Development of *Staphylococcus aureus* class C non-specific acid phosphatase (SapS) as a reporter for gene expression and protein secretion in Gram-negative and Gram-positive bacteria

Erika du Plessis¹*, Jacques Theron², Eldie Berger¹, and Maureen Louw¹

CSIR Biosciences, Box 395, Pretoria, 0001, South Africa¹, and Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria, 0002, South Africa²

* Corresponding author. Mailing address: CSIR Biosciences, Box 395, Pretoria, 0001, South Africa. Phone: +27 12 841-2192. Fax: +27 12 841-3651. E-mail: emdplessis@csir.co.za.

A phosphatase secreted by *Staphylococcus aureus* strain 154 has previously been characterized and classified as a new member of the bacterial class C family of non-specific acid phosphatases. As the acid phosphatase activity can be easily detected using a cost-effective plate screen, quantitatively measured by a simple enzyme assay and detected with zymography, its potential use as a reporter system was investigated. The *S. aureus* acid phosphatase (*sapS*) gene has been cloned and expressed from its own regulatory sequences in *Escherichia coli*, *Bacillus subtilis* and *Bacillus halodurans*. Transcriptional and translational fusions of the *sapS* gene with selected heterologous promoters and signal sequences were constructed and expressed in all three the host strains. The strongest promoter for heterologous protein production in each of the host strains was identified, i.e. the *E. coli lacZ* promoter in *E. coli*, the *B. halodurans* alkaline
protease promoter in *B. subtilis* and the *B. halodurans* σ^D promoter in *B. halodurans.*

This is the first report on the development of a Class C acid phosphatase gene as a reporter gene with the advantage of being able to function in both Gram-positive and Gram-negative host strains.

INTRODUCTION

Methods for the direct measurement of gene expression include mRNA detection using polynucleotide probes (Northern blots) or reverse transcriptase-polymerase chain reaction (RT-PCR) methods, as well as protein detection methods using antibodies (Western blots) or biological activities (Wood et al., 1995; Ding and Cantor, 2004). However, these methods are in many cases time-consuming and costly. Reporter genes provide an alternative method of genetic analysis that is faster and more convenient. Typically, reporter genes encode proteins that have a unique enzymatic activity or that are otherwise easily distinguishable from the mixture of intra- and extracellular proteins (Biran, 1994; Schenborn and Groskreutz, 1999). They have frequently been used to identify regulatory sequences, to monitor gene expression and function, and to characterize promoter strength and regulation (Pedraza-Reyes et al., 1994; Wang et al., 2004; Serrano-Heras et al., 2005; Koga et al., 2006).

The choice of a reporter system is determined by a number of important criteria. These include the absence of similar activities to the reporter protein in the host organism and the availability of simple, rapid and sensitive methods for the qualitative and quantitative
assay of reporter protein activity. These methods should preferably allow assaying of the
reporter protein activity in the presence of cellular components, thus obviating the need
for purification steps prior to assay (Jefferson, 1987; Naylor, 1999). The most widely
used reporter systems employ genes encoding β-galactosidase (lacZ) (Poyart and Trieu-
Cuot, 1997; Talukder et al., 2005), chloramphenicol acetyltransferase (cat) (Palmano et
al., 2001; Cao et al., 2001) and different sugar hydrolases, e.g. β-glucuronidase (gus)
(Jefferson et al. 1986; Kim et al., 2006). Although these reporter systems are convenient
tools for semi-quantitative plate-based assessment of promoter activities, more accurate
quantification of promoter strength usually requires enzymatic assays, which typically
involve bacterial cell disruption and addition of a substrate to drive the enzymatic
reaction followed by measurement of the optical density (Biran, 1994). Another group of
reporter systems is based on the emission of light (Wood, 1998; Southward and
Surette, 2002). In addition to the wild-type green fluorescent protein (GFP) from Aequorea
victoria, many derivatives of GFP have been produced and subsequently used to monitor
promoter activity in both in the laboratory and in natural environments (Southward and
Surette, 2002; Serrano-Heras et al., 2005; Chary et al., 2005). However, naturally
occurring fluorescence can lead to high background levels during in vitro and in vivo
measurements. Alternative strategies have thus involved the luciferase-encoding luxAB
genes, typically derived from Vibrio fischeri, Vibrio harveyi and Photorhabdus
luminescens (Kirchner, 1989; Meighen, 1991), and more recently the synthetic
luxCDABE operon which alleviates the requirement for addition of an exogenous
aldehyde substrate in the light emission reaction (Greer and Szalay, 2002; Applegate et
al., 1998).
Since each reporter system has its own advantages and disadvantages that may limit its usefulness in specific host organisms and in specific types of studies, no single reporter gene is universally applicable (Naylor, 1999). It is therefore desirable to have a number of reporter systems available for the same organism (Perez-Arellano and Perez-Martinez, 2003; Janatova et al., 2003). Consequently, modification of widely used reporter systems (Haufefort et al., 2003; Veening et al., 2004; Choe et al., 2005), the optimization of methods used for measuring reporter activity (Thibo deau et al., 2004; Hampf and Gossen, 2006; Loening et al., 2006) and the isolation and evaluation of new reporters are continuing. The relevance of the latter is exemplified by several reports regarding the evaluation of new reporters, amongst other, β-galactosidase from *B. megaterium* (Schmidt et al., 2005) and *Thermus thermophilus* (Park and Kilbane, 2004), lichinase from *Clostridium thermocellum* (Piruzian et al., 2002), and α-galactosidase from *Saccharopolyspora erytraea* (Post and Luebeke, 2005).

