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ABSTRACT: 
 
This research explored the potential benefits of fusing optical and Synthetic Aperture Radar (SAR) medium resolution satellite-borne 
sensor data for forest structural assessment. Image fusion was applied as a means of retaining disparate data features relevant to 
modeling and mapping of forest structural attributes in even-aged (4-11 years) Eucalyptus plantations, located in the southern 
Kwazulu-Natal midlands of South Africa. Remote sensing data used in this research included the visible and near-infrared bands of 
the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), as well as a fine beam (6.25 m resolution) 
RadarSAT-1 image. Both data sets were collected during the spring of 2006 and fused using a modified discrete wavelet 
transformation. Spatially referenced forest inventory data were also collected during this time, with 122 plots enumerated in 38 
plantation compartments. Empirical relationships (optimized multiple regression) were used to test whether fused data sources 
produced superior statistical models. Secondary objectives of the paper included exploring the role of scale in terms of forest 
modelling at the plot and extended plot levels (Voroni diagrams). Results indicated that even an optimized multiple regression 
approach did not return accuracies suitable for plantation forestry applications (adjusted R2 of 0.55 and 0.6 for basal area and 
merchantable volume respectively). No significant difference was found between fused and non-fused data sets, however optical and 
fused data sets produced superior models when compared to SAR results. No significant difference was found between field 
enumerated plot level modelling and Voroni level modelling with both data sets producing similar goodness of fit statistics. Findings 
indicate that the spatial resolutions of both sensors are inappropriate for plantation forest assessment. The frequency of the C-band 
Radarsat-1 image is for instance unable to penetrate the canopy and interact with the woody structures below canopy, leading to 
weak statistical models. The lack of variability in both the optical and SAR data lead to unconvincing results in the fused imagery, 
where in some cases the adjusted R2 results were worse than the single data set approach. It was concluded that future research 
should focus on high spatial resolution optical and LiDAR data and the development of automated and semi-automated forest 
inventory procedures. 
 
 

1. INTRODUCTION 

1.1 Motivation 

The timber industry in southern Africa is managed based on a 
short rotation scheme where single tree species are grown as 
part of a mono-culture agricultural crop (Owen, 2000). The 
short rotation scheme used in South Africa requires an 
inventory programme that constantly updates inventory 
databases with relevant information that is primarily used for 
the planning of silviculture and harvesting activities (Uys, 2000). 
Collection of this information constitutes a time consuming 
manual process that requires a large amount of logistical and 
financial support. Increasing competition from international 
growers and decreasing profit margins have highlighted the 
need for streamlining forest management activities, in particular, 
the assessment of forest structure through inventory procedures. 
Remote sensing tools have long been identified as a means of 
streamlining this process and already play an important role in 
forest management (Norris-Rogers et al., 2006). 
 
Short rotation forestry of the type practiced in southern Africa, 
requires particularly accurate estimates of forest variables. 
While past research seems to provide operational solutions to 
the industry there are however, documented problems 

associated with the use of both passive and active medium 
resolution sensors. For instance, it has been shown that 
empirical models developed using optical data are site (Foody et 
al., 2003) and species (Zheng et al., 2004) specific and that 
empirical relationships are stronger in successional forests (R2 > 
0.7) (Lu 2005) as opposed to mature forests (R2 < 0.5) where 
saturation causes weak empirical models (Castro et al., 2003). 
Saturation has also been identified as a problem when using 
radar data, with radar frequency identified as being a primary 
contributing factor (P- 200 t/ha-1; L- 40 t/ha-1; C- 40 t/ha-1) 
(Imhoff, 1995; Ramsey, 1999, Castel et al., 2002) along with 
the age and biomass of the forest in question (Austin et al., 
2003). Recently it has been suggested that the fusion of multiple 
sensor systems may negate the impact of saturation and provide 
analysts and forest managers with accuracies suitable for 
operational planning and forest management (Holmgren and 
Thuresson, 1998). Image fusion has been used operationally in 
the military and defence and has distinct potential benefits in 
forestry and sensor-web technology (Pohl and van Genderen, 
1998). 
 
