
to a variety of errors, particularly in cluttered environments
where GPS signal is not always available. Whilst GPS positional
information includes measures of signal quality, these can not
always be trusted, particularly just after a lost positional fix is
regained. This paper presents the use of an Extended Kalman Fil-
ter to fuse GPS and odometric measurements, in order to improve
vehicle positional and heading estimates. An odometric motion
model is used to predict future positions, which are corrected by
GPS measurements. Uncertainty in positional information from
both GPS and odometry systems is modelled. The system has been
implemented on Seekur, a terrestrial platform manufactured by
Mobile Robots. Results of an experimental excursion of over 2
km are presented and show the efficacy of the system.

I. INTRODUCTION AND BACKGROUND

The ability of an agent to self-localise is crucial to any
autonomous task where mobility is required. A good estimate
of position is required prior to any meaningful interaction
with the environment. Localisation refers to the process of
estimating an agent’s location within a known map. Various
techniques have been developed to accomplish localisation
and these can be loosely divided into relative and absolute
localisation methods [1]. Relative localisation techniques rely
on on-board sensors and systems to obtain a local estimate
of position, whilst absolute localisation methods make use
of landmarks or beacons to provide a global position estimate.

Common relative localisation techniques rely on inertial
navigation systems (INS) which calculate agent position and
heading through dead reckoning. A disadvantage to methods
such as these is that they are subject to cumulative errors
through drift induced by sensor noise, temperature effects,
bias instability and imperfect calibration, which can lead to
significant error in position estimates over time [2].

Cumulative errors can be mitigated through the use of
absolute localisation systems, which provide fixed position
estimates without cumulative positional uncertainty. Typical
approaches to absolute localisation estimate an agent’s relative
position relative to known beacons or landmarks. The authors
of [3] present a method of localisation based on recognition
and matching of features with those in a simple environment
model.

Unfortunately, in an urban outdoor context with long distances

Fig. 1. Seekur, the CSIR Autonomous Rover on which the system was
implemented.

travelled, the placing of beacons or training on landmarks
is no longer realistic. One set of approaches, which avoid
tampering with the operational environment by identifying
natural landmarks and localising therewith, have been
developed in the context of the Simultaneous Localisation
and Mapping (SLAM) problem, discussed in detail in [4].
The most common method of absolute outdoor localisation,
however, is the use of Global Positioning Systems (GPS).

GPS provides an accurate estimate of absolute position
by using signals received from multiple satellites. These
satellites are non-geostationary, which means that the position
and number of satellites change with time and influence the
system’s precision [5]. GPS is subject to a variety of errors
which affect its performance, such as satellite geometry, shifts
in orbits, multipath, atmospheric effects, numerical calculation
errors and relativistic effects. Information regarding these
error sources is readily available and a variety of schemes
have been developed to compensate for these errors.

Differential GPS (DGPS) is one such method and makes
use of base stations transmitting the difference in positions
calculated using satellite signals and their known location.



This information is then used by the platform GPS to
compensate for various errors. Unfortunately, a GPS unit is
unable to assist in localisation over short distances, where
odometry is better suited. Hence, a strategy combining
absolute position estimates with relative position estimates
over short distances is required.

Fusing relative and absolute position estimates not only
has the benefit of allowing localisation over short distances of
travel, but also allows for position estimates in cases where
the GPS position estimate is unavailable or cannot be trusted,
a frequent occurrence in an outdoor urban environment, where
large buildings often block satellite signals. The Extended
Kalman Filter (EKF), [6], is a useful tool for fusing state
measurements with predicted behaviour and is commonly
used in autonomous navigation systems. The authors of [3],
[5] and [7] all make use of some form of the Kalman filtering
to combine GPS and relative position estimates.

This paper presents the use of an EKF to combine GPS and
inertial information for the CSIR autonomous rover. A new
model of GPS position and heading uncertainty, differing for
the various fix types and conditions affecting GPS accuracy is
presented. An odometric motion model is used to estimate the
rover’s relative motion and a velocity motion model to predict
uncertainty in position and orientation. Results captured in a
long distance experimental excursion show the efficacy of the
system in an outdoor urban environment.

II. PROBLEM FORMULATION

The autonomous rover on which the position fusion system
is implemented is the holonomic platform pictured in Figure
1, manufactured by Mobile Robots. In this roving application,
however, the platform is controlled as if non-holonomic,
to better mimic a car-like driving pattern. The platform
is equipped with a simple inertial navigation system that
provides forward and rotational velocity estimates together
with heading and planar position.

A Hemisphere GPS heading unit, using differential
corrections, provides position, altitude and heading estimates
in a WGS-84 co-ordinate frame. A base station transmits
correctional information to the unit, which performs
calculations at 5 Hz. The GPS heading unit fuses GPS
heading information with that of an on-board gyroscope, to
maintain heading over short signal losses.

III. DATA FUSION

A. Extended Kalman Filter

Data fusion is accomplished by means of the Extended
Kalman Filter. The EKF consists of two stages, prediction
and update. A prediction of the rover heading and position is
made based on a motion model and then updated based on
positional and heading information obtained from the DGPS.