We have previously isolated and characterized a novel class C non-specific acid phosphatase secreted by *Staphylococcus aureus* strain 154 (Du Plessis et al., 2002). The enzyme, designated SapS, encoded by sapS, is a stable monomeric protein of moderate size (296 amino acids, 30 kDa), which undergoes proteolytic cleavage of the N-terminal 31-amino-acid signal peptide to yield the mature protein. Based on its moderate size and the ease by which enzymatic activity tests may be performed (Du Plessis et al., 2002), the present study focused on the development and evaluation of the SapS acid phosphatase as a reporter for the characterization of promoters and signal sequences in Gram-negative (*E. coli*), as well as in mesophilic and moderately thermophilic Gram-positive (*B. subtilis*).
and *B. halodurans*, respectively) hosts. *E. coli* and members of the species *Bacillus* are the most frequently used prokaryotes for the production of heterologous proteins (Westers *et al.*, 2004, Lam *et al.*, 1998) and were therefore included in this study to evaluate the sapS reporter system. The use of the reporter gene was evaluated in *B. halodurans* since it harbours the lac operon (Ikura and Horikoshi, 1979), and the commonly used *LacZ* reporter system can therefore not be used in this host organism. Furthermore, *B. halodurans* is currently being evaluated as a surface display expression system (Crampton *et al.*, 2007).

MATERIALS AND METHODS

Bacterial strains and growth conditions. *E. coli* DH10B (F *mcrA Δ(mrr-hsdRMS-mcrBC) (φ80lacZΔM15) ΔlacX74 endA1 recA1deoR Δ(ara-leu)7697 araD139 galU galK nupG rpsL λ*), obtained from Invitrogen, was used as intermediary cloning host. Expression studies were done in *E. coli* CU1867, a BL21 (DE3) strain with the chromosomal acid phosphatase *appA* gene disrupted (Ostanin *et al.*, 1992), *B. subtilis* 154 (Δapr, Δnpr, amy, spo) (Quax and Broekhuizen, 1994) and *B. halodurans* BhFC04 (ΔwprA, Δhag) (Du Plessis, PhD thesis). *E. coli* and *B. subtilis* were cultured at 37°C in Luria-Bertani medium (LB: 0.5% [w/v] yeast extract, 1% [w/v] tryptone, 1% [w/v] NaCl; pH 7). When appropriate, *E. coli* growth media were supplemented with ampicillin (100 µg/ml), chloramphenicol (20 µg/ml) or erythromycin (300 µg/ml), and *B. subtilis* growth media were supplemented with chloramphenicol (5 µg/ml) or erythromycin (10 µg/ml). *B. halodurans* was grown at 37°C in LB medium (pH 8.5) and chloramphenicol (5 µg/ml) was added when appropriate.
Recombinant DNA techniques. Plasmid DNA was extracted using a Plasmid Midiprep Kit (QIAGEN, Hilden, Germany) and Perfectprep® Plasmid Mini Kit (Eppendorf, Hamburg, Germany). DNA fragments were purified from agarose gels by use of a DNA Extraction Kit (Fermentas, St. Leon-Rot, Germany). Procedures for DNA manipulations were carried out as described by Sambrook et al. (1989). Enzymes were obtained from Fermentas (St. Leon-Rot, Germany) and Roche Diagnostics (Mannheim, Germany) and were used according to the manufacturer’s protocols. Unless otherwise indicated, plasmid constructions were first established in *E. coli* DH10B and then transferred to *E. coli* CU1867, *B. subtilis* 154 and *B. halodurans* BhFC04. Transformation of bacteria was performed by electroporation for *E. coli* (Dower et al., 1988), and by protoplasting according to published procedures for *B. subtilis* (Chang and Cohen et al. 1976) and *B. halodurans* (Crampton et al., 2007). PCR was performed using Biotaq DNA polymerase (Bioline USA Inc., Randolph, MA) and a Progene thermocycler (Techne, Burlington, NJ). The oligonucleotides used in this study were obtained from Inqaba Biotechnical Industries, Pretoria, South Africa. Chromosomal DNA was extracted from *S. aureus* 154 and *B. halodurans* BhFC04 according to method of Lovett and Keggins (1979), except that lysozyme was added to a final concentration of 10 mg/ml. Nucleotide sequencing of all PCR products was performed using the ABI PRISM™ BigDye™ Terminator Cycle Sequencing Ready Reaction kit v3.0 (Applied Biosystems, Foster City, CA), followed by resolution on an ABI PRISM™ 310 Genetic Analyser (Applied Biosystems), in accordance with the manufacturer’s instructions. All plasmid constructions were verified by restriction endonuclease digestion followed by agarose gel electrophoresis.
Plasmids. Plasmid pNW33N, an *E. coli-Bacillus-Geobacillus* shuttle vector obtained from the *Bacillus* Genetic Stock Centre (Ohio USA) and pMG36e, a *Lactococcus* expression vector (van de Guchte *et al.*, 1989), which also replicates in *E. coli* and *B. subtilis*, was used to express the *S. aureus* acid phosphatase gene (*SapS*) in the Gram-positive and Gram-negative host strains. In all instances, except for pMG36e-SapS, pNW33N served as genetic backbone into which different transcriptional and translational fusions were inserted to evaluate the *saps* gene as a reporter (Fig. 1). The SapS enzyme was processed differently in *E. coli* and *Bacillus* stains (31 and 43 N-terminal amino acids deleted, respectively, to produce the mature SapS protein). Translational fusions were therefore made with both deletions to determine whether the truncated gene (Δ43) could be used as a reporter in *E. coli* and *Bacillus* strains.