It has been postulated that application-relevant details from each 
sensor can be combined into one data set which will result in the 
value of the combined data being more than the sum of the 
individual images (Ehlers, 2005). This argument is based on the 
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fact that both systems collect different types of information. 
Tanaka et al. (1998) showed that by using optical and radar data, 
they were able to predict both species type and structural 
parameters with a high degree of accuracy (r > 0.75). 
Magnusson and Fransson (2004) reported similar outcomes 
when assessing the accuracy of combined optical and radar data 
sets for stem volume estimates in Sweden. The authors reported 
that Root Mean Square Errors (RMSE) improved by up to 15% 
using regression techniques when compared to results derived 
from single sensor analysis. A study using an alternative 
method (K-NN; Nearest Neighbours) in the same area also 
reported significant improvements in the estimation of forest 
variables (Optical RMSE = 50 m3/ha-1, Optical+SAR = 37 
m3/ha-1) (Holmstrom and Fransson, 2003). Furthermore, optical 
data provided more robust estimates at lower stem volumes 
while the inverse was true for SAR, which lead to the result 
where the combination of both sensors provided robust 
estimates throughout the age range (optical RMSE = 66 m3/ha-1, 
SAR RMSE = 51.9 m3/ha-1, Optical+SAR = 38 m3/ha-1). The 
combined use of SAR and optical data has thus shown potential 
for forest inventory applications. However, it is not known 
whether image fusion will have the same impact in the southern 
African forestry industry where largely homogenous stands of 
mono-culture timber species are grown on relatively short 
rotation schedules. 
 
1.2 Aim 

This study investigated the use of optical remote sensing and 
synthetic aperture radar (SAR) systems for forest structural 
assessment in managed, even-aged, short rotation plantations. It 
also explored the potential benefits of using a combined optical-
SAR data set for forest structural assessment. Empirical models 
were computed between remote sensing data and field 
enumerated inventory data to determine the applicability of both 
active and passive remote sensing tools. The enumerated data 
included basal area (ba) and merchantable volume (mvl). 
Independent variables included the SAR and optical bands as 
well a fused data set. A sub-theme of the paper explored the 
scale at which modelling was most successful. Typically, 
remote sensing data are extracted from the images based on the 
size of the plots. The argument is that this reflectance data 
should characterize the inventory data sampled in the field. Our 
research extended this concept through the use of Voroni 
diagrams derived from the centre of each field plot and the 
boundaries of each compartment. The above analysis was also 
stratified into young (4-6 yrs) and mature (7-11 yrs) plots.  
 
 

2. STUDY AREA & DATA 

2.1 Study Area 

The study was conducted in the Kwazulu-Natal province 
located in eastern South Africa. The sampled plantation stands 
were located approximately 50 km south of the town of 
Pietermaritzburg (figure 1). The area is known locally as the 
southern Natal midlands. Rainfall is predominantly in the 
summer months with cold dry winters and warm wet summers. 
Mean annual rainfall ranges from 746-1100 mm (Schulze, 1997) 
and is associated with either frontal systems originating from 
the south or from thunderstorms generated from convection 
activity. Temperatures range from high 20°C values in summer 
to below 10°C in the winter. Extreme temperature changes are a 
function of altitude and proximity to the warm Indian Ocean. 
The topography of the study area is flat with undulating hills 
and is classified by Schulze (1997) as being low mountains. 

Altitude ranges from 362 m amsl to over 1500 m amsl with an 
average altitude of approximately 874 m amsl. 
 
