

Abstract—Honeypots are decoy machines that are

placed on the network to attract attackers, whilst also
distracting them from more important targets.
Honeypots are thus an ideal medium for collecting data
that can later be studied to analyse attackers’ actions
and motives. As a decoy and data collection tool
honeypots have become a useful security resource. A
Honeynet consist of a number of honeypots and can thus
be used to compare attack data, experiment with
different setups and gather more information. However
to successfully set up a Honeynet a number of design,
architectural and implementation considerations need to
be taken. The aim of this paper is to provide a
framework to guide the establishment of a Honeynet.

Index Terms—honeypot, honeynet, framework.

I. INTRODUCTION

RGANISATIONS around the world are faced with
the daunting task of securing their communication

processes and infrastructure. Computer and information
system networks form a vital part of the communication
backbone, and it is imperative that sufficient security
mechanisms be deployed.

Intruders are keen to exploit vulnerabilities present on
systems. Implemented security mechanisms are only as
strong as the weakest link, and new vulnerabilities are
continuously being discovered. Hackers thrive on taking
advantage and utilising any opportunity to wreak havoc on
systems or steal and abuse resources. Hackers are too
inventive and persistent to be ignored.

Despite ongoing research in the computer security field, it
is still not possible to measure or completely secure
computer systems. Vulnerabilities, as soon as it is
discovered, allow intruders to exploit and compromise
computer systems. As in any society, not everyone has good
intentions and motives. The public domain of the Internet is
quite the same. The overwhelming success and the rapid
growth of the Internet has made networked computer
systems a ubiquitous resource [1]. The interconnectivity
facilitated by the Internet leaves little room for anonymity
and allows for great transparency of one another. Internet

history is filled with examples of exploitation, and this
scenario continues to increase at an alarming rate. It is
believed that the more interesting the target, the faster the
attack will occur. Honeypots are a means of creating an
inviting target to lure attackers. If a system is configured
and deployed as a honeypot, one can study attackers’
strategies when the vulnerabilities are exploited.

Very little is known about attackers [2]. There are many
questions surrounding them - who are they, what is the
reason/purpose of the attack, how was it done? Ordinary
computer security often does not provide answers to these
questions. Defence organisations have directed their
security focus on collecting information on the enemy to
understand and defend against threats. Security is a field
that requires continual monitoring and reactive responses.
To improve security, you should know your attackers and
study and understand them. However, with standard
computer security practices not possessing such attack
information, the task of understanding an attack and
providing better security is quite challenging. Honeypots are
one example of such technology that can be employed to
understand how attackers work.

Honeypots are a means of attracting and recording attacks
as it occurs, which can then be traced in real time or
analysed at a later stage. The definition of a honeypot,
according to Spitzner, is that it is an information security
resource of which the value lies in being probed, attacked or
compromised [3]. Why would anyone want to build a
system and allow it to be attacked? The reason is that in an
attempt to fight back against intruders, what better way is
there than to learn from them and follow their actions? A
honeypot records their footsteps as they move through a
system. This data can be studied and analysed to understand
their behaviour. Through observing and learning from
hackers, an attempt is made to shed light on attacks: how it
is performed, its purpose and how it can be prevented or
repaired. Patterns can be identified, for example specific
attacks originating from certain countries or the infection of
certain worms and viruses.

Honeypots can be used to set up a honeynet. A honeynet
consists of a high-interaction honeypot [2]. Honeynets were
meant to replicate production systems so that attackers
could interact with real operating systems and applications
and not just emulated services (as in some honeypots) [3]. A
honeynet also refers to a network of honeypots that have
been deployed [4]. In this way, honeypot data can be

Framework for the Establishment of a Honeynet

N. Veerasamy and Prof. J. P. Eloff

Information and Computer Security Architectures Research Group
Department of Computer Science

University of Pretoria
 South Africa

 nveerasamy@csir.co.za

O

compared and more complex honeypot systems can be
exposed to open networks and thus gain an understanding of
higher-level attacks.
Honeynets can be implemented in any number of ways-
with different operating systems, networking, applications,
configurations and logging mechanisms. This paper seeks to
guide the setting up of a honeynet by explaining the various
design and architectural decisions and implementations. The
paper thus proposes a high-level three stage framework that
will be used to methodically carry out the establishment of a
honeynet.
The paper is therefore structured as follows: the next section
will provide a brief introduction to previous documented
honeynet development, Section III will discuss the proposed
framework and Section IV will provide the concluding
comments and close the paper.

