Laser alloying of Al with Ti and Ni based powders to improve wear resistance and hardness

L. A. B. Mabhali1,2, S. L. Pityana1 and L. Rampedi1

1CSIR National Laser Centre, P. O. Box 395, Pretoria, 0001, South Africa

2University of the Witwatersrand, Private 3, Wits, Johannesburg, 2050, South Africa
Presentation Outline

- Introduction
- Experimental Method
- Results
- Conclusions
Introduction

- Aluminium is extensively used in industry
 - Low cost
 - Light weight
 - Excellent workability
- But has poor wear resistance and low hardness

Objective

- To improve the surface hardness and wear resistance of Al AA1200 by laser alloying with mixed Ni and Ti powders
Laser alloying technique

- Improve the surface properties by modifying the composition and microstructure without affecting the bulk properties of the material
- Involves melting the substrate surface and blowing the powder of the alloying material into the melt pool
 - Fast and accurate
 - Many materials can be alloyed into different substrates
Experimental Method

• Laser alloying was carried out with a 4.4 kW Rofin Sinar Nd:YAG laser
• Beam focus diameter of 4mm on the substrate
• Argon shielding gas
• The flow rate of the shielding gas was set at 2L/min

Figure 1:(A) Nd:YAG laser (B) Experimental setup
Experimental Method

- Aluminium AA 1200 base material
- Ti and Ni powder mixtures
- Powder particle size was between 40 and 100µm
- Different laser scanning speeds (0.01m/s, 0.012m/s, 0.015m/s and 0.020m/s) used
- Single and multiple laser alloyed tracks were created on the surface
- For multiple laser alloyed surface an overlap of 15% between adjacent tracks was used
Hardness

- Polished cross-sections
- The through-thickness hardness measurements
- Load used 100g
- Indentation spacings was 100µm
Wear tests

- The tests were performed on laser alloyed surfaces composed of multiple passes
- The abrasive used was silica sand
- Test specimens were 20mm x 20mm x 5mm in size
- The load used was 10kg force
Results

- A homogeneous microstructure was obtained at 0.010m/s and 0.012m/s scanning speeds.
- There was no sufficient melting and infusion of the powder into the substrate obtained at high laser scanning speed.
- The thickness of the alloyed layer was ~0.52mm.
10wt% Ti and 90wt% Ni at 0.010m/s

Figure 2: SEM micrograph of the surface alloyed with 10wt% Ti and 90wt% Ni at 0.010m/s
Figure 3: XRD pattern of the surface alloyed with 10wt% Ti and 90wt% Ni at 0.010m/s
70wt% Ti and 30wt% Ni at 0.010m/s

Figure 4: SEM micrograph of the surface alloyed with 70wt% Ti and 30wt% Ni at 0.010m/s
XRD Pattern

Figure 5: XRD pattern of the surface alloyed with 70wt% Ti and 30wt% Ni at 0.010m/s
Hardness Results

Figure 6: Hardness versus Ti wt%
Wear Result

Figure 7: Wear rate versus sliding distance
Figure 8: Worn surfaces of Al (A), alloyed with 10wt%Ti and 90wt%Ni (B & C) and alloyed with 20wt%Ti and 80wt%Ni (D)
Conclusions

- Improved hardness and wear resistance was achieved after laser alloying at 0.010m/s and 0.012m/s laser scanning speeds.
- The hardness of the laser alloyed surfaces decreased as the Ti content in the Ni/Ti powder mixture increased.
- The wear resistance decreased as the Ti content increased.
- Grooves, cracks and microfracturing were the dominant wear features for the laser alloyed Al alloys.
Thank you