 

 
 

Figure 1.  Location of study area 
 
2.2 Data 

Enumeration data: Recent aerial photographs were used in 
conjunction with commercial timber stock maps to identify 
potential sample plot locations prior to field enumeration. Plot 
locations were located in the field using a hand held Global 
Positioning System (GPS). Canopy entry points into the 
compartments were recorded with distance and bearing 
measurements collected for the plot centres relative to the entry 
points, thereby negating poor and inaccurate GPS reception 
under canopies. Distance and bearing measurements were 
digitised in a GIS and used to locate the centre of each sample 
plot. The number of plots per compartment was determined 
based on the size of the compartment; the total area of the 
sample plots was more than 5% of the total surface area of the 
compartment, with at least two plots sampled regardless of 
compartment size. Fifteen meter fixed-radius plots were 
established once the plot centres had been identified. Inventory 
measurements collected during the field campaign included 
diameter at breast height (dbh), tree height (tht), and stems per 
hectare (spha). A total of 122 plots were sampled in 38 
compartments. 
 
Remote Sensing data: Two data sources were used in this 
study which included an Advanced Spaceborne Thermal 
Emission and Reflection Radiometer (ASTER) scene collected 
on the 20th of November 2006 and a RadarSAT-1 scene 
collected on the 17th of October 2006. Pre-processing of the 
ASTER data began with the geometric correction of the level 
1B data. Geometric correction was only applied to the three 
VNIR bands of interest. Orthorectification was undertaken 
using the ORTHOENGINE module of PCI Geomatica (Version 
10.1). A 20 m digital elevation model (DEM), produced by the 
Chief Directorate of Surveys and Mapping (CDSM), was used 
to correct for terrain-induced error. GCP root mean square error 
(RMSE) was 3.85 m. Atmospheric correction was undertaken 
using the Fast Line of Sight Analysis of Spectral Hypercubes 
(FLAASH) algorithm (Felde et al., 2003). 
 
The SAR data were delivered in Hierarchical Data Format 
(HDF), Georeferenced Fine Resolution (SGF) imagery (path 
orientated). GCPs used in the ASTER geometric correction 
were also employed to correct the SAR image. The data were 
corrected and projected to a common coordinate system (Gauss 
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Conformal, central meridian 31° East, WGS 84) using the 
CDSM DEM and the 21 SAR GCPs. The SAR image required 
substantial radiometric processing following orthorectification; 
terrain error was corrected by using a built in SAR model with 
speckle suppression and a 7x7 Kuan filter (Zhenghao and Ko, 
1994). The final image was converted to radar backscatter 
(sigma nought) and rescaled to 8 bit grayscale (0 – 255).  
 
 

3. METHODS 

3.1 Image Fusion 

Following preliminary assessments of several image fusion 
procedures, a hybrid image fusion procedure that incorporates 
the IHS transformation into a dwt fusion procedure was recently 
described by Amolins et al. (2007) and has been used in this 
study. The approach is as follows: (i) The RGB optical data set 
is converted to IHS colour space; (ii) the SAR image is 
stretched to match the Intensity image; (iii) a dwt is then 
performed on the SAR and Intensity images; (iv) following 
decomposition, the detail and approximation coefficients from 
the SAR and Intensity image are combined using a substitution 
approach; (v) once combined, an inverse IHS-to-RGB 
transformation is performed using the modified Intensity band 
with the result being the fused optical and SAR channel. 
 
3.2 Analysis Methodology 

Three distributional measures were extracted for each plot, 
namely mean, range, and standard deviation. These values were 
extracted from the remote sensing data on a band-by-band 
procedure for areas coincident with the field plot locations. The 
area covered by each plot varied due to slope differences and in 
some cases only 5 or 6 pixels were extracted. The scale of the 
study therefore was increased, with the goal of ensuring viable 
statistical variability and subsequent increased variable ranges 
for the independent variables. Voroni diagrams were 
constructed using plot centres, after which inventory data were 
assigned to the larger Voroni plots based on spatial association. 
Remote sensing data were subsequently extracted based on the 
area of the Voroni diagrams with the mean, range, and standard 
deviation extracted for each Voroni plot (See figure 2). 
 
