

Abstract— Users of computer systems may often require the

private transfer of messages/communications between parties across
a network. However, unwanted interception/sniffing of such
communications is also a possibility. An elementary stealthy transfer
scheme is therefore proposed by the author. This scheme makes use
of encoding, splitting of a message and the use of a hashing
algorithm to verify the correctness of the reconstructed message. For
this proof-of-concept purpose, the authors have experimented with
the random sending of encoded parts of a message and the
construction thereof to demonstrate how data can stealthily be
transferred across a network so as to prevent the obvious retrieval of
data.

Keywords— construction, encode, interception, stealthy.

I. INTRODUCTION

ETWORKS are used to send communications between
parties. A computer network is a set of computers using

common protocols to communicate over connecting
transmission media [1]. Often the need arises to send a
message that should not be exposed to unauthorized parties.
The confidentiality of the message/data needs to be
maintained. Confidentiality is the prevention of unauthorized
disclosure of information [2]. Sniffing and the interception of
traffic would expose the contents of the message if the data is
transported in the clear. Plaintext packets on a network can be
captured which would reveal the message to the unauthorized
party. Confidentiality, the protection of unauthorized
disclosure of information, plays an important role in
information security [3].

A communications message itself can be based on a number
of languages, symbols, punctuation and other characters
commonly used in day-to-day writing. Encoding systems were
introduced as a means of processing, storing and transporting
data irrespective of the language, software, application or
protocols. Encoding is used to support network
communications by providing a uniform way of representing
data. Unicode is a character encoding system, like ASCII,
designed to help developers who want to create software
applications that work in any language in the world [4].

The rationale and functionality of encoding standards were
therefore applied to the formulation of the stealthy network
data transfer scheme. Developers use encoding to ensure that

their code never needs adaptation, in that it is represented in a
universally interpretable format. A classified message too
should be represented in a universally understandable means
without being easily observable.

Encoded characters are represented in a byte format and in
this way the casual packet capturing of encoded data will
appear like garbled letters to the untrained eye. Some skill
would be required to firstly identify the need to decode the
data and thereafter actually perform the operation. Simply
detecting which bytes form a character is a complex
contextually-dependant process [4]. The principle of encoding
was therefore utilized to prevent the obvious reading of a
secret message, were it to be intercepted. The plaintext version
of the message would be initially converted into its encoded
version before being transported (where it would again be
encoded for transportation purposes). In addition, the message
would be split to prevent easy observation if captured. The
data would have to be combined in the correct order to be
properly interpreted.

Therefore, further encoding was utilized for the original
purpose that it was intended for- transportation and translation
requirements. In essence, the data was therefore encoded
twice, firstly to hide the contents of the message and thereafter
to properly transmit the data.

In this proof-of-concept exercise, the authors wished to
demonstrate the capability of using encoding, splitting,
random sending of the fragments and reconstruction based on
a hash algorithm verification so as to prevent the obvious
reading of the secret message, were it to be intercepted.

II. NETWORK TRANSFER SCHEME

At a high-level, the scheme of stealthily transferring data
across a network consisted of the sending of a split encoded
message between two parties. For the sake of clarity the
sending party is referred to as the Client and the receiving
party the Server. The basic premise is to split a message into a
number of parts, encode and randomly send them to a server
and thereafter reconstruct the original message after having
received the split portions. As the number of fragments
increases, so does the time and complexity of the
reconstruction process.

Stealthy Network Transfer of Data
N Veerasamy and C J Cheyne

 Council for Scientific and Industrial Research

Defence, Peace, Safety and Security

Pretoria, South Africa

 nveerasamy@csir.co.za

N

After having received the various split portions, the task
involves decoding and placing the fragments in the correct
order so as to rebuild the message. The solution provided to
this problem involved the use of a hashing algorithm. A hash
function converts plaintext into a message digest (MD) with
fixed length [5]. Hashing is thus the application of a function
that produces a unique key. Hashing is used in computer
security to check for the integrity of data. Changes in files can
be detected through the generation of different hash values. If
the hashing function is initially calculated on a file, small
changes carried out on the file, and the hashing function
applied once again on the file, a different key will be

generated. It is conjectured that it is computationally
infeasible to produce two messages having the same message
digest, or to produce any message having a given
prespecified target message digest [6]. The implemented
approach was therefore to calculate the hash on the original
message and thereafter compute the hash on the various
combinations of the received fragments until a match was
found. This would confirm that the string combined in that
particular order was the correct message.

