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Abstract.  Simulations with a large number of model instances make use of parallel architectures to improve 
performance.  When using such a parallel architecture a challenge is to effectively distribute the simulation objects 
across the processing platforms.  Load balancing can be static (pre-execution), or dynamic (adaptively performed during 
execution).  In this paper the authors explore the extent to which static load balancing can optimise the performance of a 
distributed parallel---conservative and 100Hz discrete time---simulation of an air defence system. The measure to which 
dynamic load balancing could further enhance the performance is then explored.  Such knowledge forms the basis for 
further load balance research. 

1. INTRODUCTION 

The South African Council for Scientific and Industrial 
Research has recently been involved in acquisition 
decision support [8] for a Ground Based Air Defence 
(GBADS) acquisition program.  To this end a synthetic 
combat environment, dubbed Virtual GBADS 
Demonstrator (VGD), has been developed. 

The synthetic combat environment must often interact, 
in real-time, with human equipment operators or 
connect to real equipment such as systems facilitating 
situational awareness.  Typical GBADS scenarios are 
of such a scale though, that more computing resources 
than are available from a single computing platform are 
required to reach real-time simulation performance.  
The simulation of the scenario is therefore parallelised 
across multiple computing platforms. 

For the purpose of this paper, load balancing is defined 
as the process of optimising the distribution of the 
simulation of the scenario across a certain number of 
computing platforms; the goal being to reach the real-
time performance threshold.  Static load balancing 
attempts to distribute the simulation of the scenario 
during simulation setup based on a-priori knowledge of 
the runtime resources required for the simulation of the 
scenario.   

Dynamic load balancing is able to complement the pre-
existing knowledge with dynamically measured metrics 
of which the behaviour trace may be difficult to 
estimate at start-up.  A metric may be defined as a 
parameter that can be measured. The dynamically 
measured metrics can then, at run-time, cause 
redistribution of the simulation of the elements of the 
scenario as required. 

For static load balancing, this paper assumes that 
minimising the global execution time of a simulation 
optimises the local second to second execution as well.  
This assumption allows the execution efficiency of a 
distribution to be measured on the execution time of 

the simulation run. The assumption is not required for 
dynamic load balancing due to its nature of optimising 
local execution directly. 

The next section of this paper elaborates on the 
distributed execution and communication architecture 
of VGD to aid in identifying the set of potential load 
measuring metrics to consider.  Statistical round robin 
static load balancing is then applied to VGD and the 
best, average and worst case performance analysed.  
From the analysis and the available literature the 
appropriate metrics and a static load balancing heuristic 
is chosen and its performance compared to that of the 
statistical static load balancing.  The dynamic 
suitability of the static load balancing schemes is 
finally evaluated to estimate the performance increase 
that dynamic load balancing could potentially provide. 

2. VIRTUAL GBADS SIMULATOR 

This section examines the details of VGD’s custom 
architecture to identify and substantiate the potential 
loading metrics. The rationale behind the custom 
architecture and further details may be found in [4] and 
[7]. 

VGD incorporates a publish-subscribe communication 
architecture as the single way for scenario components 
to communicate.  The publish - subscribe 
communication model is implemented on top of a peer-
to-peer message passing architecture on a commercial 
gigabit Ethernet infrastructure.  The synchronisation 
between processing platforms is performed at the level 
of the message passing, shown in Figure 1.  Each 
processing platform (node) goes through an increment, 
publish, gather and synchronise phase.  The gather 
phase includes both the reading of messages and also 
the network wait times for new messages to be 
received.   



  

 
Each node ends its publish phase by sending an “end-
of-frame” message to all other nodes.  A node may 
continue with the next frame once an “end-of-frame” 
message has been received from every other node.  
VGD therefore uses conservative time management 
and implements a 100Hz logical time Discrete Time 
System Specification (DTSS)[9][4].  The simulator 
may be run in As Fast As Possible (AFAP) mode or the 
logical time may be throttled to not execute faster than 
real-time. 