Oligonucleotides used in this study are listed in Table 1. *S. aureus* strain 154 chromosomal DNA was used for amplification of the *SapS* gene and its derivatives. *B. halodurans* BhFC04 chromosomal DNA was used as template for the PCR amplification of the β-glucanase and alkaline protease promoter and signal sequences and the σ^D^ promoter. The SPO2 promoter was obtained from plasmid pPL608 as a 300bp *EcoRI* DNA fragment (Schoner *et al.*, 1983). The following vectors were constructed:

pNW33-SapS: The 1.140-kb full-length *sapS* gene was PCR-amplified using primers Sap-F/ Sap-R1.

pNW33N1: The 227-bp β-glucanase promoter (*Pgluc*) fragment was PCR-amplified using primers Glu-F/Glu-R and the 888-bp *sapS* gene fragment using primers Δ_ATG_Sap-F1/Sap-R2.
pNW33N2: The 315-bp β-glucanase promoter and signal peptide (Pgluc+sp) was PCR-amplified using primers Glu-F/GluS-R and the 798-bp Δ31sapS DNA fragment using primers Δ31Sap-F/Sap-R3.

pNW33N3: The 762-bp Δ43sapsS fragment was PCR-amplified using primers Δ43Sap-F/Sap-R3 and ligated to the 315-bp β-glucanase promoter and signal peptide (Pgluc+sp) from pNW33N2.

pNW33N4: The 280-bp alkaline protease promoter (Papr) was PCR-amplified using primers Apr-F1/Apr-R and the 888-bp sapS DNA fragment using primers ΔATGsap2 Sap2 F/Sap-R2.

pNW33N5: The 327-bp alkaline protease promoter and signal peptide (Papr+sp) was PCR-amplified using primers Apr-F2/AprS-R and ligated to the 798-bp Δ31sapS fragment from pNW33N2.

pNW33N6: The 327-bp alkaline protease promoter and signal peptide (Papr+sp) from pNW33N5 was ligated to the 762-bp Δ43sapS DNA fragment from pNW33N3.

pNW33N7: The SPO2 promoter was cloned into pNW33N and the plasmid designated pNWSpo. The 891-bp full-length sapS gene, inclusive of its ATG initiation codon, was amplified by PCR using primers ATG Sap2 Sap2 F/Sap-R2 and ligated to pNWSpo to generate pNW33N7.

pNW33N8: The 230-bp sigma D promoter (PσD) fragment was PCR-amplified using primers Sig-F/Sig-R. The 888-bp sapS gene fragment, lacking the ATG initiation codon (ΔATGsapS), was generated by PCR using primers ΔATGsap3 Sap3 F/Sap-R4.

pNW33N9: The 905-bp sapS gene, including the putative ribosome binding site (RBS), was obtained by PCR using primers RBS-Sap-F/Sap-R3 and ligated to pNW33N. The
resulting plasmid pNW33N9 harboured the vector-borne lacZ promoter (P_{lacZ}) translationally fused to the sapS reporter gene.

pMG36e-SapS: The 888-bp sapS gene fragment, lacking the ATG initiation codon (Δ_{ATG}sapS), was generated by PCR using primers Δ_{ATG}Sap-F4/Sap-R5. The sapS gene fragment was ligated into pMG36e an expression vector that harbours the strong lactococcal P32 promoter and an ATG initiation codon, thus placing the reporter gene fragment in phase with the initiation codon.
<table>
<thead>
<tr>
<th>Plasmid</th>
<th>Promoter</th>
<th>Signal peptide</th>
<th>SapS</th>
</tr>
</thead>
<tbody>
<tr>
<td>pN33-SapS</td>
<td>P<sub>ap</sub>S</td>
<td>SapS</td>
<td></td>
</tr>
<tr>
<td>pN33N1</td>
<td>P<sub>glu</sub>c</td>
<td>SapS</td>
<td></td>
</tr>
<tr>
<td>pN33N2</td>
<td>P<sub>glu</sub>c</td>
<td>gluC<sub>Δ31</sub></td>
<td></td>
</tr>
<tr>
<td>pN33N3</td>
<td>P<sub>glu</sub>c</td>
<td>gluC<sub>Δ43</sub></td>
<td></td>
</tr>
<tr>
<td>pN33N4</td>
<td>P<sub>apr</sub></td>
<td>SapS</td>
<td></td>
</tr>
<tr>
<td>pN33N5</td>
<td>P<sub>apr</sub></td>
<td>glu<sub>Δ31</sub></td>
<td></td>
</tr>
<tr>
<td>pN33N6</td>
<td>P<sub>apr</sub></td>
<td>glu<sub>Δ43</sub></td>
<td></td>
</tr>
<tr>
<td>pN33N7</td>
<td>P<sub>SPO2</sub></td>
<td>SapS</td>
<td></td>
</tr>
<tr>
<td>pN33N8</td>
<td>P<sub>Δ</sub>D</td>
<td>SapS</td>
<td></td>
</tr>
<tr>
<td>pN33N9</td>
<td>P<sub>lac</sub>Z</td>
<td>SapS</td>
<td></td>
</tr>
<tr>
<td>pDE3-SapS</td>
<td>P<sub>Δ2</sub></td>
<td>SapS</td>
<td></td>
</tr>
</tbody>
</table>

FIG. 1. Schematic presentation of the vector constructs harbouring the *S. aureus sapS* gene for expression in *E. coli* Cu1867, *B. subtilis* 154 and *B. halodurans* BhFC04.