The next two sections explain the implementation
techniques on the two communicating parties’ ends: the Client
and the Server.

Figure 1: Process Model of Client

III. CLIENT

In this Section, a description of the user input, encoding and
splitting processes follow.

A. Validation and Padding
Figure 1 shows the process diagram (data flow) on the

client side whereby the initial message is specified and
encoded. After the user specifies the message, server IP
address and number of splits and the request is deemed to be
valid (applicable server and legitimate integer value for
number of splits), the next step involved padding the string, if
necessary.

The motivation behind padding the string stemmed from the
implications that if the string length was not a multiple of
number of splits, different size fragments would be generated
(with the possibility that the last fragment being the shortest).
As with password cracking, if a shorter segment is identified,
it can be used to crack the password, so too, if different length
message fragments were sniffed, the shorter fragments could
be analysed to identify the encoding scheme. All it takes is
adding a few characters to the length of a (lowercase)
password to make it just as effective as a password that uses a
mix of characters [7].

Similarly, the same principle can be applied to secret
message, and just as a password’s effectiveness is heightened
with increased length a secret message’s when split into
uniform fragments will too have better effectiveness.
Therefore in an effort to ensure that all the message fragments
were the same length, the original message was padded with
the required number of spaces so as ensure the padded length
of the message was a multiple of the number of splits. (Spaces
were used as a convenient character to lengthen the message
in this proof-of-concept exercise).

B. Compute Hash
Thereafter the (padded) string was written to a file on

which the hash function is computed. Hash algorithms have
crucial functions in security systems [5]. One such function is
to verify the integrity of data. This property would be utilized
in the scheme by initially computing the hash value of the
original string and thereafter comparing the value to the hash
value generated for each combination of fragments.

The hashing function md5deep was utilised. Md5deep was
executed by running a batch file which started the md5deep
executable with the required parameters (source and
destination file.) After running the batch file, the md5deep
hashing function also saves its output to a file. The output file
contained the hash value and the source of the file on which
the hashing function was calculated.

The hash value was obtained from the file by splitting the
file into tokens and extracting the first token (which contains
the hash value) into a string to be transported to the server at a
later stage. (The computation of the hash value is carried out
in a separate class so that both the Client and Server can
utilise its functionality. Server will use the functionality to
compute the hash value of the different combinations of
joining the message fragments).

The values corresponding to the number of splits, number
of padded spaces and hash value of the message, were
combined into a single string that would also be encoded and
sent to the server. In this way, all the message splits as well as
the Param+SpacesCount+HashValue string would be
transferred.

C. Convert to Hex
With the development of symbol technology and the

requirement of information exchange, people wanted a unified
character system to represent all of these characters—hence,
Unicode [7].Therefore, the data would be converted into its
hexadecimal Unicode equivalent (to hide its content) which
would later be encoded once again when the data was
transported.

The encoding process (of both the message and the
Param+SpacesCount+HashValue string) consisted of a
conversion to hexadecimal. (Built in C# functionality was
used for this process – function name unicodeEncoding with
“X2 ” as a parameter to carry out the hexadecimal encoding).
The result of the initial encoding was an array list containing
the hexadecimal values of each letter.

D. Convert to Byte Array
As the aim of this research was to implement a basic

stealthy network transfer scheme, the approach of simplifying
transfer requirements was adopted. A socket transfer method
which required the data to be contained in a byte array was
utilized.

Because of the socket transfer requirements some additional
conversions needed to take place. The hexadecimal
representation of a string was contained in an array list. The
data would be transferred to the server in a byte array. The
array list with hexadecimal values was therefore converted to
a byte array (initially read into a string and each value of the
string converted into its byte representation and stored in a
byte array.) In this way, the data was encoded into its
hexadecimal equivalent and thereafter into the byte
representation of the hexadecimal.

