An Atomistic Simulation Study of the Interaction of Organic Adsorbates with Fluorapatite Surfaces

Donald Mkhonto,^{1,2,3} Phuti E. Ngoepe,¹ Timothy G. Cooper^{2,4} and Nora H. de Leeuw^{2,5}

¹Materials Modeling Center, University of Limpopo (formerly University of the North), Private Bag X1106, Sovenga, 0727, South Africa

²School of Crystallography, Birkbeck College, Malet Street, London WC1E 7HX, UK

³now at CSIR, Materials Science and Manufacturing, Polymer, Ceramics and Composites, P.O. Box 395, Pretoria 0001, South Africa.

⁴now at The Pfizer Institute for Pharmaceutical Materials Science, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK

⁵Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK

Methodology

Metadise program

- Static lattice minimisation technique
- Forces between species described by potential model

- •Region I : ions relaxed
- •Region II : ions kept at bulk equilibrium position

Potential Model

Components to interatomic forces:

- Long range electrostatic E_{ii} = q_iq_i/r_{ii}
- Short range repulsions and Van der Waals interactions, e.g

-Morse for bonded interactions (OH, PO₄)

 $E_{ij} = D[1-exp(-\alpha(r_{ij}-r_0))]^2-D$

-Lennard Jones potential functions for non bonded species of organic molecules $E_{ij} = A/r_{ij}^{12} - B/r_{ij}^{6}$

-Buckingham for non-bonded and bonded (Ca-O, Ca-F) $E_{ij} = A \exp(-r_{ij}/\rho) - C_{ij}/r_{ij}^{6}$

-Bond bending term (PO₄) $E_{ij} = \frac{1}{2} k_{ijk} (\theta_{ijk} - \theta_0)^2$

Dry and Hydrated (0001) Surface

- Side view: (a) bulk terminated and
- (b) geometry optimised (0001) surface
- Surface Ca move into the bulk Ca-O shorter.
- Alternating lengthening and shortening of F-F distances into the bulk.
- Series of partial coverages up to full monolayer coverage
- Ca-O_w strongest interaction
- Clustering of H₂O molecules.

Fluorapatite Surfaces

Surface energies of un-relaxed, relaxed and hydrated surfaces.

$\gamma =$	$E_s - E_b$	$\gamma = \frac{E_h - (E_b + nE_{H_2O})}{E_h - (E_b + nE_{H_2O})}$	E^{-l}	$E_h - \left(E_{dry} + nE_{H_2O}\right)$
	A		L_{hydr} –	n

PLANE	$\gamma_{\text{unrel.}}(\mathbf{J.m}^{-2})$	$\gamma_{rel}(Jm^{-2})$	$\gamma_{\rm w}({\rm Jm}^{-2})$	E _{hydration} (kJmol ⁻¹)
(0001)	1.19	0.77	0.45	-73
$(10\bar{1}0)$	2.71	1.32	0.75	-97
(1011)	2.28	1.00	0.61	-83
$(11\overline{2}0)$	2.28	1.12	0.72	-97
(1013)	2.98	1.94	1.67	-78
$(11\bar{2}1)$	2.62	1.11	0.88	-81

The hydration energies are used for competitive adsorption with organic molecules

D. Mkhonto, N.H. de Leeuw, J. Mater. Chem. 12, 2633 (2002)

Adsorption of Some Organic Molecules on Apatite

•Apatite coexist in mineral ore deposits with other calcium-bearing minerals such as calcium phosphate, calcium carbonate, calcium fluorite.

•Apatite need to be separated from these e.g. by flotation process.

•Surfactant molecules with long hydrophobic chains are attached to make mineral surfaces hydrophobic.

• They are attached either by physisorption or ionic bonding.

•We have modelled selection model of collector molecules using atomistic simulation.

Phys. Chem. Min. (2006) in press

Molecule models

[CHOOH] model of carboxylic acid.

Methylamine

[H₂CNH₃] Amine and methyl group functional group

[RC(=O)NHOH] Hydroxyl amide and carbonyl functional group

HC(=O)CH₂OH Contain hydroxyl and aldehyde functional groups

Adsorption Energies (kJmol⁻¹)

$E_{ads} = E_{system}$ -	$(E_{surf} + E_{adsorbate})$
--------------------------	------------------------------

surface	Methanoic	hydroxamic	Hydroxamic	methylamine	Hydroxyethanal	hydroxyethanal
	acid	cis	trans		cis	trans
$\{0 \ 0 \ 0 \ 1\}$	-105.2	-112.2	-112.4	-30.3	-142.1	-122.8
$\{1 \ 0 \ \overline{1} \ 0\}$	-170.1	-203.0	-116.4	-83.0	-196.3	-214.6
$\{1 \ 0 \ \overline{1} \ 1\}$	-136.0	-185.8	-132.9	-52.0	-193.0	-135.9
$\{1\ 1\ \overline{2}\ 0\}$	-171.5	-185.4	-172.0	-95.3	-212.6	-159.6
$\{1\ 1\ \overline{2}\ 1\}$	-138.0	-169.7	-115.5	-51.3	-185.8	-187.3
$\{1 \ 0 \ \overline{1} \ 3\}$	-105.3	-98.4	-99.4	-25.0	-134.8	-137.4

H₂O(hydration energies) ranges between -73 to -97 kJmol⁻¹

- •Generally (100) and (110) are preferable adsorption surface.
- •They have relatively high surface energies and would be reactive.
- •(103) has large surface area and adsorbate has little effect to surface geometry.
- •Methylamine is weakest, because only N and H interact with surfaces and partly steric hindrance.
- •Availability of O on surfactants to interact on surface contribute to stability.
- •Also flexibility due to C-C on other molecules plays a role.
- •Methylamine will not displace water thus, not suitable for flotation

Adsorbate Structures.

carboxyl Oxygen bindate to two closer Ca ions.
Hydroxyl Oxygen not interact in favour of H-O_A

Both cabonyl and hydroxyl O interact with Ca, also H to O_A and to some extent H-F

Hydroxyethanal

•Trans form preferred but rotate to mid way position between staggered and eclipse.

•Generally give the eclipse/Cis form to be most favourable interaction

Atomistic Summary

- Strongest attachments where multiple bonds are formed.
- Particularly where they can bridge between two surface Ca.
- Separating the carboxylic acid functional group into =O and –OH parts spread over two carbon atoms, lead to a greater flexibility of the molecule.
- It make the molecule better capable of forming bridging interactions between surface calcium atoms.
- Competitive adsorption with H₂O shows that methylamine will not displace water hence not suitable to be used in flotation
- Further modeling of coexisting minerals, (*tungstates, fluorides and phosphates*) will give better comparison of suitable separating molecules between them.

ACKNOWLEDGEMENTS

CSIR, NRF – RSA RS - UK. P.E. Ngoepe - UL - RSA N.H. de Leeuw – BBK, UCL – UK T.G. Cooper – BBK - UK