The two initial loading metrics considered for this 
distributed conservative simulation are computational 
load and communication overhead.  Additional loading 
metrics are identified in Section 3.4 below from the 
analysis of the statically distributed statistical runs.  
The benchmark scenario for the statistical runs a 
GBAD system performance experiments.  It is a full 
multi-layer GBADS deployment designed to analyse 
the effectiveness of the air defence system against 
multiple waves of incoming threats. 

3. STATIC LOAD BALANCING 

This section elaborates on static load balancing as an 
optimisation problem of a loading function.  The best, 
average and worst case static load distributions are 
found experimentally from a statistical sample of all 
possible distributions.  A set of potential loading 
metrics are applied to these distributions to find a 
subset of metrics applicable to static load balancing 
and a static load balancing heuristic.  

3.1 The Static Optimisation Problem 

A simple way to perform static load balancing is to 
randomly assign the simulation of scenario components 
to the available processing nodes in a round robin 
fashion until all the scenario components have been 
assigned.  Keeping in mind that the scenario 
components might have very dissimilar weights in 

computational requirements and information 
bandwidth, to name but two aspects, the reader might 
notice the following obvious short-falls with this 
approach: 

• it might happen that some processing 
platforms are loaded heavier than others in 
terms of processing,  

• some of the peer-to-peer communication 
channels may be overloaded while others are 
underutilised, or 

• any of the other potential loading metrics 
may be detrimentally out of balance. 

These lead to some processing platforms always 
finishing discrete simulation frames earlier than others 
or intermittently waiting for information to reach them. 
The conservative time management has the drawback 
that the frame-to-frame simulation execution efficiency 
is dependent on the slowest (or most heavily loaded) 
processing platform. 

To find the fit static distribution is an NP problem (of 
time O(cn) for the number of objects) where a number 
of, possibly related, metrics have to be optimised.  The 
optimisation problem is demonstrated with processing 
time and cumulative communication overhead in 
general.  The execution time eo of each object (scenario 
component) o excluding communication overhead can 
be measured, by running a simulation of the scenario 
once.  Assuming a fixed scenario and similar nodes, eo 
is fixed and independent of the object's position in the 
cluster of nodes.  Unfortunately though, the 
communication overhead is a function fo of, at least, the 
object's bandwidth requirements and the object's 
position in the cluster relative to the other objects.  This 
makes it impractical to use empirical solutions of fo for 
predictive purposes such as required for load-
balancing. 

If we rather use the function fo, assuming that it is 
known and solvable, then finding the optimal solution 
for object distribution is equivalent to minimising the 

global function ( ) 
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where On is the set of objects on node n and N is the set 
of all nodes. The minimisation of F may be done by 
means of a computational intelligence paradigm such 
as particle swarm systems [6] or any other multi-
variable optimisation technique.  

To find fo is unfortunately no easy task as it requires 
the accurate modelling of the latencies and bandwidth 
capabilities of the node interconnection infrastructure.  
The following subsections discuss the load balancing 
literature and analyse statistical distributions of the 
simulation of the benchmark scenario.  This is done 

 
Figure 1:  The Layered Simulator Architecture 

 



  

with the goal of finding a static load balancing 
heuristic, the use of which approximates the optimum 
solution of F rather than finding the exact solution.  

3.2 Load Balancing Literature 

Static and dynamic load balancing, load metrics and 
distribution heuristics have been studied extensively.  
This section looks at some of the work that has been 
done for conservative peer-to-peer simulators. 

Boukerche and Tropper [1] use a ‘simulated annealing’ 
algorithm to find good static distribution partitions that 
balance processor load and minimise inter-partition 
communication.  Each partition is allocated to a 
processing node.  Simulated annealing is a process of 
starting with many partitions and then gradually 
increasing the size of partitions until a pre-defined 
number of partitions is reached.  The annealing process 
tries to gradually grow a good distribution. 

A different static partitioning approach is followed by 
Carlisle and Merkle [3].  They use what they call 
‘domain knowledge’ to pre-partition the scenario 
components into groups.  This exploits pre-knowledge 
about the communication patterns such that 
communication between the groups are minimised.  
They then follow known load distribution strategies to 
load balance or anneal the pre-partitions. 