Abbreviations: P_{glu}c, *B. halodurans* β-glucanase promoter; P_{apr}, *B. halodurans* alkaline protease promoter; P_{SPO2}, *Bacillus* temperature phage SPO2 promoter; P_ΔD, the *B. halodurans* hag gene (flagellin protein) promoter; P_{lac}Z, *E. coli* lacZ promoter; P32, strong lactococcal promoter; PsapS, *S. aureus sapS* promoter; Δ₃₁sapS, sapS gene fragment lacking the N-terminal signal peptide of 31 amino acids; Δ₄₃sapS, sapS lacking the N-terminal signal peptide of 43 amino acids identified in *B. halodurans* BhFC04.

Protein sample preparation and protein concentration determination. Bacterial strains harbouring the plasmid constructs were inoculated into LB medium with the appropriate antibiotics and incubated at 37°C for 24 h on a rotary shaker (175 rpm).
Protein samples from the cultures were prepared as described by Van der Vaart et al. (1997) with the following modifications. For cell fractionation, 40 ml of the respective cultures was harvested after a 15-min centrifugation at 12 000 × g at 4°C. The cell-free supernatants (extracellular fraction) were retained and the proteins precipitated with ice-cold acetone prior to being suspended in 0.1 M sodium acetate buffer (pH 5). The cell pellets were washed once with sterile distilled water, resuspended in 5 ml 0.1 M sodium acetate buffer (pH 5) and sonicated on ice for 20 min using a Model HD2070 Sonoplus Ultrasonic Homogenizer (Bandelin Electronic, Berlin, Germany). The cell lysate was clarified by centrifugation at 12 000 × g for 15 min and the supernatant, considered the intracellular fraction, was recovered. The pellet (cell wall fraction) was washed once with sterile distilled water and resuspended in 5 ml 0.1 M sodium acetate buffer (pH 5). Whole cell protein samples were prepared by harvesting the cells from 5 ml of the respective cultures by centrifugation, as described above. The cell pellets were washed with sterile distilled water and resuspended in 5 ml 0.1 M sodium acetate buffer (pH 5). The protein concentration of samples was determined by the method of Bradford (1976), using the BioRad protein assay kit (BioRad, Hercules, CA), with bovine serum albumin as standard.

Qualitative, quantitative and zymographic detection of acid phosphatase activity.

Colonies were grown on LB agar supplemented with the appropriate antibiotic and screened for acid phosphatase activity by flooding the surface with 0.1 M sodium acetate (pH 5), containing 0.1% α-naphtyl phosphate (Roche Diagnostics) and 0.2% Fast Garnett GBC salt (Sigma-Aldrich, Aston Manor, South Africa). Acid phosphatase-positive colonies produce a black precipitate.
Acid phosphatase activity was quantified according to the method of Golovan et al. (2000), with the following modifications. The assays were performed by incubating 200 µl of enzyme preparation with 200 µl of pNPP substrate (Roche Diagnostics), at a final concentration of 25 mM, in 0.1 M sodium acetate (pH 5). Following incubation at 37°C for 30 min, the reaction was terminated by the addition of 1 ml 1 M NaOH and the liberated p-nitrophenol (pNP) was measured at 405 nm. The extinction coefficient of p-nitrophenyl was taken to be 18.5 cm².µmol⁻¹ (Walter and Schütt, 1974), and one unit of enzyme activity was defined as the amount of enzyme able to release 1 µmol of p-nitrophenol per min under the assay conditions. All assays were performed in triplicate and the results are expressed as means ± standard deviation (SD).

SDS-PAGE was performed with 12% polyacrylamide gels by the method of Laemmli (1970) after the samples had been heated at 37°C for 30 min. Molecular weight markers (Bio-Rad) were included in each gel. Following electrophoresis the gels were either stained with Coomassie brilliant blue R-250 to visualize the protein bands or incubated for 16 h at room temperature in several changes of renaturation buffer for zymographic analysis (Hamilton et al., 2000). After renaturation treatment, gels were equilibrated for 1 h at 37°C in 0.1 M sodium acetate buffer (pH 5), and incubated at 37°C for 15 min to 1 h in 0.1 M sodium acetate (pH 5) containing 0.1% (w/v) α-naphthyl phosphate and 0.2% (w/v) Fast Garnet GBG salt (Gabriel, 1971). Phosphatase activity was indicated by the presence of black-stained bands.

