Photovoltaic Research and Development

Franscious Cummings
Energy and Processes Competency Area
Materials Science and Manufacturing
CSIR
15 September 2009
Outline

- Introduction to Photovoltaics
- South African PV Research Roadmap
- CSIR PV R&D
- Some Results
- Future Work
- Acknowledgements
INTRODUCTION
Introduction to Photovoltaics

• Photovoltaics (PV) is the direct conversion of sunlight into electrical energy through a solar cell

• Conversion results from the physical photo (or photovoltaic) effect, originally discovered by French physicist Edmund Becquerel in 1839

• Only until the beginning of the semiconductor era in the early 1950s Becquerel’s findings were used and in 1954 the first solar cell was developed from crystalline silicon in the USA

• Initially used only for satellite application as a clean source of energy

• First oil crisis in 1973: Realisation that earth’s fossil resources are finite and cause for concern → Increased research into PV technologies

© CSIR 2007
www.csir.co.za
Introduction to Photovoltaics

Simple explanation of the operating principle: Traditional semiconductor solar cell

- **Photons** in sunlight hit the solar panel (individual solar cells connected in series or parallel) and are absorbed by semiconducting materials, such as silicon.

- Electrons (negatively charged) are knocked loose from their atoms, allowing them to flow through the material to produce electricity.

- Due to the special composition of solar cells, the electrons are only allowed to move in a single direction.

- The complementary positive charges that are also created (like bubbles) are called holes and flow in the direction opposite of the electrons in a silicon solar panel.

- An array of solar cells converts solar energy into a usable amount of direct current (DC) electricity.
Introduction to Photovoltaics

Advantages

- The technological advancements in solar energy systems have made them extremely cost effective.

- Conversion of solar energy into electricity produces no pollution.

- Solar powered lights and other solar powered products are very easy to install. This is because there are few wiring issues and little need to ever dig supporting trenches.

- Most systems do not require any maintenance during their lifespan, which means you never have to put money into them.

Disadvantages

- Owners of active and passive solar systems need regulations that prevent construction of other structures that block access for a user to solar heat or impact

- The initial costs discourage buyers.

- Outdoor solar lighting will cost you not more than normal lighting, but large solar energy systems for your entire home can run from a minimum of $5,000 to a more likely figure of $15,000 to $20,000

- Low efficiencies and limited lifetime
Introduction to Photovoltaics

DIFFERENT TYPES OF SOLAR CELLS:

(1) Matured Photovoltaic Technologies

- Single-crystalline Si Cell
- Poly-crystalline Si Cell
- Amorphous Si Cell
Introduction to Photovoltaics

DIFFERENT TYPES OF SOLAR CELLS:

(2) High-efficiency Photovoltaic Technologies

- Individual single-junction cells with different energy band gaps are stacked on top of one another
- Sunlight then falls first on the material with the largest bandgap, and the highest-energy photons are absorbed
- Photons not absorbed in the first cell continue on to the second cell which absorbs the higher-energy portion of the remaining solar radiation while remaining transparent to the lower energy photons.
- Energy efficiencies ~ 50% achieved

Multi-junction (or Tandem) Solar cells

© CSIR 2007

www.csir.co.za
Introduction to Photovoltaics

DIFFERENT TYPES OF SOLAR CELLS:

(3) Low-cost Alternative Photovoltaic Technologies

Dye-sensitised solar cells

Organic solar cells
uniZulu – nanostructured UJ – Thin film PVs
CSIR – DSCs & OPVs
UJ – Thin film PVs
CSIR – DSCs
UWC & UCT – Amorphous Si and Thin Film PVs
FH – DSCs
NMMU – Outdoor testing of large-scale panels
uniZulu – nanostructured based PVs

© CSIR 2007
www.csir.co.za
CSIR Photovoltaic Research and Development

- Two major PV research projects:
 - Dye-sensitised solar cells (DSCs)
 - Organic photovoltaics (OPVs)

- Low cost manufacturing of moderate efficient devices

- Synthesis of nanomaterials with novel opto-electronic properties for implementation within the above cells – new applications
 - To replace window panes with transparent DSCs thereby replacing air-conditioning systems
 - Manufacturing of OPVs on flexible polymer substrates for miniature device application
----- SOME RESULTS -----
Some Results

(1) Organic Photovoltaic R&D

Photon absorption

Exciton diffusion

Charge-transfer

Charge-separation

Charge-collection
Some Results

Synthesis of different organic/inorganic hybrid photovoltaic materials electrochemically or chemically

Structures of polyaniline and polydimethoxyanile synthesis by an oxidative polymerization process.

