Using Remote Sensing Images to Design Optimal Field Sampling Schemes

Pravesh Debba

CSIR, Logistics and Quantitative Methods, CSIR Built Environment, email: pdebba@csir.co.za
Using Remote Sensing Images to Design Optimal Field Sampling Schemes

Debba

Outline

1. Introduction to hyperspectral remote sensing
2. Objective
3. Study Area
4. Data used
5. Methodology
6. Results
OVERVIEW OF HYPERSPECTRAL REMOTE SENSING

Hyperspectral sensors
- record the reflectance in many narrow contiguous bands
- various parts of the electromagnetic spectrum (visible - near infrared - short wave infrared)
- at each part of the electromagnetic spectrum results in an image

Figure: Spectral Range
Using Remote Sensing Images to Design Optimal Field Sampling Schemes

Debbi

OVERVIEW OF HYPERSPECTRAL REMOTE SENSING

Hyperspectral sensors

- record the reflectance in many narrow contiguous bands
- various parts of the electromagnetic spectrum (visible - near infrared - short wave infrared)
- at each part of the electromagnetic spectrum results in an image

**Figure:** Spectral Range
OVERVIEW OF HYPERSPECTRAL REMOTE SENSING

Hyperspectral sensors
- record the reflectance in many narrow contiguous bands
- various parts of the electromagnetic spectrum (visible - near infrared - short wave infrared)
- at each part of the electromagnetic spectrum results in an image

Figure: Spectral Range
OVERVIEW OF HYPERSPECTRAL REMOTE SENSING (cont.)

2.5

Wavelength (\(\mu\)m)

Reflectance

kaolinite

100

50

20 m

204 spectral bands

crosstrack (614 pixels x 20 m/pixel)

along track (512 pixels per scene)

each pixel has an associated, continuous spectrum that can be used to identify the surface materials

Figure: Hyperspectral cube
OVERVIEW OF HYPERSPECTRAL REMOTE SENSING (cont...)
OVERVIEW OF HYPERSPECTRAL REMOTE SENSING (cont...) 

Figure: Example of 3 different spectral signatures
OBJECTIVE OF STUDY

Using a hyperspectral image, to guide field sampling collection to those pixels with the highest likelihood for occurrence of a particular mineral, for example alunite, while representing the overall distribution of alunite.

Usefulness: To create a mineral alteration map
Using Remote Sensing Images to Design Optimal Field Sampling Schemes

Debba

STUDY SITE

Figure: A generalized geological map of the Rodalquilar study area showing the flight line and the hyperspectral data
DATA USED

- **HyMap**: 126 bands – 0.4–2.5 µm
- **Geology**: 30 bands – 1.95–2.48 µm
- Distinctive absorption features at wavelengths near 2.2 µm
- We collected field spectra during the over-flight using the Analytical Spectral Device (ASD) fieldspec-pro spectrometer – 0.35–2.50 µm
Using Remote Sensing Images to Design Optimal Field Sampling Schemes

Debba

Introduction to hyperspectral remote sensing
Objective
Study Area
Data used
Methodology
Results

DATA USED

- **HyMap**: 126 bands – 0.4–2.5 \( \mu \text{m} \)
- **Geology**: 30 bands – 1.95–2.48 \( \mu \text{m} \)
- Distinctive absorption features at wavelengths near 2.2 \( \mu \text{m} \)
- We collected field spectra during the over-flight using the Analytical Spectral Device (ASD) fieldspec-pro spectrometer – 0.35–2.50 \( \mu \text{m} \)
DATA USED

- **HyMap**: 126 bands – 0.4–2.5 \( \mu m \)
- **Geology**: 30 bands – 1.95–2.48 \( \mu m \)
- Distinctive absorption features at wavelengths near 2.2 \( \mu m \)
- We collected field spectra during the over-flight using the Analytical Spectral Device (ASD) fieldspec-pro spectrometer – 0.35–2.50 \( \mu m \)
DATA USED

- HyMap: 126 bands – 0.4–2.5 \( \mu \text{m} \)
- Geology: 30 bands – 1.95–2.48 \( \mu \text{m} \)
- Distinctive absorption features at wavelengths near 2.2 \( \mu \text{m} \)
- We collected field spectra during the over-flight using the Analytical Spectral Device (ASD) fieldspec-pro spectrometer – 0.35–2.50 \( \mu \text{m} \)
Figure: Plot of 7 endmembers from USGS spectral library for the 30 selected bands, enhanced by continuum removal.
CONTINUUM REMOVAL

Spectra are normalized to a common reference using a continuum formed by defining high points of the spectrum (local maxima) and fitting straight line segments between these points. The continuum is removed by dividing it into the original spectrum.

