

The Contribution of Static and Dynamic Load Balanci ng In A
Real-Time Distributed Air Defence Simulation

Mr Bernardt Duvenhage; Mr Jan J. Nel

Council for Scientific and Industrial Research (CSIR)
bduvenhage@csir.co.za, cnel@csir.co.za

Abstract. Simulations with a large number of model instances make use of parallel architectures to improve
performance. When using such a parallel architecture a challenge is to effectively distribute the simulation objects
across the processing platforms. Load balancing can be static (pre-execution), or dynamic (adaptively performed during
execution). In this paper the authors explore the extent to which static load balancing can optimise the performance of a
distributed parallel---conservative and 100Hz discrete time---simulation of an air defence system. The measure to which
dynamic load balancing could further enhance the performance is then explored. Such knowledge forms the basis for
further load balance research.

1. INTRODUCTION

The South African Council for Scientific and Industrial
Research has recently been involved in acquisition
decision support [8] for a Ground Based Air Defence
(GBADS) acquisition program. To this end a synthetic
combat environment, dubbed Virtual GBADS
Demonstrator (VGD), has been developed.

The synthetic combat environment must often interact,
in real-time, with human equipment operators or
connect to real equipment such as systems facilitating
situational awareness. Typical GBADS scenarios are
of such a scale though, that more computing resources
than are available from a single computing platform are
required to reach real-time simulation performance.
The simulation of the scenario is therefore parallelised
across multiple computing platforms.

For the purpose of this paper, load balancing is defined
as the process of optimising the distribution of the
simulation of the scenario across a certain number of
computing platforms; the goal being to reach the real-
time performance threshold. Static load balancing
attempts to distribute the simulation of the scenario
during simulation setup based on a-priori knowledge of
the runtime resources required for the simulation of the
scenario.

Dynamic load balancing is able to complement the pre-
existing knowledge with dynamically measured metrics
of which the behaviour trace may be difficult to
estimate at start-up. A metric may be defined as a
parameter that can be measured. The dynamically
measured metrics can then, at run-time, cause
redistribution of the simulation of the elements of the
scenario as required.

For static load balancing, this paper assumes that
minimising the global execution time of a simulation
optimises the local second to second execution as well.
This assumption allows the execution efficiency of a
distribution to be measured on the execution time of

the simulation run. The assumption is not required for
dynamic load balancing due to its nature of optimising
local execution directly.

The next section of this paper elaborates on the
distributed execution and communication architecture
of VGD to aid in identifying the set of potential load
measuring metrics to consider. Statistical round robin
static load balancing is then applied to VGD and the
best, average and worst case performance analysed.
From the analysis and the available literature the
appropriate metrics and a static load balancing heuristic
is chosen and its performance compared to that of the
statistical static load balancing. The dynamic
suitability of the static load balancing schemes is
finally evaluated to estimate the performance increase
that dynamic load balancing could potentially provide.

2. VIRTUAL GBADS SIMULATOR

This section examines the details of VGD’s custom
architecture to identify and substantiate the potential
loading metrics. The rationale behind the custom
architecture and further details may be found in [4] and
[7].

VGD incorporates a publish-subscribe communication
architecture as the single way for scenario components
to communicate. The publish - subscribe
communication model is implemented on top of a peer-
to-peer message passing architecture on a commercial
gigabit Ethernet infrastructure. The synchronisation
between processing platforms is performed at the level
of the message passing, shown in Figure 1. Each
processing platform (node) goes through an increment,
publish, gather and synchronise phase. The gather
phase includes both the reading of messages and also
the network wait times for new messages to be
received.

Each node ends its publish phase by sending an “end-
of-frame” message to all other nodes. A node may
continue with the next frame once an “end-of-frame”
message has been received from every other node.
VGD therefore uses conservative time management
and implements a 100Hz logical time Discrete Time
System Specification (DTSS)[9][4]. The simulator
may be run in As Fast As Possible (AFAP) mode or the
logical time may be throttled to not execute faster than
real-time.