Amino-terminal amino acid sequencing. Amino-terminal amino acid sequencing was determined as described previously (Du Plessis et al. 2002).
TABLE 1. Oligonucleotides used in this study

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequence (5’ to 3’)*</th>
<th>Description and location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sap-F</td>
<td>GCGTCGACAAATGCTACGGATGAG</td>
<td>SalI, upstream of P<sub>.sapS</sub></td>
</tr>
<tr>
<td>RBS-Sap-F</td>
<td>GGCTGCAGCATGAGGTGATA</td>
<td>PstI, 5’ end of sapS including the RBS</td>
</tr>
<tr>
<td>ATGsap-F<sup>a</sup></td>
<td>GCCTGCAGAATAAAAATTTCAGAG<sup>b</sup></td>
<td>SalI, 5’ end of sapsS including initiation ATG</td>
</tr>
<tr>
<td>ΔATGsap-F1</td>
<td>GCCTGCAGAATAAAAATTTCAGAG</td>
<td>PstI, 5’ end of sapS lacking initiation ATG</td>
</tr>
<tr>
<td>ΔATGsap-F2</td>
<td>GCCTGCAGAATAAAAATTTCAGAG</td>
<td>SalI, 5’ end of sapS lacking initiation ATG</td>
</tr>
<tr>
<td>ΔATGsap-F3</td>
<td>CAGGCATGCAATAAAAATTTCAGAGATTTGC</td>
<td>SphI, 5’ end of sapS lacking initiation ATG</td>
</tr>
<tr>
<td>ΔATGsap-F4</td>
<td>GCCTGCAGAATAAAAATTTCAGAG</td>
<td>PstI, 5’ end of sapS lacking initiation ATG</td>
</tr>
<tr>
<td>Δ31Sap-F</td>
<td>GCCTGCAGAATAAAAATTTCAGAG</td>
<td>PstI, 5’ end of sapS lacking N-terminal 31 amino acids</td>
</tr>
<tr>
<td>Δ43Sap-F</td>
<td>GCCTGCAGTACATCCGCATCAAAAAG</td>
<td>PstI, 5’ end of sapS lacking N-terminal 43 amino acids</td>
</tr>
<tr>
<td>Sap-R1</td>
<td>GGCTGCATTTAATTTAATTTCGCTCTTG</td>
<td>PstI, 3’ end of sapS</td>
</tr>
<tr>
<td>Sap-R2</td>
<td>GGCTGCATTTAATTTAATTTCGCTCTTG</td>
<td>SphI, 3’ end of sapS</td>
</tr>
<tr>
<td>Sap-R3</td>
<td>GGCTGCATTTAATTTAATTTCGCTCTTG</td>
<td>SalI, 3’ end of sapS</td>
</tr>
<tr>
<td>Sap-R4</td>
<td>CACGGATCATTTATTTAATTTCGCTCTTG</td>
<td>BamHI, 3’ end of sapS</td>
</tr>
<tr>
<td>Sap-R5</td>
<td>GGCTGCATTTAATTTAATTTCGCTCTTG</td>
<td>KpnI, 3’ end of sapS</td>
</tr>
<tr>
<td>Glu-F</td>
<td>GTCTAGACTACGCGCTGTAGATAAA</td>
<td>XbaI, upstream of P<sub>gluc</sub></td>
</tr>
<tr>
<td>Glu-R</td>
<td>CACTGCAGAGCTTTAACCTCTTGTGA</td>
<td>PstI, downstream of β-glucanase signal peptide</td>
</tr>
<tr>
<td>GluS-R</td>
<td>CACTGCAGAGCTTTAACCTCTTGTGA</td>
<td>PstI, downstream of β-glucanase signal peptide</td>
</tr>
<tr>
<td>Apr-F1</td>
<td>GCGAGCTCCTCCTGGAATATCCTCAAGAC</td>
<td>SacI, upstream of P<sub>apr</sub></td>
</tr>
<tr>
<td>Apr-F2</td>
<td>GGGAAGCTTTCCTGGAATATCCTCAAGAC</td>
<td>HindIII, upstream of P<sub>apr</sub></td>
</tr>
<tr>
<td>Apr-R</td>
<td>GGCTGCAGCAATAGAAACTCCCTCCTTT</td>
<td>SalI, downstream of P<sub>apr</sub></td>
</tr>
<tr>
<td>AprS-R</td>
<td>GGCTGCAGATCTCGGAACGTACCTCAAC</td>
<td>PstI, downstream of alkaline protease signal sequence</td>
</tr>
<tr>
<td>Sig-F</td>
<td>CTCCGGTACCCCTCGCGTGTTACCCCTTTCCTT</td>
<td>KpnI, upstream of P<sub>σD</sub></td>
</tr>
<tr>
<td>Sig-R</td>
<td>GCCTGCAGATCCATCACATGCAGACAC</td>
<td>SphI, downstream of P<sub>σD</sub></td>
</tr>
</tbody>
</table>

^a Relevant restriction sites are underlined.

^b The introduction of an ATG initiation codon is indicated by lower case letters.
RESULTS

Expression of the *S. aureus* sap*S* gene in *E. coli*, *B. subtilis* and *B. halodurans*.

Plasmid pNW-SapS, harbouring the promoter and coding region of the sapS preprotein (signal sequence and mature protein) was transformed into *E. coli* CU1867, *B. subtilis* 154 and *B. halodurans* BhFC04. The acid phosphatase enzyme was successfully expressed in all three host strains as determined with *in vitro* enzyme assays (Fig. 2) and zymography (Fig. 3). No acid phosphatase activity was detected with the *in vitro* enzyme assays of the host strains harbouring the pNW33N vector. In contrast to *Bacillus* sp. where the acid phosphatase activity was mostly cell-associated, in *E. coli* it was intracellular (Fig. 2).