Figure: Concept of the convex hull transform; (A) a hull fitted over the original spectrum; (B) the transformed spectrum.
CONTINUUM REMOVAL (cont...)
Using Remote Sensing Images to Design Optimal Field Sampling Schemes

Debba

Introduction to Hyperspectral Remote Sensing
Objective
Study Area
Data used
Methodology
Results

METHODS: Spectral Angle Mapper (SAM) Classifier

- SAM – pixel based supervised classification technique
  - Measures the similarity of an image pixel reflectance spectrum to a reference spectrum
  - Spectral angle (in radians) between the two spectra

\[
\theta(\vec{x}) = \cos^{-1}\left( \frac{f(\lambda) \cdot e(\lambda)}{||f(\lambda)|| \cdot ||e(\lambda)||} \right),
\]

\( f(\lambda) \) – image reflectance spectrum and \( e(\lambda) \) – reference spectrum.

- Results in a gray-scale rule image – values are the angles
METHODS: Spectral Angle Mapper (SAM) Classifier

- SAM – pixel based supervised classification technique
- Measures the similarity of an image pixel reflectance spectrum to a reference spectrum
- Spectral angle (in radians) between the two spectra
  \[
  \theta(\mathbf{x}) = \cos^{-1}\left(\frac{f(\lambda) \cdot e(\lambda)}{||f(\lambda)|| \cdot ||e(\lambda)||}\right),
  \]
  
  \(f(\lambda)\) – image reflectance spectrum and \(e(\lambda)\) – reference spectrum.
- Results in a gray-scale rule image – values are the angles
METHODS: Spectral Angle Mapper (SAM) Classifier

- SAM – pixel based supervised classification technique
- Measures the similarity of an image pixel reflectance spectrum to a reference spectrum
- Spectral angle (in radians) between the two spectra

\[ \theta(\vec{x}) = \cos^{-1}\left( \frac{f(\lambda) \cdot e(\lambda)}{||f(\lambda)|| \cdot ||e(\lambda)||} \right), \]  

(1)

\( f(\lambda) \) – image reflectance spectrum and \( e(\lambda) \) – reference spectrum.

- Results in a gray-scale rule image – values are the angles
METHODS: Spectral Angle Mapper (SAM) Classifier

- SAM – pixel based supervised classification technique
- Measures the similarity of an image pixel reflectance spectrum to a reference spectrum
- Spectral angle (in radians) between the two spectra

\[ \theta(\mathbf{x}) = \cos^{-1} \left( \frac{f(\lambda) \cdot e(\lambda)}{||f(\lambda)|| \cdot ||e(\lambda)||} \right), \]  
\[ (1) \]

- Results in a gray-scale rule image – values are the angles
METHODS (cont . . .) : Spectral Angle Mapper (SAM) Classifier

Figure: Spectral angle.
METHODS (cont. . . ): SAM Rule Image for Alunite

Figure: SAM classification rule image for alunite. Dark areas indicate smaller angles, hence, greater similarity to alunite.
SFF – pixel based classification technique.

- Remove the continuum from both the reference and unknown spectra.
- SFF produces a scale image for each endmember selected for analysis by first subtracting the continuum-removed spectra from one (inverting it), and making the continuum zero.
- SFF determines a single multiplicative scaling factor that makes the reference spectrum match the unknown spectrum.
METHODS (cont. . .): Spectral Feature Fitting (SFF)

- SFF – pixel based classification technique.
- Remove the continuum from both the reference and unknown spectra.
- SFF produces a scale image for each endmember selected for analysis by first subtracting the continuum-removed spectra from one (inverting it), and making the continuum zero.
- SFF determines a single multiplicative scaling factor that makes the reference spectrum match the unknown spectrum.
METHODS (cont...): Spectral Feature Fitting (SFF)