II. BACKGROUND

A study of honeypot literature reveals descriptions of the
uses, functionality and implementation of honeypots. This
Section seeks to explain the context of honeynet
development and previous prescriptions of
honeypot/honeynet establishments.

Firstly the distinction between a honeypot and a honeynet
will be drawn. A honeypot takes the appearance of an
attractive service, set of services, an entire operating system
or even an entire network, but is in reality a tightly sealed
compartment built to lure and contain an attacker [5].
Several honeypots can be assembled into networks of
honeypots called honeynets, and because of the wealth of
data collected through it, honeynets are considered a useful
tool to learn more about attack patterns and attacker
behaviour in communication networks [4]. From the
definitions it is evident that honeypots can be implemented
in various forms, levels and configurations. A honeynet is
therefore built up by setting, linking and collecting
data/monitoring a number of honeypots. Various software
products, logging tools and architectures have been used as
part of honeypot/honeynet development which will briefly
be explored next.

Many commercial honeypots have been developed that
merely need to be installed and deployed. These consist of
software simulation honeypots which are deception
programs that emulate system software (SS) and services
[3]. A few examples include Back Officer Friendly,
CyberCop Sting and Specter. In such instances, the software
is installed and the logging mechanisms monitored.

A few architectural implementations have also been
described in literature. For example, Anagnostakisy et al.
explained their setup of a shadowed honeypot to detect
attacks. The architecture consisted of a number of anomaly
detectors (monitoring traffic entering network), and a
shadowed honeypot (instance of production system to which
suspicious traffic is sent for analyses) [6].

Another architecture, proposed by Spitzner, consisted of a
production environment, gateway and honeynet connected
to the open network (Internet). The critical element is the
Honeywall gateway [in a honeynet], a layer two bridging
device that controls and captures all of the attacker’s

inbound and outbound activity [7]. Spitzner proposes that
the traffic in a honeynet should go though a gateway, so as
to both capture and control the activity [7].
A honeynet architecture, Gen II, was explored by d’Orey et
al. Gen II honeynets consist of an isolated network segment
where a honeywall machine mediates the network traffic
going in and out of the honeypot [8]. The packet capturer
TCPdump and the intrusion detection mechanism Snort
were used for the data capture and analysis in this scheme.

Key to any honeypot is a sensing device (typically the
honeypots itself and can be either low-interaction (simulates
certain services or vulnerabilities) or high-interaction
honeypots (complete operating system with more realistic
capabilities and functionality)) and a logging mechanism
(intelligent software like Sebek, an Intrusion Detection
System (IDS) like Snort, a packer capturer like Ethereal or
even a layered combination of these technologies) [9].
These critical components form the basis of a honeypot. In a
honeynet the sensing and logging could take place at a
central point or be distributed across the honeypots.

The discussion in this section is indicative that many
authors have described critical elements and specific
implementations of honeynets. However, a useful guide
explaining how a honeynet should be set up is proposed by
the author so as to offer support to the successful
implementation of a honeynet.

Having carried out a few experiments to establish a
honeynet, various problems were encountered. These
experiments consisted of setting up a honeynet of virtual
machines, installing, networking and configuring each
honeypot and the system overall. The various problems
encountered were helpful in understanding many
architectural, design and analysis concepts. Through the
experimentation process many lessons were learnt. As a
result, a framework for the establishment of honeypots was
developed. According to the Whatis online Computer
dictionary and encyclopedia a framework serves to support
and guide the development or building of a real or
conceptual structure [12]. In this context, the framework
proposed by the author discusses the various considerations
and decisions that should be made before and during the
implementation of a honeynet.