The static load distribution approaches discussed have 
in common that a set of known physically based 
metrics are applied on a pre-run of the scenario and 
then used to load balance subsequent runs of the same 
or similar scenario.  Dynamic load balancing has the 
advantage of not explicitly needing to know which 
physically based metrics to apply and a pre-run of the 
scenario is not necessarily required.  The disadvantage 
is of coarse higher runtime overhead in assessing and 
correcting load imbalances. 

Boukerche and Das [2] use the notion of processor 
queue length to dynamically measure load balance 
between processors.  The load migration then takes 
place at run-time to optimise load balance. Furthermore 
the load to migrate is chosen in such a way as to 
minimise the communication overhead. 

From the cited literature it does however seem that the 
choice and performance difference between static and 
dynamic, the loading metrics and the distribution 
heuristics are very application dependent.  In particular, 
the influence on load distribution strategies on the 
specific type of simulator architecture under 
investigation is not apparent.  

3.3 Statistical Static Load Balancing 

This subsection discusses the statistical experiments in 
static load distribution.  The simulator is instrumented 

with object and network processing load monitors, and 
a node idle time monitor.  The simulator is run in As 
Fast As Possible Mode (AFAP). 

A round robin approach is followed to distribute 
randomly shuffled scenario components to three 
separate processing platforms.  A sample of thirty 
scenario distributions is generated in this way.  The 
assumption is made that round robin distribution 
(approximately equal number of scenario entities per 
processing platform) creates a manageable, but 
representative subset, of the processor balanced 
distribution sample space.  A second assumption is that 
the Ethernet throughput, and TCP’s flow and 
congestion control is adequately managing the network 
data.  The second assumption is supported by a 
measured stable, and real-time performance related, 
network throughput to and from each processing 
platform. 

A third assumption is that the simulation behaviour is 
reasonably similar across the different scenario 
distributions.  Differences may arise due to the 
processing platforms’ pseudo random number 
sequences being applied differently for each unique 
scenario distribution.  The time correlation between the 
weapon-target kills across the different distributions 
and the similar shapes of the performance graphs 
support the behaviour similarity assumption.  See the 
lowered performance spikes encircled on the 
performance graphs for the best and worst performing 
statistical distributions in Figure 2 and Figure 3 
respectively.  Each weapon kill is the result of the air 
defence control behaviour and then a throw of a pseudo 
random dice biased by the kill probability.  Each low 
performance spike is due to an audible kill feedback 
and short pause setup for this purpose. 

The results of the performance ranked statistical 
distributions are shown in Table 1.  Note that a 
negative time indicates being ahead of real-time.  
Scenario distribution 31 is a manually ‘tweaked’ 
distribution that is explained in Section 3.4.2.  The 
ideal performing simulation distribution, according to 
the original static load balancing assumption1, has a 
minimum execution time when run in AFAP mode.  
The performance histogram is shown in Figure 4.  The 
best case statistical distribution (distribution 3) reached 
an un-throttled logical time execution performance of 
188.39% real-time and the worst case statistical 
distribution (distribution 4) reached a logical time 
execution performance of 162.76% real-time.  



  

 

 

3.4 Finding a Heuristic for Static Load Balancing 

This subsection analyses the statistical best, average 
and worst case simulation distributions according to an 
initial processor loading metric.  Distribution 
performance anomalies are then explained by looking 
at additional metrics. 

3.4.1 Analysis and Initial Heuristic 

The authors reason that initially using a heuristic that 
purely balances processor usage, ignoring network 
overhead, gives reasonable performance. 

This is due to two factors, nl: 

• the network processing and transfer of data 
takes place in a separate operating system 
thread controlling a largely independent 
hardware communication subsystem1, and  

                                                           
1Adequate TCP send and receive buffers are allocated 
to minimise blocking sends and read wait times [4]. 

• balancing processor usage balances, on 
average, the number of scenario components 
and, consequently, on average the platform 
bandwidth. 