E. Split Hex String
The encoded message was thereafter split into the specified

number of fragments. The message fragments would be sent
through a set of determined ports in a random order (so as to
ensure that the message fragments were not merely sent in
their logical order for simple reconstruction). After
formulating a random order and random set of ports that
would be utilized from a predetermined pool (10 ports
between 8000 and 8009 in this implementation), the data
could be written to the stream and sent through to the server.

F. Write to Stream
The individual encoded strings constituting the message

were thereafter sent through a TCP socket on the randomly
calculated ports, where the order was based on the value
assigned in the randomise computation. In addition, the hash
value of the original message, the number of fragments and
number of spaces the original message were padded with, was

also encoded and sent to the server. Therefore the fragments
as well as the hash and split information was transferred and
awaited receipt on the Server side. The next section deals with

the receipt and reconstruction of the secret message on the
Server end.

Figure 2: Process Model of Server

IV. SERVER

This section describes the processes for receipt and
reconstruction on the Server side after the client has sent
through the multiple fragments and other required information
(number of spaces and parameter and hash values) The
process diagram depicting the Server end functionality is
given.

A. Start Threads and Listening on Socket
Figure 2 shows the process diagram (data flow) on the

Server side. Initially, when the server is started up ten threads

are initiated and listening for data on the set of predetermined
ports commences. The client randomly sends through the
encoded message fragments and the
Param+SpaceCount+HashValue string using random ports in
the predetermined set.

B. Retrieve Param, Space Count and Hash Value
After receiving the Param+SpacCount+HashValue string,

the string is decoded. (ConvertToString process in Figure 2)
This involves the conversion from the byte array to the
hexadecimal representation of the data and thereafter its

plaintext equivalent. After carrying out the convert to string
process, the param, space count and hash values are extracted.
The param value is (number of fragments) is used to
determine when to stop listening on the socket. As data is
received on each random port, the data is immediately
decoded and stored. A Boolean value (running) is initially
initiated as true and is used to continued listening on the
socket (switch threads when necessary). In addition, a count is
kept of the number of strings received. When this count
reached the parameter value (number of fragments sent by
client), the boolean value “running’ is changed to false. This
indicates to the Server to stop listening on the sockets (as all
the fragments have been received) and the reconstruction can
begin.

C. Calculate Permutations
The reconstruction process makes use of a Permute class.

The open source logic from C# Crawler was implemented to
compute the different permutations (all possible combinations
of the fragments). The class makes use of binary functions
(performs swapping) and produces a list of permutations
depending on the number of elements in a string (number of
permutations of elements in string corresponds to the number
of splits). The Function takes a string of characters, and writes
down every possible permutation of that exact string, so for
example, if "ABC" has been supplied, should spill out:

ABC, ACB, BAC, BCA, CAB, CBA. [9]
The Permutation class was therefore used to calculate all

the permutations from 0 to a defined maximum value. The
maximum value was determined by the number of fragments
received. The output of an input sting “012” was for example
(012,021,102,120,210,201). This is equivalent to six
permutations on three splits.

D. Combine Fragments According to Permutation Value
Thereafter, the individual stings were combined in the order

stated in each permutation. For example if the original
message was “Adam eats an apple” and strings received from
the client (and stored in an array) were:

String 1:“ts an a” String 2:“Adam ea” String 3: “pple. ”
The fragments would be combined in the order 012 which

is equivalent to “ts an aAdam eapple. ” (Make use of array
indexing where 0 corresponds to string one and index 1
corresponds to string 2, etc.)

E. Compute and Compare Hashes
The Server, like the Client, also made use of the written

Hash class. Using the string “ts an aAdam eapple. ” as
combined in the previous step, the Calculate function of the
Hash class would write the string to a file and compute the
hash value. The newly computed hash value would be
extracted and compared to the hash value sent from the client.
If the two hash values corresponded, the string was a match
and the message was printed out. In this case, the hash values
would obviously not match.

