Demonstrating optical aberrations in the laboratory

D. Naidoo^{1,2}, C. Mafusire^{1,2} and A. Forbes^{1,2}

¹ CSIR National Laser Centre

² School of Physics, University of KwaZulu-Natal

AN OPTICAL ABERRATION IS A DISTORTION OF AN IMAGE AS COMPARED TO THE OBJECT DUE TO DEFECTS IN AN OPTICAL SYSTEM

TILT IS THE DEVIATION OF A LASER BEAM OFF THE OPTICAL AXIS

AN OPTICAL ABERRATION IS A DISTORTION OF AN IMAGE AS COMPARED TO THE OBJECT DUE TO DEFECTS IN AN OPTICAL SYSTEM

TILT IS THE DEVIATION OF A LASER BEAM OFF THE OPTICAL AXIS

© CSIR 2008

www.csir.co.za

DEFOCUS

OCCURS WHEN AN IMPERFECT WAVEFRONT IS **FOCUSED** TO A POINT THAT IS EITHER BEFORE OR AFTER THE PARAXIAL FOCUS

DEFOCUS

DEFOCUS

OCCURS WHEN AN IMPERFECT WAVEFRONT IS **FOCUSED** TO A POINT THAT IS EITHER BEFORE OR AFTER THE PARAXIAL FOCUS

ASTIGMATISM

ARISES WHEN THE TANGENTIAL AND SAGITTAL FOCI DO NOT COINCIDE AND THE SYSTEM APPEARS TO HAVE **2** POINTS OF FOCUS

ASTIGMATISM Original Compromise 2 **Horizontal Focus** Vertical Focus

ASTIGMATISM

ARISES WHEN THE TANGENTIAL AND SAGITTAL FOCI DO NOT COINCIDE AND THE SYSTEM APPEARS TO HAVE **2** POINTS OF FOCUS

COMA

FOCAL PLANE

COMA IS PRODUCED WHEN A WAVEFRONT FROM AN OFF-AXIS OBJECT POINT ARE IMAGED BY DIFFERENT ZONES OF THE LENS

COMA

© CSIR 2008

www.csir.co.za

COMA

SPHERICAL ABERRATION

SPHERICAL ABERRATION IS A DEVIATION OF THE LASER WAVEFRONT FROM AN IDEAL SPHERICAL SHAPE

SPHERICAL ABERRATION

© CSIR 2008

www.csir.co.za

SPHERICAL ABERRATION

SPHERICAL ABERRATION IS A DEVIATION OF THE LASER WAVEFRONT FROM AN IDEAL SPHERICAL SHAPE

ZERNIKE POLYNOMIALS

ZERNIKE POLYNOMIALS ARE AN ORTHOGONAL SET

EACH POLYNOMIAL HAS AN ASSOCIATED WEIGHTING COEFFICIENT

$$Z_n^m(r,\theta) = R_n^m(r)e^{im\theta}$$

ZERNIKE POLYNOMIALS ARE FITTED TO 3-DIMENSIONAL DATA TO **DESCRIBE** THE ABERRATIONS OF WAVEFRONT MEASUREMENTS

SHACK-HARTMANN WAVEFRONT SENSOR

IMPORTANT ELEMENTS OF DESIGN INCLUDE A LENSLET ARRAY AND A POSITION-SENSING DETECTOR

DEMONSTRATING OPTICAL ABERRATIONS

Focal length from Defocus

DEMONSTRATING OPTICAL ABERRATIONS

DEMONSTRATING OPTICAL ABERRATIONS

LENS QUALITY

DEMONSTRATING OPTICAL ABERRATIONS...

M² Comparison on increasing beam width

Beam width to Lens width

DEMONSTRATING OPTICAL ABERRATIONS...

Aberrations on the increase of M²

Beam width to Lens width

DEMONSTRATING OPTICAL ABERRATIONS...

FUTURE WORK

Join the Mathematical Optics research team!

Opportunities: MSc and PhD studentships, Post docs and Sabbaticals

Contact: Dr Andrew Forbes or Dr Stef Roux

www.csir.co.za/lasers/index_mathematical_optics.html