![Graph showing acid phosphatase activity](image)

FIG. 2. Extracellular, whole cell and intracellular *in vitro* acid phosphatase activity results of the host strains harbouring pNW33-SapS (A) *E. coli* CU1867. (B) *B. subtilis* 154. (C) *B. halodurans* BhFC04.
Zymographic analysis of the cell wall fractions of the three host strains harbouring pNW33N-SapS was performed. The cell wall fractions were chosen as they gave rise to high activity levels. For E. coli the SapS activity band was found at the molecular mass position of the mature S. aureus 154 acid phosphatase protein band, indicating that the processing had occurred at or close to the cleavage site determined previously for the S. aureus 154 SapS protein (Du Plessis et al., 2002). The molecular mass of the acid phosphatase activity bands obtained for the B. subtilis and B. halodurans whole cell fractions (Fig. 3, lanes 4 and 5) were lower than that obtained for E. coli (Fig. 3, lane 3). In order to determine if the protein was processed differently in the Gram-positive Bacillus strains, N-terminal sequencing of the enzyme was performed. The N-terminal
sequence of the *S. aureus* SapS protein expressed in Gram-positive *B. halodurans* was determined to be NH$_2$-SIPASQKANL, which is twelve amino acids shorter than the native *S. aureus* SapS protein N-terminal sequence (Du Plessis et al., 2002). Consequently, the coding regions of the *S. aureus* 154 and *B. halodurans* BhFC04 mature SapS proteins respectively, were included in the vector construction.

Evaluation of heterologous promoters/ and signal sequences using sapS as a reporter gene, in E. coli CU1867. To ascertain the feasibility of using the sapS gene as a reporter gene in *E. coli* CU1867 the acid phosphatase activity of the host strain harbouring the reporter gene constructs (Fig. 1) was determined qualitatively with the plate screen assay (Fig. 4A) and quantitatively with in vitro enzyme assays (Fig. 4B).

FIG. 4A. Plate screen showing acid phosphatase activity of 24 h cultures of *E. coli* CU1867 harbouring the various constructs. Control (c), pNW33N; 1, pNW33N1; 2, pNW33N2; 3, pNW33N3; 4, pNW33N4; 5, pNW33N5; 6, pNW33N6; 7, pNW33N7; 8, pNW33N8; 9, pNW33N9 and 10, pNW33-SapS.
FIG. 4B. Whole cell *in vitro* acid phosphatase activity results of *E. coli* CU1867 24 h cultures harbouring different promoter constructs. 1, pNW33N1; 2, pNW33N2; 3, pNW33N3; 4, pNW33N4; 5, pNW33N5; 6, pNW33N6; 7, pNW33N7; 8, pNW33N8; 9, pNW33N9; 10, pMG36e-SapS.

E. coli CU1867 harbouring the pNW33N vector showed no acid phosphatase activity after activity staining (Fig. 4A). The host strain harbouring pNW33-SapS stained pitch black indicating high levels of enzyme activity. Varying levels of brown to black colour development was detected for the host strain harbouring the heterologous promoter-reporter gene constructs pNW33N1-pNW33N9 indicating differences in promoter strengths. No black colour development was detected for *E. coli* CU1867 (pNW33N8) indicating that the *B. halodurans* σ^D ligated to the reporter gene was not expressed.

In order to quantify the acid phosphatase activity results the production levels of the *sapS* enzymatic reporter gene from the various heterologous promoters and signal sequences were monitored after 24 h hours by *in vitro* acid phosphatase activity assays. In *E. coli* CU1867 the highest enzyme activity (835 mU/mg protein) was obtained for *PlacZ* ligated to the reporter gene (pNW33N9), followed by (589 mU/mg) obtained for the Papr-
reporter gene construct pNW33N4 and (541 mU/mg) obtained for the Papr+sp-reporter
gene construct (pNW33N5). The activity measured for Papr+sp ligated to the truncated
reporter gene (pNW33N6) was approximately 5-fold less (81 mU/mg) protein. Lower
levels of phosphatase activity (189mU/mg) was obtained for the Pgluc-reporter gene
construct pNW33N1 when compared to the activity (589 mU/mg) obtained for Papr-
reporter gene construct pNW33N4. This result indicated that the B. halodurans BhFC04
alkaline protease promoter is a stronger promoter than the β-glucanase promoter. The
enzyme activity determined for the lactococcal promoter P32 ligated to the reporter gene
(pNW33N10) was 177mU/mg protein. The enzyme activity determined for the Bacillus
temperature phage PSPO2 ligated to the reporter gene (pNW33N7) was 475 mU/mg
protein. In accordance with the plate screen assay, no activity was detected from the B.
halodurans PσD-reporter gene construct (pNW33N8) in E. coli CU1867. Low levels
(52mU/mg) of extracellular enzyme activity was detected for E. coli harbouring the PlacZ
promoter (construct pNW33N9) after 24h. The extracellular activity can probably be
ascribed to leakage as opposed to secretion in the E. coli host strain. No extracellular
activity was detected for any of the other constructs expressed in E. coli.
Evaluation of heterologous promoters/ and signal sequences using *sapS* as a reporter gene in *B. subtilis* 154. The acid phosphatase activity of *B. subtilis* 154 harbouring the various constructs was determined qualitatively (Fig. 5A) and quantitatively (Fig. 5B).