 
 

 
The load balance of the processing nodes is calculated 
by the difference between the nodes’ maximum and 
minimum CPU time divided by the average CPU time. 

Graphing (Figure 5a) the node performance balance, 
the initial heuristic seems to hold.  A least squares line 
fitting process is followed to assess the R2 value of fit 
of the metrics to the real-time performance.  The R2 
value of fit to a direct proportionality of real-time 
performance to processor balance is 0.626.  Doing load 
balancing purely on processor loading with a balance 
of 0.25 and better gets to within 98% of the statistical 
best real-time performance, which is 4% higher than 

Table 1:  Scenario Distribution Performance Results 
R a n k

S c e n a r i o  
D is t r ib u t io n

T im e  B e h in d  
R e a l - T i m e

R e a l - T i m e  
P e r f o r m a n c e

1 3 1 - 2 5 3 .4 5 3 2 0 2 . 8 0 %
2 3 - 2 3 4 .5 9 3 1 8 8 . 3 9 %
3 2 5 - 2 3 4 .1 1 5 1 8 8 . 0 5 %
4 7 - 2 3 2 .4 4 5 1 8 6 . 8 8 %
5 2 7 - 2 3 1 .5 1 3 1 8 6 . 2 3 %
6 2 0 - 2 3 1 .4 8 9 1 8 6 . 2 1 %
7 9 - 2 3 0 .8 2 7 1 8 5 . 7 5 %
8 2 6 - 2 3 0 .5 5 1 8 5 . 5 6 %
9 1 3 - 2 2 9 .3 5 4 1 8 4 . 7 4 %

1 0 1 2 - 2 2 8 .4 9 7 1 8 4 . 1 6 %
1 1 2 4 - 2 2 7 .3 2 8 1 8 3 . 3 7 %
1 2 2 9 - 2 2 7 .2 7 4 1 8 3 . 3 3 %
1 3 1 - 2 2 6 .1 6 7 1 8 2 . 5 9 %
1 4 2 8 - 2 2 4 .9 0 4 1 8 1 . 7 5 %
1 5 8 - 2 2 4 .3 7 8 1 8 1 . 4 1 %
1 6 1 1 - 2 2 4 .2 8 8 1 8 1 . 3 5 %
1 7 1 7 - 2 2 2 .8 9 4 1 8 0 . 4 4 %
1 8 1 0 - 2 2 1 .6 2 8 1 7 9 . 6 2 %
1 9 2 3 - 2 2 0 .9 8 9 1 7 9 . 2 0 %
2 0 2 2 - 2 2 0 .7 9 7 1 7 9 . 0 8 %
2 1 3 0 - 2 1 9 .6 4 9 1 7 8 . 3 5 %
2 2 1 9 - 2 1 8 .9 3 9 1 7 7 . 9 0 %
2 3 1 6 - 2 1 7 .7 2 4 1 7 7 . 1 3 %
2 4 5 - 2 1 6 .6 4 4 1 7 6 . 4 6 %
2 5 1 5 - 2 1 5 .1 1 4 1 7 5 . 5 1 %
2 6 2 1 - 2 0 9 .1 8 7 1 7 1 . 9 3 %
2 7 2 - 2 0 8 .9 4 6 1 7 1 . 7 9 %
2 8 6 - 2 0 6 .3 3 4 1 7 0 . 2 6 %
2 9 1 8 - 2 0 5 .3 8 3 1 6 9 . 7 1 %
3 0 1 4 - 1 9 4 .0 6 6 1 6 3 . 4 3 %
3 1 4 - 1 9 2 .7 9 1 6 2 . 7 6 %

A v e r a g e  
P e r f o r m a n c e 1 7 9 . 4 5 %  
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Figure 4:  The Binned Performance Histogram 
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Figure 3:  The Performance Graph of the Worst 
Performing Statistical Distribution 
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Figure 2:  The Performance Graph of the Best 
Performing Statistical Distribution 

  



  

the average and 16% higher than the worst case 
statistical distribution. 