Honeypots and honeynets can be set up in various ways
with numerous architectural, design and implementation
decisions to be made. The goal of this paper is to describe a
framework that will guide the establishment of a honeynet.
Thus in the next section a basic strategy as well as
implementation guidelines will be provided to facilitate the
setting up of a honeynet.

III. FRAMEWORK

In the previous sections an overview and introduction to
honeypot/honeynets were given, as well as a brief
description of a few examples of honeypot/honeynet
establishments. The requirement for a framework to guide
the establishment of a honeynet was identified. Various
considerations should be made and the suggested
framework aims to facilitate the process.

This section proposes a high-level three phase framework
for the establishment of a honeynet. Each of these stages

will be elaborated. The tasks in each category serve as an
outline of the actions that need to be taken. By stating three
broad categories, the framework can be adapted as required
when new considerations are discovered. The broad stages
are show in Figure 1. The framework also suggests that the
stages can be cyclic with the process being repeated for
different contexts.

Fig 1. Stages in framework of honeynet establishment

A. Preparation stage
The preparation stage consists of the activities/considerations

shown in the Fig2.

Fig 2. Preparation stage

Motive

The motive or aim behind deploying a honeypot must be
established. This is necessary as the aim will provide insight
into how the honeypot should be set up. The author’s
overall impression from studying available literature is that
some motives for using honeypots’ are:

1) Data capturing- if the approach is statistical in
approach [3]

2) Individual investigation to track attackers and look at
their behaviour

3) Production system defence to improve the security of
actual production system by studying the data on a honeypot
configured as a production system [3]

4) IDS a honeypot as a component of an IDS or for IDS
development (identification of signatures) [2]

5) Determine trends and patterns by studying the data
6) Formulate attack study methods by devising different
ways of examining the attack data
7) Serve as a decoy [2]
To further elaborate on the above-mentioned motives one

purpose would lie in publishing statistical findings. By
formulating statistics much insight into trends and patterns
could be gained. Another objective would be to correlate
released bugs, worms, viruses or other exploits with activity
on a honeypot. In individual investigations, the motive
would be understand particular attackers- to investigate who
they are, where are they from, what were they interested and

what did they do. Organisations are keen to know who the
“bad guys” are. Another intention would be to improve the
security of a network by implementing mirror copies of the
actual production system and studying the attacks, adding
security features and deploying on the network to test out its
functionality. Setting up a honeypot to prevent attackers
from attacking critical systems is another motive. In this
way, the attacker spends time exploring the honeypot
instead of invading the actual system. The honeypot
distracts and keeps the attacker occupied.

The motive behind setting up a honeypot can also be an
organization or directive from higher management. It may
be the case that a group of people are interested in
honeypots as a research tool. Under their directive a
honeypot should be set up and studied. The technical team
will be responsible for deciding how the analysis and
implementation will be carried out. The considerations for
establishing a honeynet follow. These issues form the
foundation of the honeynet and should therefore be
carefully thought out.

Analyses

Decide the type of analysis that will be carried out at the
beginning of the project. This is necessary as the analysis
scheme drives the entire system: it determines the logging
mechanisms, the expected format, required output and
actually is linked to the overall aim of the system. The
analysis scheme is integral as the analysis requirements need
to be built into the system design and implementation. The
analysis scheme provides direction for the system.
Implementing a honeynet and deciding that the analysis
should have been carried out in a different way can
seriously impact the system. New applications would have
to be installed, additional configuring of the system would
have to be carried out, the different components would have
to be integrated again, etc. By understanding the motive for
the system, the types of analysis can be identified.
Thereafter the specific logging programs, applications or
tools should be decided on. Identifying the programs, tools
and applications, will result in a specification of the type of
data that will be captured.

The raw network traffic can be captured and analysed.
The logs generated from auditing programs can be studied.
Specialised logging programs can be installed.
Scripts/Programs can be written to filter/summarise logs and
traffic capture and thus report of the attack behavior. The
logs/traffic capture could also be manually studied to detect
attack actions and patterns. IDS entries can be correlated
with data capturing logs and individuals investigated.