 

 
 

Figure 2. Plot and Voroni level data extraction 
 
Unfused and fused data sets were compared using regression-
based statistical models. Plot- and Voroni plot level variable 
mean, range, and standard deviation were used in multiple 
regression models. Output statistics used to compare the models 
included R2, adjusted R2, and Root Mean Square Error (RMSE). 
Two important inventory variables were modelled, namely basal 
area and merchantable timber volume. Three data sets were 
used (Optical, SAR, Fused optical+sar) to predict both basal 

area and merchantable volume at varying scales for 98 plots- 
and Voroni-plots, where each of these data sets consisted of 
three bands consisting of either optical, radar, or pseudo-optical 
bands (fused data sets). All input bands plus their distributional 
measures (range and standard deviation) were used to predict 
inventory measures using a multiple regression approach. 
Cook’s distance was used to identify and remove outliers (Cook, 
1977). Statistical procedures were implemented using the SAS 
9.1 (SAS Institute Inc) statistical software package. The 
adjusted R2 approach was selected above regular stepwise 
approaches as the procedure assess each and every combination 
of input variables and selects the best combination based on a 
measure (adjusted R2). It was argued that optimization of 
models based on a measure that produces the smallest number 
of variables with the highest adjusted R2, would facilitate an 
accurate comparison of the goodness of fit for each approach. 
The comparison between optical, SAR, and fused data sets was 
stratified according to scale using plots and Voroni plots. 
Within each scale, the analysis was once again stratified 
according to age, which, included all the data (n=98), young (4-
6 yrs old; n=50) and mature plots (7-11 yrs old; n=48). 
 
 

4. RESULTS 

4.1 Basal Area: Plot level 

Plot level results for ba regression models are shown in table 1. 
Goodness of fit statistics indicate that when using all plots for 
modelling purposes results are poor, with the SAR data set 
explaining less than 30% variance in enumerated ba. Results 
improved when the data were split into young (4-6 yrs old) and 
mature (7-11 yrs old) plots. Multiple regressions show that 
optical data lead to improved results over the SAR data in the 
younger stands (4-6 yrs old), with the inverse being true in the 
mature stands (7-11 yrs old). Fused data sets return lower R2 
and adjusted R2 values in the “all” and young age group while 
in the mature age group the fused data return improved models. 
 

 
All Data R2 Adj- R2 RMSE (m2/ha-1)

Optical .0718 .0412 5.86 
SAR .2860 .2337 5.83 
Fused .1137 .0730 6.24 

 4-6 yrs 
Optical .502 .4078 3.06 
SAR .2575 .2075 3.75 
Fused .3992 .3113 5.41 

 7-11 yrs 
Optical .4876 .4022 1.62 
SAR .5804 .5222 3.75 
Fused .4890 .4366 5.39 

 
Table 1. Plot level Basal Area results 

 
4.2 Basal Area: Voroni level 

A significant difference exists between the young and mature 
age groups when comparing the multiple regression results, 
with the latter returning improved statistics (Table 2). The SAR 
data set exhibited similar results, although the goodness of fit 
statistics were distinctly lower than the optical data, implying 
that at this scale the optical data provided improved models 
when compared to SAR data. The fused data set followed the 
pattern of superior models with the mature group returning 
higher multiple R2 and adjusted R2 results than the 4-6 year old 
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data sets. The Voroni-plot results were generally similar to the 
plot level results, save for marginally higher RMSE values, 
which indicated that modelling based on Voroni-plots were less 
precise than those developed at the plot level. 
 