If the two hash values did not correspond, the
reconstruction process would continue and the combination of

strings would be computed in the order of the next
permutation. For example, the next permutation was 021. The
individual strings were therefore combined in the order “ts an
a Adam eapple”. This hash of this string would not match the
hash sent by the client either. This process was therefore
followed recursively until a match of the hash values was
found. The permutation 120 would form the original message
“Adam eats an apple.” and the hash generated on this
combination would match the hash from the client.

It should be noted that the number of permutations
increases exponentially as the number of fragments increases.
The reconstruction process would therefore combine all the
fragments in various orders based on the values obtained from
permutation calculation process. Due to the randomness of the
fragment transfer and the substantial increase in permutations
as the fragments increase, the processing time of the
reconstruction can differ during each run.

Finally to ensure the integrity of the data, the number of
spaces appended to the end of the message was removed (if
any spaces were originally appended to the string). (Spaces
were added to ensure all the message splits were the same
size.) The removal of the spaces was performed by using the
substring function (position was determined based on the
value that was originally sent from client). The original
message sent from the client is therefore obtained through a
process of decoding, and cyclically combining, computing and
checking.

V. CONCLUSION

In some instances the confidentiality and integrity of data is
of the utmost importance. Therefore a stealthy network
transfer scheme has been devised to prevent the easy viewing
of the data were it to be intercepted. The scheme aims to
ensure that the transferred data is protected.

The data is initially encoded and split into a number of
equal sized chunks before being randomly sent over a set of
ports to the receiving end. The described process (that makes
use of encoding, message splitting, randomized transfer and
hash value matching) explains the method of obscuring the
data so as to hide its contents to intruders, but reveal the
message to the authorized party.

In this way, the scheme aims to prevent the simple sniffing
and acquisition of a secret message. An intruder would have
to determine that the data being transferred has been encoded
twice and correctly reconstruct the fragments of the data. In
this proof-of-concept exercise the authors have implemented a
simple but effective stealthy network transfer scheme.

VI. REFERENCES
[1] J.S. Quartermaan, and J. C. Hoskins, “Notable Computer Networks,”

Communications of the ACM, vol.29, pp 932-971, Oct. 1986.
[2] D. Gollman, “Computer Security,” New York: John Wiley & Sons,

2002, pp 5-7.
[3] S. Gürses, J.H. Jahnke, C. Obrey, A. Onabajo, and T. Santen, “Eliciting

confidentiality requirements in practice, ” in Proc. 2005 conference of
the Centre for Advanced Studies on Collaborative research, Ontario,
2005, pp. 101-116.

[4] Unicode.org, “Basic Questions”, Available:
http://www.unicode.org/faq/basic.html.

[5] M. Wang, C. Su, and C. Wu, “A HMAC Processor with Integrated SHA-
1 and MD5 Algorithms,” in Proc. Of the 2004 conference on Asia South
Pacific design automation: electronic design and solution fair ASP-DAC
2004, pp. 456-458.

[6] R.L. Rivest, “The MD5 message digest algorithm,” RFC 1321, the
Internet Society, April 1992.

[7] M. Burnett, and D. Kleiman, “Perfect Passwords”, Rockland: Syngress,
2006, pp. 53-59.

[8] A. Y. Fu, X. Deng, L. Wenyin, and G. Little, “The Methodology and
Application to Fight Against Unicode Attacks,” in Proc. of the second
symposium on Usable privacy and security, Pennsylvania, pp 91-101.

[9] S. Hadaya, “Permutations”, C# Crawler, Available:
http://radio.weblogs.com/0111551/stories/2002/10/14/permutations.html
.

Namosha Veerasamy has obtained a BSc: IT Computer Science degree and a
BSc. Computer Science (Hons) degree with distinction from the University of
Pretoria. She is currently completing her Masters in Computer Science and is
employed as a researcher at the Council for Scientific and Industrial Research
(CSIR) in Pretoria.

Corien Cheyne has obtained a BSc: Computer Science degree from the
University of Pretoria. She is currently studying towards a BSc Computer
Science (Hons) degree, and is employed as a researcher at the Council for
Scientific and Industrial Research (CSIR) in Pretoria.