The two initial loading metrics considered for this
distributed conservative simulation are computational
load and communication overhead. Additional loading
metrics are identified in Section 3.4 below from the
analysis of the statically distributed statistical runs.
The benchmark scenario for the statistical runs a
GBAD system performance experiments. It is a full
multi-layer GBADS deployment designed to analyse
the effectiveness of the air defence system against
multiple waves of incoming threats.

3. STATIC LOAD BALANCING

This section elaborates on static load balancing as an
optimisation problem of a loading function. The best,
average and worst case static load distributions are
found experimentally from a statistical sample of all
possible distributions. A set of potential loading
metrics are applied to these distributions to find a
subset of metrics applicable to static load balancing
and a static load balancing heuristic.

3.1 The Static Optimisation Problem

A simple way to perform static load balancing is to
randomly assign the simulation of scenario components
to the available processing nodes in a round robin
fashion until all the scenario components have been
assigned. Keeping in mind that the scenario
components might have very dissimilar weights in

computational requirements and information
bandwidth, to name but two aspects, the reader might
notice the following obvious short-falls with this
approach:

• it might happen that some processing
platforms are loaded heavier than others in
terms of processing,

• some of the peer-to-peer communication
channels may be overloaded while others are
underutilised, or

• any of the other potential loading metrics
may be detrimentally out of balance.

These lead to some processing platforms always
finishing discrete simulation frames earlier than others
or intermittently waiting for information to reach them.
The conservative time management has the drawback
that the frame-to-frame simulation execution efficiency
is dependent on the slowest (or most heavily loaded)
processing platform.

To find the fit static distribution is an NP problem (of
time O(cn) for the number of objects) where a number
of, possibly related, metrics have to be optimised. The
optimisation problem is demonstrated with processing
time and cumulative communication overhead in
general. The execution time eo of each object (scenario
component) o excluding communication overhead can
be measured, by running a simulation of the scenario
once. Assuming a fixed scenario and similar nodes, eo
is fixed and independent of the object's position in the
cluster of nodes. Unfortunately though, the
communication overhead is a function fo of, at least, the
object's bandwidth requirements and the object's
position in the cluster relative to the other objects. This
makes it impractical to use empirical solutions of fo for
predictive purposes such as required for load-
balancing.

If we rather use the function fo, assuming that it is
known and solvable, then finding the optimal solution
for object distribution is equivalent to minimising the

global function ()

 ∈∀+= ∑ ∈

NnfeF
nOo oomax

where On is the set of objects on node n and N is the set
of all nodes. The minimisation of F may be done by
means of a computational intelligence paradigm such
as particle swarm systems [6] or any other multi-
variable optimisation technique.

To find fo is unfortunately no easy task as it requires
the accurate modelling of the latencies and bandwidth
capabilities of the node interconnection infrastructure.
The following subsections discuss the load balancing
literature and analyse statistical distributions of the
simulation of the benchmark scenario. This is done

Figure 1: The Layered Simulator Architecture

with the goal of finding a static load balancing
heuristic, the use of which approximates the optimum
solution of F rather than finding the exact solution.

3.2 Load Balancing Literature

Static and dynamic load balancing, load metrics and
distribution heuristics have been studied extensively.
This section looks at some of the work that has been
done for conservative peer-to-peer simulators.

Boukerche and Tropper [1] use a ‘simulated annealing’
algorithm to find good static distribution partitions that
balance processor load and minimise inter-partition
communication. Each partition is allocated to a
processing node. Simulated annealing is a process of
starting with many partitions and then gradually
increasing the size of partitions until a pre-defined
number of partitions is reached. The annealing process
tries to gradually grow a good distribution.