 

All Data R2 Adj- R2 RMSE (m2/ha-1)
Optical .0810 .0493 6.38 
SAR .0834 .0403 5.44 
Fused .1840 .1371 6.05 

 4-6 yrs 
Optical .4191 .3483 3.05 
SAR .2497 .1799 3.73 
Fused .3324 .2673 5.71 

 7-11 yrs 
Optical .5544 .4974 3.67 
SAR .4174 .2939 3.57 
Fused .5418 .4552 6.68 

 
Table 2. Voroni level Basal Area results 

 
4.3 Merchantable Volume: Plot level 

Plot level results for mvl multiple regression models are shown 
in table 3. Similar to ba when all plots are used to model mvl 
results are poor with the SAR data returning the highest R2 and 
adjusted-R2. Results improved when the data set was subdivided 
into young and mature plots. Once again there appears to be a 
disparity between optical and SAR models with respect to age. 
In the young age group optical data return far superior models 
while in the mature age group the difference between the two 
was smaller. SAR data consistently return higher R2 and 
adjusted R2 values when modelling mvl in mature stands. 
Following from this the fused data sets also return improved 
models in mature stands, where nearly 50% enumerated mvl 
variance was explained compared to less than 10% and less than 
30% in the all age group and young group respectively.  
 
RMSE results shown in table 3 reflect the goodness of fit 
statistics mentioned above - an interesting result was that while 
the models developed with the mature data set return higher R2 
and adjusted R2 values, the RMSE results in the young data set 
were in some cases lower than those reported for the mature 
data sets. This indicated that while modelling plot level volume 
in the older stands produced superior models, they may not be 
that precise when compared to the younger stands. 

 
 

All Data R2 Adj- R2 RMSE (m3/ha-1)
Optical .1026 .0730 109.33 
SAR .2014 .1298 94.507 
Fused .0925 .0503 244.811 

 4-6 yrs 
Optical .5679 .4770 33.84 
SAR .2729 .1898 44.075 
Fused .4376 .3690 38.246 

 7-11 yrs 
Optical .4832 .4454 75.54 
SAR .4958 .4093 73.55 
Fused .4906 .4369 76.42 

 
Table 3. Plot level Volume results 

 

4.4 Merchantable Volume: Voroni level 

Table 4 presents the results from the Voroni level mvl modelling. 
Analogous to results already presented in tables 1-3, when all 
plots are used to model inventory attributes results are poor. 
Goodness of fit statistics improved when the data were 
subdivided into young and mature plots. Once again optical 
models returned superior goodness of fit statistics in the 
younger age group when compared to the SAR results. SAR 
results did, however, improve in the mature age group but still 
remain inferior when compared to the optical data. Combining 
the optical and SAR data using the DWT-IHS transformation 
produced superior models in both the mature and all age groups. 
While results in the all age group explained less than 15% 
variance in enumerated mvl data, this value increased to just 
below 60% in the mature stands. Once again the precision of the 
mature stand models was called into question when observing 
the RMSE results. Younger plots seem to return more precise 
models regardless of the independent variables used. 
  
 

All Data R2 Adj- R2 RMSE (m3/ha-1)
Optical .0702 .0495 101.07 
SAR .0867 .0437 99.10 
Fused .1498 .1208 103.26 

 4-6 yrs 
Optical .5970 .5317 29.83 
SAR .3250 .2426 44.09 
Fused .3025 .2131 40.20 

 7-11 yrs 
Optical .4987 .4309 71.83 
SAR .4871 .4040 80.21 
Fused .5716 .5167 69.65 

 
Table 4. Voroni level Volume results 

 
 

5. DISCUSSION 

Both optical and SAR data returned poor results when 
compared to those in the published literature. Foody et al. (2001) 
used artificial neural networks and multiple independent 
variables to model above ground biomass, explaining 80% 
variance in field enumerated data. Zheng et al. (2004) used 
multiple regressions and achieved an R2 of 0.67 for both pine 
and hardwood species. Lu (2005) found significant differences 
between mature and successional forests reporting R2 values of 
0.50 and 0.76, respectively. The major difference between the 
present study and those cited above is that the present study 
occured in plantation forests, while research in the case of 
Foody et al. (2001), Zheng et al. (2004), and Lu (2005) were 
conducted in natural forests where forest canopies display 
significantly more spectral variability, associated with structural 
variability. In contrast, plantation forests do not display as much 
canopy spectral variability, thereby making it more difficult to 
use reflectance from these canopies to explain structural 
variability. The very same observation was evident when 
investigating the SAR results. 
 