![Plate screen showing acid phosphatase activity of 24 h cultures of *B. subtilis* strain 154 harbouring the various constructs. Control (c), pNW33N; 1, pNW33N1; 2, pNW33N2; 3, pNW33N3; 4, pNW33N4; 5, pNW33N5; 6, pNW33N6; 7, pNW33N7; 8, pNW33N8; 9, pNW33N9 and 10, pNW33-SapS.](image)
FIG. 5B. Whole cell *in vitro* acid phosphatase activity results of *B. subtilis* strain 154 24 h cultures harbouring the different promoter constructs. 1, pNW33N1; 2, pNW33N2; 3, pNW33N3; 4, pNW33N4; 5, pNW33N5; 6, pNW33N6; 7, pNW33N7; 8, pNW33N8; 9, pNW33N9; 10, pMG36e-SapS.

B. subtilis 154 harbouring pNW33N showed no acid phosphatase activity with the plate screen assay (Fig. 5A). The host strain harbouring pNW33-SapS stained pitch black indicating high levels of enzyme activity. As for the *E. coli* CU1867 host strain varying levels of brown to black colour development was observed for the heterologous promoter-reporter gene constructs pNW33N1-pNW33N9. *B. subtilis* 154 harbouring the Papr-reporter gene construct pNW33N4, the Papr+sp-mature reporter gene construct pNW33N5 and the Papr+sp-truncated mature reporter gene construct pNW33N6 stained black indicating high levels of reporter gene activity. No black colour development was detected for *B. subtilis* (pNW33N8) indicating that φD ligated to the reporter gene was not expressed in *B. subtilis* 154. Similarly no activity was observed for *B. subtilis* (pNW33N9) showing that the *E. coli* PlacZ-reporter gene construct was not expressed in the Gram-positive host strain.
In order to quantify the acid phosphatase activity results in *B. subtilis* 154 the production levels of the *sapS* enzymatic reporter gene from the various heterologous promoters and signal sequences were monitored after 24 h hours by *in vitro* acid phosphatase activity assays. The highest enzyme activity (1923 mU/mg protein) was obtained for the *Papr+sp*-mature reporter gene construct pNW33N5, followed by (1620 mU/mg protein) obtained for the *Papr+sp*-truncated mature reporter gene construct pNW33N6 and (968 mU/mg protein) obtained for the *Papr*-reporter gene construct pNW33N4. Lower levels of phosphatase activity (267 mU/mg) was obtained for the *Plgluc*-reporter gene construct pNW33N1 when compared to the activity (968 mU/mg) obtained for *Papr*-reporter gene construct pNW33N4. The *in vitro* assay results correlated with the plate screen assay i.e. the recombinant strains harbouring the β-glucanase promoter reporter gene constructs (pNW33N1, pNW33N2 and pNW33N3) respectively stained lighter than the recombinant strains harbouring the alkaline protease promoter constructs (pNW33N4, pNW33N5 and pNW33N6). As for *E. coli* this result indicated that the *B. halodurans* BhFC04 alkaline protease promoter is a stronger promoter than the β-glucanase promoter. The P32 lactococcal promoter was also effectively recognized since 166 mU enzyme activity was measured with the pNW33N10 construct. No acid phosphatase activity was detected for the *PlacZ*-reporter gene construct (pNW33N9) in the host strain. This is not surprising since *Bacillus* is very stringent in its recognition of promoters (Patel et al., 2003). Extracellular acid phosphatase activity was detected for the *Papr+sp*- mature reporter gene construct pNW33N5 (60 mU/mg protein) and the *Papr+sp*- truncated mature reporter gene construct pNW33N6 (44 mU/mg protein). No extracellular activity
was detected for any of the other constructs evaluated in this host strain (results not shown).

Evaluation of heterologous promoters/ and signal sequences using sapS as a reporter gene in and* B. halodurans *BhFC04. The acid phosphatase activity of *B. halodurans* BhFC04 harbouring the expression vector constructs was determined qualitatively (Fig. 6A) and quantitatively (Fig. 6B).

FIG. 6A. Plate screen showing acid phosphatase activity of *B. halodurans* BhFC04 24 h cultures harbouring the various constructs. Control (c), pNW33N; 1, pNW33N1; 2, pNW33N2; 3, pNW33N3; 4, pNW33N4; 5, pNW33N5; 6, pNW33N6; 7, pNW33N7; 8, pNW33N8; 9, pNW33N9 and 10, pNW33-SapS.
FIG. 6B. Whole cell *in vitro* acid phosphatase activity results of *B. halodurans* BhFC04 24 h cultures harbouring the different promoter constructs. 1, pNW33N1; 2, pNW33N2; 3, pNW33N3; 4, pNW33N4; 5, pNW33N5; 6, pNW33N6; 7, pNW33N7; 8, pNW33N8; 9, pNW33N9. *B. halodurans* BhFC04 harbouring pNW33N showed no acid phosphatase activity with the plate screen assay (Fig. 6A). The host strain harbouring pNW-SapS stained black indicating high expression levels of the *SapS* gene from its own promoter and signal sequence. *E. coli* CU1867 harbouring the *PσD*-reporter gene construct (pNW33N8) stained light brown with the plate screen assay. No colour was detected for the host strain harbouring any of the other promoter-reporter gene constructs (Fig. 6A).