Each motive for establishing a honeypot has
considerations regarding the analysis methods.

1) Data capturing- If the approach is statistical in nature
the traffic capturing/logs can be analysed and be reported
back in the form of statistical findings of the attack
behaviour. For example, peak attack periods or top attackers
can be identified.

2) Individual investigation to track attackers and look at
their behaviour. Scripts/ programs can automate the
processing of huge amounts of log/traffic data and thus
summarise attack behavior. The analysis can also be carried

out without the use of automation, but through a manual
study of the data captured- similar to a forensic analysis in
which the identification and investigation of suspicious
activities is carried out. A description of attackers’ actions
can be compiled by studying the systems logs/traffic
capture. It is often insightful to identify and list the actions
carried out by an attacker.

3) Production system defence to improve the security of
actual production system by studying the data on a honeypot
configured as a production system. The honeypot will need
to be configured as the production system and deployed on
the network. If the honeypot is compromised the honeypot
data can be studied to improve the security mechanisms on
the production system itself. The honeypot with improved
security can once again be deployed to test out these
measures. The honeypot can also be studied to identify what
actions the attacker took and determine the nature/motive of
the attacks. This provides insight into the purpose of the
attacks.

4) Determine trends and patterns. Statistically analyzing
the data will help detect patterns. Attack activity could also
be correlated with specific security events/exploits. New
trends and types of behaviour can be found to occur.

5) Formulate attack study methods by devising different
ways of examining the attack data. This could involve
program/scripts to process attack data and produce reports,
use of data-mining techniques to detect patterns and even
individual investigations of attackers.

6) Comparison of results. In this case different honeypots
can be set up with varying levels of security. After the
honeypots are deployed and the system attacked the
honeypots can be studied to determine what attack activity
occurred. Various comparison scenarios are possible:
attacks on various deployments with different application
and security installations, virtual machines and real
machines, a prescribed deployment versus an open system,
varying degrees of hardening, etc.

Many open source and Windows based tools are
available. These range from honeypot specific tools to
logging and traffic capturing applications. A decision
regarding the route the analysis will follow needs to be
taken to determine the applications and tools that need to be
installed.

Number

Formulate the number of honeypots that will be installed.
A number of honeypots with different operating systems
and applications can be set up to collect data. This forms a
good basis for study and comparison of attack data.

As the name implies, a honeynet consists of a number of
honeypots and a decision should be made as to how many
honeypots will be set up. This step forms the basis of the
next two steps: Selecting the Operating System and
Services. The honeypots can be both real, virtual or
combination of the two.

If the analysis will be comparison based, the number of
honeypots will be determined by the comparison scheme.
For example if attacks on different web servers are to be
compared, a decision to install four web servers, IIS on
Windows 2000,Apache on a Windows 2000 machine, IIS

on a hardened Windows 2000 machine and Apache on a
Suse machine. In this way, the decision regarding the
number of honeypots will be determined based on how the
systems will be compared according to application,
operating system and security.

Operating System

Select the operating systems to install on the different
honeypots that will be forming the Honeynet. The choice of
operating system is often determined by the selection of
services and applications. Certain applications can be run
on a multiple operating systems whilst others are specific to
certain operating systems. For example the logging program
Ethereal can be run on both Windows and Linux whilst the
web server IIS is specific to Windows.

One comparison scheme is to compare attacks on
different operation systems. If different security
implementations want to be investigated, one operating
system will be chosen with different levels of security on
each operating system. Another example is to test different
levels of security on one operating system, for example a
base installation of XP, XP with service pack one or service
pack two or even fire walled and installed with anti-virus
software.

Services and Applications

This step involves deciding on the configuration settings
for the various honeypots. Decisions regarding the
services/applications, vulnerabilities, open ports, etc will
have to made. This step serves to determine what will be
installed on the machines and how they will be configured.