Past studies have shown that saturation of the relationship 
between SAR backscatter is common with asymptotes usually 
determined by wavelength (Dobson et al., 1992; Rauste et al., 
1994; Imhoff, 1995; Ramsey, 1999; Fransson and Israelsson, 
1999) and to some extent the polarisation (Van de Griend and 
Seyhan, 1999; Santos et al., 2003). It proved impossible to 
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determine when and if saturation occurred in this study - older 
plots (7-11 years old) returned higher adjusted R2 values than 
the younger plots (4-6 years old), which is counter-intuitive to 
established relationships. Low R2 and adjusted R2 values were a 
function of wavelength (Paloscia et al., 1999); the RadarSAT-1 
system uses a C-band HH sensor with a wavelength of 
approximately 5.6 cm. This relatively small wavelength, when 
compared to L- and P-band sensors (Dobson et al., 1992), rarely 
penetrates the canopy with most of the backscatter originating 
from the top of the canopy. This characteristic severely 
restricted the modelling of basal area and timber volume in 
plantation forests.  
 
Results presented above indicate that models developed using 
the fused data were not necessarily better than the optical data 
(tables 1-4). In most cases the fused data sets produced models 
that were comparable to the optical data and were consistently 
better than the SAR models. The only exception to this was the 
plot level basal area modelling, where the SAR data explained 
in excess of 50% of dependent variable variance. This result 
confirmed that the C-band data are not suitable for assessing 
forest structure and that it would be more appropriate to employ 
either an airborne or satellite platform collecting data in the L- 
or P-band frequency. Such data would provide more 
information regarding the variability of trunk size as opposed to 
the variability of the canopy structure. 
 
A sub-theme of the paper explored the impact of the scale at 
which remote sensing data are extracted from imagery. The 
approach also attempted to mitigate any additional errors 
associated with the location of field plots (Halme and Tomppo, 
2001; Patterson and Williams, 2003) Results presented in tables 
1-4 show that regardless of the scale at which data were 
extracted, no improvement in model accuracy was observed. 
 
 

6. CONCLUSION 

Principle findings indicated that medium resolution data (6-100 
m spatial resolution) are able to explain a limited amount of the 
variance in enumerated inventory variables. However, this is 
only achievable with an optimised multiple regression model. 
Fused and unfused data sets exhibited no significant difference 
when comparing goodness of fit statistics. A lack of spatial 
resolution, coupled to a microwave sensor frequency not suited 
to canopy penetration, are some of the reasons for the weak 
statistical models. It could be argued that errors in plot location 
could have contributed to the results; however, the scale 
analysis showed that even when a larger representative area was 
used, results remained unsatisfactory.  
Results reported here were disappointing when compared to 
those in the published literature. R2 and adjusted R2 values were 
distinctly poorer than that of published papers in many cases. 
However, the type of forest being studied plays a central role in 
this outcome: The relatively homogenous nature of the 
plantation canopy in this case did not contain sufficient 
variability, as related to structural variability, for modelling 
purposes. Explanation of such variability requires a sensor with 
a higher spatial resolution than the 6.25 m (RadarSAT-1) and 15 
m (ASTER) data sets used in this study. These sensors are thus 
not suitable for operational assessment of even–aged, 
homogenous, mono-culture plantation forests. Further research 
is required to test and assess various other data sources and 
approaches, which are cognisant of the inherent homogeneity of 
plantation forests. Possible alternative sensors include high 
resolution satellite imagery or aerial photography with a spatial 
resolution < 4 m. P- and L-band SAR sensors, combined with 

polarimetric data, furthermore are recommended for these 
conditions. Data fusion of LiDAR and high resolution optical 
sensors has shown promising results (Hudak et al., 2002; 
McCombs et al., 2003; Coops et al., 2004) and it is suggested 
that such an approach should be assessed in plantation forest 
conditions. 
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