From the analysis results it does seem as if the 
distribution performance is directly related (see Figure 
5b, R2 value of fit of 0.9961) to the frame execution 
time of the slowest processing platform.  Looking at 
the simulator’s time stepped design shown in Figure 2, 
a platform’s time spent on a simulation frame is equal 
to the platform’s combined: 

• object increment and publish processing 
time, 

• message send time, 

• receive wait time, and 

• receive message processing time (Gather) 
for that frame. 

The increment and message processing times have 
been accounted for in the processor loading already 
instrumented.  The measurable message send time only 
includes copying the data to the TCP send buffer, as 
mentioned1, and has also already been included in the 
processor loading.  A node’s ‘receive wait time’ is the 
part of the TCP data transportation that could not 
happen in parallel with the increment and publish 
processing phase of the node’s simulation frame.  This 
is because there is nothing to increment or publish 
during such a wait time. 

Analysing both the node send balance and the 
maximum ‘Node Total Sent’ (Figure 6) against real-
time performance reveals the expected trend of lowered 
performance on increased bandwidth, but with a very 
low R2 value of fit.  This enforces the idea that the real-
time performance, and thus the ‘network wait time’, is 
related to both processor balancing and network 
bandwidth and, quite possibly, other aspects as well. 

3.4.2 Remaining Performance Anomalies  

Scenario distribution 31 is distributed manually by 
dividing the scenario into object groups that minimise 
the communication between groups.  In effect applying 
the domain knowledge as Carlisle and Merkle [3] 
discuss.  These groups are processor balanced between 
the nodes and the distribution tweaked, by trial and 
error, until an optimum distribution is found.   

Distribution 31 and the other performance outliers 
above the processor balance trend line seem to have a 
load balance closer to 0.37:0.34:0.29 than 
0.33:0.33:0.33.  Revisiting Figure 2 and the simulator 
architecture this behaviour may be linked to the 
specific conservative and peer-to-peer synchronisation 
mechanism and its implementation.  It seems that to 
lower the network wait times, the node loading must be 
staggered.  An optimum balance between not 

overloading the heaviest node and staggering the TCP 
data transportation might have to be found as 
mentioned again in the Future Work section. 

 

 

4. DYNAMIC LOAD BALANCING 

The loading metrics identified in the previous two 
sections are used to find the dynamic suitability of both 
the statistical best case and the heuristic driven static 
load balancing.  The advantages of dynamic load 
balancing compared to static load balancing and the 
potential metrics and dynamic load balancing heuristics 
are then explored. 

4.1 The Dynamic Optimisation Problem 

The major difference in doing load balancing 
dynamically is that a load balancing heuristic is applied 
to gradually and adaptively optimise the run-time 
simulation performance.  In effect: 

• observe current performance, 

• decide what load to tentatively migrate to 
increase the simulation performance, and 

• act by intelligently migrating the load. 

Frame Execution Time of the Slowest 
Performing Platform against Real-Time 

Performance

R2 = 0.9961
160.00%

165.00%

170.00%

175.00%

180.00%

185.00%

190.00%

250 260 270 280 290 300 310

Real-Time Performance

S
lo

w
es

t 
P

er
fo

rm
in

g 
N

od
e'

s 
F

ra
m

e 
E

xe
cu

tio
n 

T
im

e 

Figure 5b:  Frame Execution Time of the Slowest 
Performing Platform against Real-Time Performance 

  

Processor Balancedness against Real-
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Figure 5a:  The Processor Balance against Real-Time 
Performance 

  



  

 

4.2 The Dynamic Suitability of Static Load 
Balancing 

Figure 7 represents a typical scenario distribution on 
each of the three processing nodes.  The graph 
indicates cumulative increment and publish times for 
all the objects.  The derivative (gradient) of the graph 
therefore indicates the instantaneous processing load of 
the associated object’s increment or publish phases.  It 
is clear that the nodes contain objects that adapt their 
processing load.  The dynamic suitability of the static 
load distribution is analysed by ranking the 
distributions according to performance over the first 
half, called phase 1, of the simulation and then again 
for the second half, called phase 2.  These results are 
shown in Table 2. 