A different static partitioning approach is followed by
Carlisle and Merkle [3]. They use what they call
‘domain knowledge’ to pre-partition the scenario
components into groups. This exploits pre-knowledge
about the communication patterns such that
communication between the groups are minimised.
They then follow known load distribution strategies to
load balance or anneal the pre-partitions.

The static load distribution approaches discussed have
in common that a set of known physically based
metrics are applied on a pre-run of the scenario and
then used to load balance subsequent runs of the same
or similar scenario. Dynamic load balancing has the
advantage of not explicitly needing to know which
physically based metrics to apply and a pre-run of the
scenario is not necessarily required. The disadvantage
is of coarse higher runtime overhead in assessing and
correcting load imbalances.

Boukerche and Das [2] use the notion of processor
queue length to dynamically measure load balance
between processors. The load migration then takes
place at run-time to optimise load balance. Furthermore
the load to migrate is chosen in such a way as to
minimise the communication overhead.

From the cited literature it does however seem that the
choice and performance difference between static and
dynamic, the loading metrics and the distribution
heuristics are very application dependent. In particular,
the influence on load distribution strategies on the
specific type of simulator architecture under
investigation is not apparent.

3.3 Statistical Static Load Balancing

This subsection discusses the statistical experiments in
static load distribution. The simulator is instrumented

with object and network processing load monitors, and
a node idle time monitor. The simulator is run in As
Fast As Possible Mode (AFAP).

A round robin approach is followed to distribute
randomly shuffled scenario components to three
separate processing platforms. A sample of thirty
scenario distributions is generated in this way. The
assumption is made that round robin distribution
(approximately equal number of scenario entities per
processing platform) creates a manageable, but
representative subset, of the processor balanced
distribution sample space. A second assumption is that
the Ethernet throughput, and TCP’s flow and
congestion control is adequately managing the network
data. The second assumption is supported by a
measured stable, and real-time performance related,
network throughput to and from each processing
platform.

A third assumption is that the simulation behaviour is
reasonably similar across the different scenario
distributions. Differences may arise due to the
processing platforms’ pseudo random number
sequences being applied differently for each unique
scenario distribution. The time correlation between the
weapon-target kills across the different distributions
and the similar shapes of the performance graphs
support the behaviour similarity assumption. See the
lowered performance spikes encircled on the
performance graphs for the best and worst performing
statistical distributions in Figure 2 and Figure 3
respectively. Each weapon kill is the result of the air
defence control behaviour and then a throw of a pseudo
random dice biased by the kill probability. Each low
performance spike is due to an audible kill feedback
and short pause setup for this purpose.

The results of the performance ranked statistical
distributions are shown in Table 1. Note that a
negative time indicates being ahead of real-time.
Scenario distribution 31 is a manually ‘tweaked’
distribution that is explained in Section 3.4.2. The
ideal performing simulation distribution, according to
the original static load balancing assumption1, has a
minimum execution time when run in AFAP mode.
The performance histogram is shown in Figure 4. The
best case statistical distribution (distribution 3) reached
an un-throttled logical time execution performance of
188.39% real-time and the worst case statistical
distribution (distribution 4) reached a logical time
execution performance of 162.76% real-time.

3.4 Finding a Heuristic for Static Load Balancing

This subsection analyses the statistical best, average
and worst case simulation distributions according to an
initial processor loading metric. Distribution
performance anomalies are then explained by looking
at additional metrics.

3.4.1 Analysis and Initial Heuristic

The authors reason that initially using a heuristic that
purely balances processor usage, ignoring network
overhead, gives reasonable performance.

This is due to two factors, nl:

• the network processing and transfer of data
takes place in a separate operating system
thread controlling a largely independent
hardware communication subsystem1, and

1Adequate TCP send and receive buffers are allocated
to minimise blocking sends and read wait times [4].

• balancing processor usage balances, on
average, the number of scenario components
and, consequently, on average the platform
bandwidth.