Given a measurement zk, predicted state x̂k|k−1 and predicted
covariance Pk|k−1:

x̂k|k−1 = f(x̂k−1|k−1,uk)

Pk|k−1 = FkPk−1|k−1FTk + Qk

with Fk a first order linearisation of the system update
equations f , and Qk the process noise covariance matrix. The
measurement and covariance residuals are:

ỹk = zk − h(x̂k|k−1)

Sk = HkPk|k−1HT
k + Rk

with Hk a first order linearisation of the measurement model
h and Rk the measurement noise covariance matrix. Then, the
updated state and covariance estimate is given by:

x̂k|k = x̂k|k−1 + Kkỹk
Pk|k = (I−KkHk)Pk|k−1

Here, Kk = Pk|k−1HT
k S−1

k is the optimal Kalman gain for a
linear system.

B. Vehicle Modelling

The state update equations for the autonomous rover are
provided in (1) - (3) by the velocity motion model of [8].

xk = xck−1 +
vk−1

ωk−1
sin(θk−1 + ωk−1∆t) (1)

yk = yck−1 −
vk−1

ωk−1
cos(θk−1 + ωk−1∆t) (2)

θk = θk−1 + ωk−1∆t (3)

where

xck = xk −
vk
ωk

sin θk

yck = yk +
vk
ωk

cos θk

is the centre of rotation of the platform, vk and ωk the forward
and rotational velocities at sample k respectively, and xk, yk
the right handed planar co-ordinates with yk facing the front
of the platform. Assuming the velocity inputs are subject to
zero-mean Gaussian noise and the presence of an additional
noise variable acting on the rover orientation, Equations (1) -
(3) lead to (4) - (6).

xk = xk−1 −
vk−1 + εv
ωk−1 + εω

(sin θk−1−

sin(θk−1 + (ωk−1 + εω)∆t) (4)

yk = yk−1 +
vk−1 + εv
ωk−1 + εω

(cos θk−1−

cos(θk−1 + (ωk−1 + εω)∆t)) (5)
θk = θk−1 + (ωk−1 + εω)∆t+ εγ∆t (6)

Here, εv , εω and εγ are zero-mean, normal random variables
with covariances σ2

v , σ2
ω and σ2

γ respectively. Linearising these
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Fig. 2. Raw odometry compared to GPS and fused position.

equations using Taylor expansion gives

xk = xk−1 −
vk−1

ωk−1
(sin θk−1 − sin(θk−1 + ωk−1∆t))

+ (θk−1 − δ)
∂xk
∂θk−1

+ εv
∂xk
∂εv

+ εω
∂xk
∂εω

(7)

yk = yk−1 +
vk−1

ωk−1
(cos θk−1 − cos(θk−1 + ωk−1∆t))

+ (θk−1 − δ)
∂yk
∂θk−1

+ εv
∂yk
∂εv

+ εω
∂yk
∂εω

(8)

θk = θk−1 + ωk−1∆t+ εω∆t+ εγ∆t (9)

where δ is the angle about which the equations are linearised.

Equations (7)-(9) have the desirable property of separate
system and noise terms. Hence, setting the random noise
variables to zero provides the state update equations. This
property also allows the system covariance update to be
calculated as the sum of the system covariance and the noise
covariance passed through the system model.

Given a linear system Y = TX, the transform of the mean
and covariance of Gaussian random variables passed through
is given by E[Y] = TE[X] and Cov[Y] = TCov[X]TT

respectively. Therefore, the system covariance update equation
is C = TuCuTT

u + TxCxTT
x Here, subscript x represents

system contributions and subscript u, noise contributions. It

can now be easily shown that

Tu =

 ∂xk
∂εv

∂xk
∂εω

0
∂yk
∂εv

∂yk
∂εω

0
0 ∆t ∆t


εv=εω=εφ=0

Cu =

 σ2
v 0 0

0 σ2
ω 0

0 0 σ2
φ


where

∂xk
∂εv

= − 1
ωk

(sin θk − sin(θk + ωk∆t))

∂xk
∂εω

=
vk
ωk

(−∂xk
∂εv

+ ∆t cos(θk + ωk∆t))

∂yk
∂εv

=
1
ωk

(cos θk − cos(θk + ωk∆t))

∂yk
∂εω

=
vk
ωk

(−∂yk
∂εv

+ ∆t sin(θk + ωk∆t))

Unfortunately, this system is not valid for ωk = 0. In this case
the state update equations become

xk = xk−1 + vk−1∆t cos θk−1

yk = yk−1 + vk−1∆t sin θk−1

θk = θk−1

and

Tu =

 ∂xk
∂εv

0 0
∂yk
∂εv

0 0
0 0 ∆t





with
∂xk
∂εv

= ∆t cos θk

∂yk
∂εv

= ∆t sin θk

In all cases the process noise covariance is calculated as
Qk = TuCuTT

u .