The distribution rankings do differ quite a bit between 
the two phases.  This indicates that the relative 
dynamic suitability of the static distributions does vary.  
The performance impact is minimal, though.  The very 
good performance of distribution 31, across both phase 
one and phase two, indicates to the potential dynamic 
suitability of a static distribution.  

4.3 The Potential Performance Increase of 
Dynamic Load Balancing 

The manually balanced distribution 31 is still the best 
performer, but the best statistical static distribution has 
changed from 3 to (25+26) for the two phased load 
balancing shown in Table 2.  Even though the ranking 
between the two phases is considerably different the 
overall performance increase of the best case phased 
distribution is a mere 0.66% as shown in Table 3.  This 
indicates to a rather poor potential performance 
increase for dynamic load balancing. 

5. CONCLUSION 

Statistical round–robin distribution---with no attempt at 
applying a load balancing heuristic---results, at worst, 
in an execution performance that is within 82% of the 

statistical best case distribution and within 75% of the 
best case manually tweaked distribution.  The current 
analysis results indicate that a simple CPU load 
balance heuristic driven static load reaches within 98% 
of the statistical best case distribution and within 91% 
of the best case manually tweaked load distribution 
which is a 10% improvement on random round-robin 
distribution. 

 

 
The performance improvement of the best case 
statistical distribution over the worst case is 15.75% 
which is less than the measured parallelisation 
performance gain of 30% [4] when parallelising the 
execution of the scenario over four simulator nodes 
instead of three.  The cost of finding the optimum load 
balancing heuristic must therefore carefully be weighed 
against the cost of adding another simulator node.  In 
this particular architecture, the performance increase 

Table 2:  Dynamic Suitability of Static Load 
Distributions 

R a n k
S c e n a r io  
D is tr ib u tio n

T im e  B e h in d  
R e a l-T im e  
(P h a s e  1 )

S c e n a r io  
D is t r ib u t io n

T im e  B e h in d  R e a l-
T im e  (P h a s e  2 )

1 3 1 -1 5 2 .7 1 7 3 1 -1 0 0 .7 3 6
2 2 6 -1 4 2 .1 0 4 2 5 -9 4 .0 4 8
3 3 -1 4 1 .0 8 8 3 -9 3 .5 0 5
4 7 -1 4 0 .4 4 9 1 3 -9 2 .5 1 3
5 9 -1 4 0 .2 7 8 2 7 -9 2 .4 8 4
6 2 5 -1 4 0 .0 6 7 7 -9 1 .9 9 6
7 2 0 -1 3 9 .6 9 9 2 0 -9 1 .7 9
8 2 7 -1 3 9 .0 2 9 9 -9 0 .5 4 9
9 1 2 -1 3 8 .4 8 2 1 2 -9 0 .0 1 5