The load balance of the processing nodes is calculated
by the difference between the nodes’ maximum and
minimum CPU time divided by the average CPU time.

Graphing (Figure 5a) the node performance balance,
the initial heuristic seems to hold. A least squares line
fitting process is followed to assess the R2 value of fit
of the metrics to the real-time performance. The R2
value of fit to a direct proportionality of real-time
performance to processor balance is 0.626. Doing load
balancing purely on processor loading with a balance
of 0.25 and better gets to within 98% of the statistical
best real-time performance, which is 4% higher than

Table 1: Scenario Distribution Performance Results
R a n k

S c e n a r i o
D is t r ib u t io n

T im e B e h in d
R e a l - T i m e

R e a l - T i m e
P e r f o r m a n c e

1 3 1 - 2 5 3 .4 5 3 2 0 2 . 8 0 %
2 3 - 2 3 4 .5 9 3 1 8 8 . 3 9 %
3 2 5 - 2 3 4 .1 1 5 1 8 8 . 0 5 %
4 7 - 2 3 2 .4 4 5 1 8 6 . 8 8 %
5 2 7 - 2 3 1 .5 1 3 1 8 6 . 2 3 %
6 2 0 - 2 3 1 .4 8 9 1 8 6 . 2 1 %
7 9 - 2 3 0 .8 2 7 1 8 5 . 7 5 %
8 2 6 - 2 3 0 .5 5 1 8 5 . 5 6 %
9 1 3 - 2 2 9 .3 5 4 1 8 4 . 7 4 %

1 0 1 2 - 2 2 8 .4 9 7 1 8 4 . 1 6 %
1 1 2 4 - 2 2 7 .3 2 8 1 8 3 . 3 7 %
1 2 2 9 - 2 2 7 .2 7 4 1 8 3 . 3 3 %
1 3 1 - 2 2 6 .1 6 7 1 8 2 . 5 9 %
1 4 2 8 - 2 2 4 .9 0 4 1 8 1 . 7 5 %
1 5 8 - 2 2 4 .3 7 8 1 8 1 . 4 1 %
1 6 1 1 - 2 2 4 .2 8 8 1 8 1 . 3 5 %
1 7 1 7 - 2 2 2 .8 9 4 1 8 0 . 4 4 %
1 8 1 0 - 2 2 1 .6 2 8 1 7 9 . 6 2 %
1 9 2 3 - 2 2 0 .9 8 9 1 7 9 . 2 0 %
2 0 2 2 - 2 2 0 .7 9 7 1 7 9 . 0 8 %
2 1 3 0 - 2 1 9 .6 4 9 1 7 8 . 3 5 %
2 2 1 9 - 2 1 8 .9 3 9 1 7 7 . 9 0 %
2 3 1 6 - 2 1 7 .7 2 4 1 7 7 . 1 3 %
2 4 5 - 2 1 6 .6 4 4 1 7 6 . 4 6 %
2 5 1 5 - 2 1 5 .1 1 4 1 7 5 . 5 1 %
2 6 2 1 - 2 0 9 .1 8 7 1 7 1 . 9 3 %
2 7 2 - 2 0 8 .9 4 6 1 7 1 . 7 9 %
2 8 6 - 2 0 6 .3 3 4 1 7 0 . 2 6 %
2 9 1 8 - 2 0 5 .3 8 3 1 6 9 . 7 1 %
3 0 1 4 - 1 9 4 .0 6 6 1 6 3 . 4 3 %
3 1 4 - 1 9 2 .7 9 1 6 2 . 7 6 %

A v e r a g e
P e r f o r m a n c e 1 7 9 . 4 5 %

Performance Histogram

0

2

4

6

8

10

12

14

16

-234.6 -224.1 -213.7 -203.2 -192.8

Performance Bin

F
re

qu
en

cy

Figure 4: The Binned Performance Histogram

Simulation Logical Time against Real-
Time Performance

0

0.5

1

1.5

2

2.5

0 200 400 600

Logical Time (s)

R
ea

l-T
im

e
P

er
fo

rm
an

ce

Figure 3: The Performance Graph of the Worst
Performing Statistical Distribution

Simulation Logical Time against Real-
Time Performance

0
0.5

1
1.5

2

2.5
3

0 200 400 600

Logical Time (s)

R
ea

l-T
im

e
P

er
fo

rm
an

ce

Figure 2: The Performance Graph of the Best
Performing Statistical Distribution

the average and 16% higher than the worst case
statistical distribution.