The error in autonomous rover velocity is assumed to
be in the region of 5%, based on odometry estimates provided
by the manufacturer, therefore the forward velocity standard
deviation was chosen as σv = 0.05. A 60◦/hour drift in
heading resulting from the platform INS is distributed equally
between the rotational velocity and heading noise covariances,
σ2
ω and σ2

φ respectively, unless there is no rotational motion,
in which case the error is assigned wholly to the heading
noise covariance, σ2

φ. This is due to the fact that the platform
drifts in heading even when no rotational motion is exhibited,
since the INS continually amplifies low frequency sensor
errors due to the integrative nature of its calculations.

The state update equations from the velocity motion
model could be used in the EKF, but a better system
update is obtained through the odometry motion model of
[8], since measurements of internal platform odometry are
typically more accurate than those of velocity due to the
wheel geometry of the platform. Velocities are calculated
as the derivative of position measurements (taken directly
from wheel encoders on the platform), which introduces an
additional noise source and a loss of accuracy. The odometry
motion model shows that motion between a pair of positions
can be decomposed into three stages, a rotation δrot1,
followed by translation δtrans and another rotation δrot2.
Given motion in these stages, the system update becomes

xk = xk−1 + δtrans cos(θk−1 + δrot1)
yk = yk−1 + δtrans sin(θk−1 + δrot1)
θk = θk−1 + δrot1 + δrot2

The three stage motion is calculated from adjacent odometry
measurements as follows

δrot1 = arctan 2(yk − yk−1, xk − xk−1)− θk
δtrans =

√
(yk − yk−1)2 + (xk − xk−1)2

δrot2 = θk − θk−1 − δrot1
C. GPS Modelling

The DGPS and heading unit used exhibits accuracies that
vary based on signal quality, so various noise covariances
were selected for each of the states encountered. The DGPS
horizontal accuracy in positional fix, σp, degrades from 0.6 m
under fix type 2 (a GPS fix with differential correction)
to 2.5 m under fix type 1 (a GPS fix without differential
correction). If no fix is obtained, no trust is placed in the
horizontal accuracy and the corresponding covariance σp is
made large.

The heading unit exhibits a heading accuracy of σθ = 0.3◦,
which degrades to σθ = 1◦ for up to 3 minutes after a GPS
fix is lost. Thereafter, little trust can be placed in the heading
unit’s reading and σθ is made large. In the period just after
signal is lost and then regained, a period of uncertainty exists,
where GPS signal and fix quality appear good, but position is
incorrect. This is most likely due to the least squares method
used to calculate position from satellite signals. When good
data returns, it takes some time for the calculation to leave a
bad positional fix and converge to a least squares solution.
As a result, uncertainty in position (σp) remains large for a
short time after a fix is regained to compensate for this. The
measurement noise covariance is given by (10).

Rk =

 σ2
p 0 0

0 σ2
p 0

0 0 σ2
θ

 (10)

Fusion calculations are performed in an East, North, Up co-
ordinate frame to simplify calculations.

IV. EXPERIMENTAL RESULTS

Figure 2 shows the path followed by the autonomous
rover. Odometry is plotted in green as a dashed line, GPS
measurements in dotted blue and the fused data in red.
Initially, the rover moved south with a GPS fix type 1.
Here, more trust is placed in odometry as there is greater
uncertainty in GPS position. Once the fix type improved
there was less uncertainty in position estimates. Completely
incorrect GPS data obtained when the fix was lost and for a
short time thereafter is visible at various stages along the path.

Figure 3 shows the data obtained for the heading, East
and North co-ordinates. The fused data closely follows that of
the GPS, since it is typically more accurate than odometry, but
corrects data well when the GPS position is not trustworthy.
Odometry is quite accurate until about the nine thousandth
sample, where increased errors are visible. This loss of
accuracy corresponds to an incline in the road on which the
robot was travelling, which introduces additional heading
errors since the platform’s internal heading calculations
assume a planar surface. A small heading error corresponds
to a larger error in position, as indicated by the East and
North odometry traces.

It is difficult to determine the accuracy of the fused
signal, as no ground truth is available. Figure 4 shows a plot
of the path in Google Earth, which can be used as a rough
estimate of the horizontal accuracy, based on its position
relative to roads. Unfortunately, this is not a true measure of
accuracy as there is uncertainty in the registration of images
in Google Earth, but it does show that the system is accurate
enough to follow a path planned using Google Earth.

V. CONCLUSION

GPS data is a valuable source of absolute positional
information in an outdoor autonomous application, but errors
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Fig. 3. Comparison of individual variables for raw odometry, GPS and fused position.

Fig. 4. Path followed overlaid in Google Earth

frequently occur in urban environments. Odometry, whilst a
feasible position estimate in short distance travel, is subject
to cumulative errors that increase positional uncertainty over
time. Fusing relative and absolute position estimates reduces
the effect of these errors and provides more certainty in
positional information.

A model of the positional uncertainty of the Seekur

autonomous rover platform in a non-holonomic drive
configuration has been presented. The model combines
velocity and odometric information for greater accuracy,
but could be improved if accelerometer tilt information was
available as currently a planar surface assumption is made.

Extremely good results were obtained regardless of the
planar surface assumption. A path of over 2 km was
traversed, and fused positional information accurate enough
for autonomous driving, when used in conjunction with a
suitable path planner, was obtained.
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