Decisions regarding how the honeypot will be hardened
should be taken. If base installations are to be studied, no
additional applications will be installed. In the case of
comparing escalating levels of security, honeypots will have
different service packs, patches and security applications
installed. In prior setups, several security features (firewall
and anti-virus software) were installed in an effort to keep
the system operational. However, the analysis scheme will
dictate the degree of security that should be employed on
the system.

If a production system is being mirrored, the honeypot
will have to be set up to emulate a production system
machine. The honeypot will therefore have to installed and
configured with all the services and applications that the
production system has.

In general decisions regarding which: ports will be left
open, web/email/file servers to install (Apache, IIS, etc),
patches, logging and security mechanisms, services and
other applications to install should be made.

B. Implementation stage
The Implementation stage consists of the activities shown

in Fig. 3.

Fig3. Implementation stage

Installation

The installation process involves transforming the design
in previous steps (number, operating system and services
and applications) into an operational system. All the
operating systems, services/applications and security
measures (if required) should be installed. Each operating
system and piece of software requires time to install as well
as configure.

During the installation process it is recommended that
backups be made. This ensures that in case of a system
crash (quite common when working with honeypot as a
result of attackers wreaking havoc on systems), installation
does not have to commence from the start once again. The
backups can be used to restore the images and in this way
reduce the time and effort in getting the system operational
once again. Backups can be made of the operating system
installation with or without installing the applications.

Initially when installing a virtual machine, a complete
operating system installation is required. Thereafter the
initial virtual machine installation can be used as a base for
other virtual machines. The virtual machine image is copied,
renamed and started up. Additional services and
applications can then be installed. This saves time and effort
in installing new operating systems each time.

Networking

This aspect in the establishment of honeynets, involves
connecting the honeypots to a network as well as ensuring
transparency for data capture whilst offering sufficient
coverage so as not to reveal the true nature of the system.
Connections to the Internet, internal or external networks
will have to be established.

Virtual machines set up as honeypots will have to be
configured to be able to connect to the Internet/other
networks for the attack data to be captured. Various
networking options are available for virtual machines.

Testing

Testing ensures that the system is operational. This
ensures that the applications/services are running properly,
and also that attacks can reach the system and are recorded
by the logging services running. The connections to the
Internet/other network will also have to be tested. Simulated
attacks are often a means of testing the system. For example
simulate an attack by connecting through telnet or ftp
connection, try retrieving files and check the logs for attack

capture. Simulated attacks can help test whether the
applications, networking and logging is successful.

Another aspect of testing is to ensure that the backups are
operational. It is often the case that the backups can become
corrupted in the copying process. After making the backups
it is essential to test that the operating system can be
restored from the hard drive, partition or DVD.

Integration

Integration comes into play when the various honeypots
are to be deployed together, especially in the case of virtual
machines. If the honeypots are virtual and running on one
machine, the security of the host should be set up carefully.
In addition, the running of all the honeypots should be
tested together to ensure functionality of the system as a
whole. The testing and integration steps can be tricky.
Individually the different machines may be operational.
However functioning at the same time, in harmony, can
require some experimentation.

Overview

The initial stages involve the planning and design of the
system. The upfront design will form the basis of the
system. Much experimentation is required in the installation,
networking testing and integration process. It can often
become a cyclic process whereby an application is installed,
tested and integrated before another piece of software is
installed. An alternative is to install many applications,
network, test and integrate before going through the
processes again with another batch of software if required.

C. Deployment
The deployment stage consists of the activities shown in
Fig. 4. :

Fig4. Deployment stage

Run

Once installed, networked and tested to be operational the
Honeynet can be deployed. This involves opening a
connection the Internet or deploying on the network and the
logging of data. The system can be left open for a set period
of time and analysed. Another option is run the system
continuously and carry out statistical analyses.

Data Retrieval

The data retrieval process involves stopping the system, if
necessary to retrieve the logs. Another possibility is to study
the actual honeypot. In this way the logs or the honeypot

itself can be examined.
Regular data retrieval should be instituted. If the

honeypot will be running for a period of time and stopped,
the logs can be taken off the system and saved onto another
format/machine for analyses. The logs could also be saved
without stopping the system by setting up the system to
automatically do this.