- SFF – pixel based classification technique.
- Remove the continuum from both the reference and unknown spectra.
- SFF produces a scale image for each endmember selected for analysis by first subtracting the continuum-removed spectra from one (inverting it), and making the continuum zero.
- SFF determines a single multiplicative scaling factor that makes the reference spectrum match the unknown spectrum.
METHODS (cont. . .): Spectral Feature Fitting (SFF)

- SFF – pixel based classification technique.
- Remove the continuum from both the reference and unknown spectra.
- SFF produces a scale image for each endmember selected for analysis by first subtracting the continuum-removed spectra from one (inverting it), and making the continuum zero.
- SFF determines a single multiplicative scaling factor that makes the reference spectrum match the unknown spectrum.
SFF then calculates a least-squares-fit, band-by-band, between each reference endmember and the unknown spectrum.

- The total root-mean-square (RMS) error is used to form an RMS error image for each endmember.
- Scale/RMS provides a fit image that is a measure of how well the unknown spectrum matches the reference spectrum on a pixel-by-pixel basis.
METHODS (cont. . . ): Spectral Feature Fitting (SFF)

- SFF then calculates a least-squares-fit, band-by-band, between each reference endmember and the unknown spectrum.
- The total root-mean-square (RMS) error is used to form an RMS error image for each endmember.
- Scale/RMS provides a fit image that is a measure of how well the unknown spectrum matches the reference spectrum on a pixel-by-pixel basis.
METHODS (cont. . .): Spectral Feature Fitting (SFF)

- SFF then calculates a least-squares-fit, band-by-band, between each reference endmember and the unknown spectrum.
- The total root-mean-square (RMS) error is used to form an RMS error image for each endmember.
- Scale/RMS provides a fit image that is a measure of how well the unknown spectrum matches the reference spectrum on a pixel-by-pixel basis.
METHODS (cont. . .): SFF Rule Image for Alunite

Figure: SFF fit image for alunite. Lighter areas indicate better fit values between pixel reflectance spectra and the alunite reference spectrum.
METHODS (cont. . .): Fitness Function

SAM values scaled to $[0, 1]$

$$w_1(\theta(\vec{x})) = \begin{cases} 0, & \text{if } \theta(\vec{x}) > \theta^t \\ \frac{\theta^t - \theta(\vec{x})}{\theta^t - \theta_{\min}}, & \text{if } \theta(\vec{x}) \leq \theta^t \end{cases}$$

(2)

SFF values scaled to $[0, 1]$

$$w_2(\tau_F(\vec{x})) = \begin{cases} 0, & \text{if } \tau_F(\vec{x}) < \tau_F^t \\ \frac{\tau_F(\vec{x}) - \tau_F^t}{\tau_{F,\max} - \tau_F^t}, & \text{if } \tau_F(\vec{x}) \geq \tau_F^t \end{cases}$$

(3)
Combination of SAM and SFF scaled to $[0, 1]$ is defined as

$$w(\theta(\mathbf{x}), \tau_F(\mathbf{x})) = \begin{cases} \kappa_1 w_1(\theta(\mathbf{x})) + \kappa_2 w_2(\tau_F(\mathbf{x})), & \text{if } \theta(\mathbf{x}) \leq \theta_t \text{ and } \tau_F(\mathbf{x}) \geq \tau^t_F \\ 0, & \text{if otherwise} \end{cases} \quad (4)$$

$$\phi_{WMSD}(S^n) = \frac{1}{N} \sum_{\mathbf{x} \in I} w(\mathbf{x}) \| \mathbf{x} - W_{S^n}(\mathbf{x}) \|, \quad (5)$$
METHODS (cont. . .): Fitness Function

Figure: Fitness function with different weights for $N = 15$. 

$w(x)=1$ $w(x)=2$
RESULTS OF THE OPTIMIZED SAMPLING SCHEME

Figure: Optimized sampling scheme.
RESULTS (cont. . .): Distribution of 40 optimized sampling scheme

Figure: Distribution of 40 optimized sampling scheme
RESULTS (cont...): Distribution of 40 highest values

Figure: Sampling scheme: 40 highest values
RESULTS (cont...): SUMMARY COMPARISON

(a) SAM Classification
(b) 40 Optimized points
(c) Distribution sampling pts
(d) Distribution highest points

Figure: Summary comparison of the optimized sampling scheme.