1 0 2 9 -1 3 8 .3 9 7 2 8 -8 9 .5 1 9
1 1 2 4 -1 3 8 .0 9 9 1 -8 9 .2 3 9
1 2 8 -1 3 7 .5 9 8 2 4 -8 9 .2 2 9
1 3 1 -1 3 6 .9 2 8 2 9 -8 8 .8 7 7
1 4 1 3 -1 3 6 .8 4 1 1 1 -8 8 .5 2 5
1 5 1 7 -1 3 6 .4 3 3 2 6 -8 8 .4 4 6
1 6 1 5 -1 3 6 .1 0 9 2 3 -8 7 .9 3 2
1 7 1 1 -1 3 5 .7 6 3 2 2 -8 7 .8 3 3
1 8 5 -1 3 5 .5 3 0 -8 7 .4 0 3
1 9 2 8 -1 3 5 .3 8 5 8 -8 6 .7 8
2 0 1 0 -1 3 5 .0 6 6 1 0 -8 6 .5 6 2
2 1 1 9 -1 3 4 .5 4 8 1 7 -8 6 .4 6 1
2 2 1 6 -1 3 4 .6 1 1 1 9 -8 4 .3 9 1
2 3 2 3 -1 3 3 .0 5 7 1 6 -8 3 .1 1 3
2 4 2 2 -1 3 2 .9 6 4 5 -8 1 .1 4 4
2 5 3 0 -1 3 2 .2 4 6 2 -8 0 .3 5 7
2 6 2 1 -1 2 9 .0 2 8 2 1 -8 0 .1 5 9
2 7 2 -1 2 8 .5 8 9 6 -7 9 .4 8 5
2 8 1 8 -1 2 6 .8 1 8 1 5 -7 9 .0 0 5
2 9 6 -1 2 6 .8 4 9 1 8 -7 8 .5 6 5
3 0 4 -1 2 2 .6 3 1 1 4 -7 1 .9 8 9
3 1 1 4 -1 2 2 .0 7 7 4 -7 0 .1 5 9  
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Figure 7:  Cumulative Object Execution Times of the 
Objects on Node 1 
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due to load balancing only exceeds that of adding a 
node once the simulation reaches a node count of about 
8 to 10.  At this point the performance of the 
distributed simulator architecture time management 
becomes a limiting factor for increasing the node count 
further. 

 
The overhead associated with the dynamic load 
balancing measurements and the run-time migration of 
load may nullify the potential performance increase of 
dynamic load balancing over a reasonably good static 
load distribution.  The different systems of the GBADS 
battery goes through increased loading phases at 
similar times as waves of targets come in. The main 
argument for using only static load balancing may then 
be that there are not many systems being spawned 
dynamically and that the existing distribution stays 
balanced. 

It is however the case that through analysis it was 
discovered that staggering the processor loading could 
be advantageous.  Making use of dynamic load 
balancing---which is not based on a pre-conceived 
notion of what impacts performance---therefore still 
has an advantage.  When making use of a large variety 
of metrics, dynamic load balancing might create the 
opportunity to automatically explore and exploit other 
such, possibly as yet unknown, performance drivers.  

6. FUTURE WORK 

It is hypothesised that the nodes must be arranged in 
the staggered loading ratio to increase the performance.  
This should be investigated further.  One suggestion is 
to run the same experiments, but with a statistical 
sample of scenarios that is better representative of non-
processor balanced distributions as well. 

Another important future task is to do research on 
bringing the network wait time down, possibly through 
interleaving the messages with the execution in an 
innovative way.  Currently the network is mostly 
utilised in spikes of activity.  

Similar performance experiments should also be run on 
simulations which require distribution over 8 or more 
nodes such that the effect of load balancing may be 
measured when the network is stressed. 
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Table 3:  Dynamic Suitability of Two Phase Static 
Load Distributions 

Scenario 
Distribution 
(Phase 1)

Scenario 
D istribution 
(Phase 2)

Combined Two Phase 
Real-T ime Performance

Improvem ent over 
Single Phase 
Distribution

31 31 -253.453 100.00%
26 25 -236.152 100.66%

3 3 -234.593 100.20%
7 13 -232.962 100.22%
9 27 -232.762 100.54%

25 7 -232.063 100.25%
20 20 -231.489 100.29%
27 9 -229.578 99.58%
12 12 -228.497 99.63%
29 28 -227.916 99.75%
24 1 -227.338 100.00%

8 24 -226.827 99.80%
1 29 -225.805 99.84%

13 11 -225.366 100.21%
17 26 -224.879 100.22%
15 23 -224.041 99.89%
11 22 -223.596 100.31%

5 30 -222.903 100.58%
28 8 -222.165 100.53%
10 10 -221.628 100.38%
19 17 -221.009 100.62%
16 19 -219.002 100.03%
23 16 -216.17 99.29%
22 5 -214.108 98.83%
30 2 -212.603 98.83%
21 21 -209.187 100.00%

2 6 -208.074 99.58%
18 15 -205.823 99.75%

6 18 -205.414 100.02%
4 14 -194.62 100.29%

14 4 -192.236 99.71%  
 