In some cases the honeypot will actually be studied. The
data retrieval is thus carried out by stopping the system and
removing it from the Internet or network to be studied.

Restore

If data collection is to continue, the system should be
started up again. In the case of stopping the system and
retrieving the logs, the restore is achieved by a reconnection
of the system to the Internet or network. In the case of the
actual operating system being investigated, the backup copy
of the operating system with program installations should be
restored on the honeypot and deployed once again.

IV. CONCLUSION

The main aim of this paper is to define a framework for
the establishment of a Honeynet. Various design,
architectural and implementation considerations need to be
made during the development of a honeynet. Practical
implementations of establishing a honeynet, has taught that
certain logic and steps need to be followed to properly set
up a honeynet. This enables for sufficient preparation and
design followed by a structured implementation and a
planned deployment.

Similar tasks were grouped together. It is often the case
that the decisions in each stage are interleaved with each
other. The overall stages are Preparation, Implementation
and Deployment. These stages can be elaborated with other
steps as new requirements are identified.

REFERENCES

[1] S. Krasser, J. Grizzard and L. Owen, “The Use of
Honeynets to Increase Computer Network Security and
User Awareness”, Georgia Institute of Technology,
School of Electrical and Computer Engineering,.
Available:
http://www.ece.gatech.edu/research/labs/nsa/papers/use
_of_honeynets.pdf

[2] L. Spitzner, “Honeypots: Definitions and value of
honeypots”, tech. rep., Honeynet, 2003. Available
http://www.tracking-
hackers.com/papers/honeypots.html.

[3] L. Spitzner, “Honeypots: Tracking Hackers”, Addison-
Weasley, December 2002, pp. 1-86.

[4] T. Holz and F. Raynal, “Detecting Honeypots and other
suspicious environments”, IEEE Workshop on
Information Assurance and Security, 2005, pp. 29-36.

[5] I. Kuwatly, M. Sraj, A. Masri and H. Artail, “A
Dynamic Honeypot Design for Intrusion Detection”,
IEEE/ACS International Conference on Pervasive
Services, 2004, pp. 1-10.

[6] M. Dacier, F. Pouget and H. Debar, “Honeypots:
Practical Means to Validate Malicious Fault

Assumptions”, Pacific Rim International Symposium
on Dependable Computing, 2004.

[7] L. Spitzner, “Honeypots: Catching the Inside Threat”,
IEEE Computer Security Applications Conference,
2003, pp. 170-179.

[8] M. d’Orey, P. de Andrade Carbone and P. Licio de
Geus, “A Mechanism for Automatic Digitial Evidence
Collection on High-Interaction Honeypots”, IEEE
Workshop on Information Assurance and Security,
2004, pp. 1-8.

[9] N. Garner, “Honeypots for Incident Handling
Education”, Sans Institute, Available:
http://www.giac.org/certified_professionals/practicals/g
cih/0494.php.

[10] C. Kreibich and J. Crowcroft , “Honeycomb – Creating
Intrusion Detection Signatures Using Honeypots”,
ACM SIGCOMM Computer Communication Review,
2004, pp. 51-56.

[11] Whatis.com, “Framework”, IT Encyclopedia.
Available: http://whatis.techtarget.com

[12] B. Scottberg, W. Yurcik and D. Doss,”Internet
Honeypots: Protection of Entrapment?”, Symposium on
Technology and Society (ISTAS), June 2002.

Namosha Veerasamy has obtained a B.Sc. IT Computer
Science degree and a B.Sc. Computer Science (Hons)
degree with distinction at the University of Pretoria. She is
currently a researcher at the Council for Scientific and
Industrial Research (CSIR) in Pretoria.

Jan Eloff received a PhD (Computer Science) from the
Rand Afrikaans University, South Africa. Since October
2002 he is Head of Department and full professor at the
Department of Computer Science, University of Pretoria.
He has published extensively in a wide spectrum of
accredited international subject journals and organized
various international and national conferences were. He has
delivered papers at leading information security conferences
on an international level.