Of the heterologous promoter-reporter gene constructs the best activity (18mU/mg protein) was obtained with *B. halodurans* BhFC04 harbouring the *PσD*-reporter gene construct (pNW33N8). Since the acid phosphatase activity measured in this host strain was very low and no enzyme activity could be detected for the extracellular fractions of any of the *B. halodurans* transformants harbouring the various constructs, the reporter gene could not be used for the evaluation of the efficacy of the isolated *B. halodurans* *gluc* and *apr* signal sequences for the extracellular production of heterologous proteins.
DISCUSSION

In this study we evaluated the *S. aureus* acid phosphatase SapS enzyme as a reporter for promoter and signal sequence characterization in *E. coli* CU1867, *B. subtilis* 154 and *B. halodurans* BhFC04. Initial studies focused on determining whether the SapS gene was expressed in the three host strains from its own promoter and signal sequence. The SapS enzyme was found to be active after acetone precipitation which made it possible to concentrate the enzyme from protein extracts. A zymogram of active acid phosphatase led to the determination of the molecular masses of the sapS gene expressed in the three different host strains and showed that the enzyme was processed differently in *E. coli* as compared to *B. subtilis* and *B. halodurans*. The precursors of secreted proteins from Gram-positive bacteria generally have longer and more hydrophobic signal peptides than those of gram-negative bacteria (von Heijne, 1990). In *S. aureus* alanine is at the -1 position and lysine at the +1 position of the signal peptide of the sapS gene as determined with N-terminal sequencing. When applied to *B. halodurans* BhFC04 alanine was found to be at the -1 position and serine at the +1 position in the signal peptide of the sapS gene. In *B. subtilis* alanine is the predominant residue (>90%) at the -1 and -3 position of the *Bacillus* signal peptides (Nagarayan, 1993). Therefore it can be concluded that the sapS gene was cleaved at the same position as in *B. subtilis*.

The suitability of the SapS gene as an expression reporter system was evaluated by the ligation of a range of heterologous promoters which included both well known as well as newly isolated promoters and signal sequences. Expression/secretion ability of the transcriptional and translational fusion products were estimated by acid phosphatase activity determination. Since Vasantha et al., (1992) reported the successful use of the *B.*
amylo liquefaciens neutral and alkaline protease promoter and signal sequences for overexpression of heterologous proteins, the *B. halodur ans* alkaline protease gene promoter and signal sequence was isolated and evaluated for its ability to express/secrete the reporter gene. The thermostable endo-(1,3-1,4) β-glucanase encoding gene from *B. halodur ans* has previously been expressed successfully in *E. coli*, *B. subtilis* (Louw et al., 1993) and *L. plantarum* (unpublished results). Therefore, the β-glucanase gene promoter and signal sequence was isolated and evaluated for its ability to express/secrete the reporter gene. It has been reported that the *Bacillus* temperature phage SPO2 promoter functions well in *B. subtilis* (Schoner et al. 1983) and was included in the range of promoters to be evaluated. The strong lactococcal promoter P32 was used to express genes from prokaryotic and eukaryotic origin in lactococci, *B. subtilis* and *E. coli* (Van de Guchte et al., 1989). *SapS* gene expression from this promoter was therefore also evaluated. The σD promoter region of the *B. halodur ans hag* gene (flagellin protein) was included in the range of promoters evaluated as it was used in the development of a surface display system in *B. halodur ans* Alk36 (Crampton et al., 2007).

Enzyme studies performed with *E. coli*, *B. subtilis* and *B. halodur ans* harbouring the various transcriptional and translational-reporter gene constructs demonstrated that the *sapS* gene can be used as a reporter in all three the host strains. Enzyme activity obtained for recombinant strains harbouring the heterologous promoter-reporter gene constructs was less than the activity measured for *SapS* expressed from its own promoter and signal sequence. This could be due to the reduction in the quantity of fusion proteins produced depending on the differences in promoter strengths and not necessarily from misfolding. The decrease in enzymatic activity of fusion proteins
containing heterologous promoters was also found for GFP, lacZ and luciferase. GFP and luciferase reporters retain approximately 5% of their activity when compared to non-fused controls (Strathdee et al., 2000). Piruzian et al., (2002) reported a decrease in thermostable lichinase (LicB) and Gus activity for cells expressing the fusion constructs when compared to the native proteins. SapS activity was obtained with translational fusions of isolated promoter and signal sequences to the native mature 798-bp sapS gene sequence as well as the truncated 762-bp sapsS gene sequence in all three the host strains, showing the versatility of the sapS gene as an enzymatic reporter gene. The fact that very low levels of extracellular SapS activity was detected for the constructs in the three host strains and the activity was cell wall-associated makes it unsuitable for the isolation or evaluation of signal peptides for the extracellular production of heterologous proteins. From the range of promoters evaluated using this system the strongest promoter for the expression of heterologous proteins were easily identified in each of the three host strains. These include the E. coli lacZ promoter in E. coli, the B. halodurans alkaline protease promoter in B. subtilis and the B. halodurans σD promoter in B. halodurans. Although the Bacillus temperature phage SPO2 promoter was reported to be a strong promoter for heterologous protein production in B. subtilis (Schoner et al., 1983), similar activity levels were obtained in both E. coli CU1867 and B. subtilis 154. Although the lactococcal P32 promoter was used for heterologous protein production in E. coli and B. subtilis (van de Guchte et al. 1989), we found in our study that the B. subtilis temperature phage SPO2 and B. halodurans BhFC04 alkaline protease promoters both gave rise to higher levels of enzyme activity in E. coli and B. subtilis, than the P32 promoter.
This is the first report on the development of a Class C acid phosphatase gene as a reporter gene with the advantage of being able to function in both Gram-positive and Gram-negative host strains. Furthermore, the sapS enzymatic reporter gene has shown potential for use in the characterization and evaluation of a range of heterologous promoters which could find application in the development of expression vectors for improved production of industrially important proteins.

REFERENCES