By combing two oxidants ammonium per sulphate \((\text{NH}_4)_2\text{S}_2\text{O}_8\), and FeCl\(_3\) give rise to polymers in the pernigraniline state that exhibit hexagonal morphologies.
Some Results

Construct solar cell and develop an understanding of the interfacial interactions

Preparation of P3HT/PEDOT/ITO/Glass structures

Preparation of TEM/SEM samples for interfacial/cross-sectional analysis by means of ion-beam milling in HELIOS Nanolab 600 (FEI)

Cross sections reveal that a smooth and homogeneous polymer (P3HT and PEDOT:PSS) film is observed on the glass substrate.

The ITO/Glass substrate has an interfacial surface roughness of ~15 nm, while the most sensitive organic layers have sharp and undistorted interfaces.
Some Results

Study the optical, structural and electrical properties of the synthesized material (UV-Vis, PL, XRD)

The peak wavelength of the inter-band transition of the P3HT blended with different fullerene ratios is shifted towards higher wavelength.

Ascribed to the special feature of the applied solvent which induces favourable chain conformations and/or an advantageous inter-chain packaging within the polymer.

The P3HT shows PL, which is completely quenched when it is mixed with a 1:1 wt. % of C60.

This implies that the excitons generated on one polymer within the film reached an interface with the other polymer and dissociate before recombining.
Some Results

(2) Dye-sensitised Solar Cell R&D

Major Research Areas:

Improvement in DSC Efficiency
Implementation of TiO$_2$ nanotubes in cell
Al$_2$O$_3$/TiO$_2$ nanoparticle composite synthesis and application

Improvement in Long-Term Stability of DSCs
Studying the effect of reverse biased potentials on the stability of the cell
Outdoor testing: DSC performance vs. a-Si and c-Si cells over extended periods

Cell Cost Reduction
Novel dye synthesis from CSIR collected Ru waste products

Cell Characterisation Techniques
Investigation into new techniques for characterisation of closed and open cells
TiO₂ Nanotubes

Aim: Implementation in DSCs for improvement of electron transport and manufacturing of transparent cells

Synthesis by means of anodisation

Major findings thus far:
- Able to control the physical dimensions of tubes by altering anodization bath conditions
- Nanotube structure influences crystallinity
- Alters optical properties; subsequently able to control optical properties (e.g. band gap) of tubes
- Lead to transparent DSCs, novel applications, e.g. office window panes

TiO$_2$/Al$_2$O$_3$ Coreshell Nanostructures

Aim: Implementation of Al$_2$O$_3$ coated TiO$_2$ nanoparticles for implementation in DSCs to reduce interfacial recombination

Synthesis of TiO$_2$ nanoparticle films via wet-chemical methods

Coating of Al$_2$O$_3$ thin layers onto TiO$_2$ nanoparticles via dip-coating technique

Some Results

© CSIR 2007 www.csir.co.za
(1) “Interfacial analysis and properties of regioregular P3HT spin-coated on an Indium tin oxide coated glass substrate”

(2) “Synthesis and characterization of novel nanophase hexagonal poly(2,5-dimethoxyaniline)”
Electroanalysis 20, 2347 (2008)

(3) “Effect of mixture ratios and nitrogen carrier gas flow rates on the morphology of carbon nanotube structures grown by CVD”

(4) “The influence of thermal annealing on the morphology and structural properties of a conjugated polymer in blends with an organic acceptor material”
Journal of Materials Science 44, 3192 (2009)

(5) “Structural and photo-physical properties of poly (3-hexylthiophene) thin films prepared using sol-gel techniques” Materials Chemistry and Physics 116, 279 (2009)

(7) “Stucture induced optical properties of anodized TiO$_2$ nanotubes” Submitted, Materials Chemistry and Physics
----- FUTURE WORK -----
Future Work

Further optimization of low-cost donor and acceptor materials for application in OPVs

Manufacturing of OPVs on flexible substrates

Modelling of physical properties of photovoltaic materials used in solar cells

Implementation of cost-effective Al$_2$O$_3$-modified TiO$_2$ NTs in DSCs

Further optimization of coreshell Al$_2$O$_3$-TiO$_2$ nanoparticle materials

Modelling of opto-electronic materials used in DSCs
Acknowledgements

• Funding sources – DST and CSIR

• Dr. Gerald Malgas – NCNSM for providing some of his major findings for this presentation

• Collaborators – UWC, NMMU, FU

• Supervisors – Prof. D. Knoesen, Dr. M. Mathe
Thank You