From the analysis results it does seem as if the
distribution performance is directly related (see Figure
5b, R2 value of fit of 0.9961) to the frame execution
time of the slowest processing platform. Looking at
the simulator’s time stepped design shown in Figure 2,
a platform’s time spent on a simulation frame is equal
to the platform’s combined:

• object increment and publish processing
time,

• message send time,

• receive wait time, and

• receive message processing time (Gather)
for that frame.

The increment and message processing times have
been accounted for in the processor loading already
instrumented. The measurable message send time only
includes copying the data to the TCP send buffer, as
mentioned1, and has also already been included in the
processor loading. A node’s ‘receive wait time’ is the
part of the TCP data transportation that could not
happen in parallel with the increment and publish
processing phase of the node’s simulation frame. This
is because there is nothing to increment or publish
during such a wait time.

Analysing both the node send balance and the
maximum ‘Node Total Sent’ (Figure 6) against real-
time performance reveals the expected trend of lowered
performance on increased bandwidth, but with a very
low R2 value of fit. This enforces the idea that the real-
time performance, and thus the ‘network wait time’, is
related to both processor balancing and network
bandwidth and, quite possibly, other aspects as well.

3.4.2 Remaining Performance Anomalies

Scenario distribution 31 is distributed manually by
dividing the scenario into object groups that minimise
the communication between groups. In effect applying
the domain knowledge as Carlisle and Merkle [3]
discuss. These groups are processor balanced between
the nodes and the distribution tweaked, by trial and
error, until an optimum distribution is found.

Distribution 31 and the other performance outliers
above the processor balance trend line seem to have a
load balance closer to 0.37:0.34:0.29 than
0.33:0.33:0.33. Revisiting Figure 2 and the simulator
architecture this behaviour may be linked to the
specific conservative and peer-to-peer synchronisation
mechanism and its implementation. It seems that to
lower the network wait times, the node loading must be
staggered. An optimum balance between not

overloading the heaviest node and staggering the TCP
data transportation might have to be found as
mentioned again in the Future Work section.

4. DYNAMIC LOAD BALANCING

The loading metrics identified in the previous two
sections are used to find the dynamic suitability of both
the statistical best case and the heuristic driven static
load balancing. The advantages of dynamic load
balancing compared to static load balancing and the
potential metrics and dynamic load balancing heuristics
are then explored.

4.1 The Dynamic Optimisation Problem

The major difference in doing load balancing
dynamically is that a load balancing heuristic is applied
to gradually and adaptively optimise the run-time
simulation performance. In effect:

• observe current performance,

• decide what load to tentatively migrate to
increase the simulation performance, and

• act by intelligently migrating the load.

Frame Execution Time of the Slowest
Performing Platform against Real-Time

Performance

R2 = 0.9961
160.00%

165.00%

170.00%

175.00%

180.00%

185.00%

190.00%

250 260 270 280 290 300 310

Real-Time Performance

S
lo

w
es

t
P

er
fo

rm
in

g
N

od
e'

s
F

ra
m

e
E

xe
cu

tio
n

T
im

e

Figure 5b: Frame Execution Time of the Slowest
Performing Platform against Real-Time Performance

Processor Balancedness against Real-
Time Performance

R2 = 0.6264
160.00%

170.00%

180.00%

190.00%

200.00%

0 0.2 0.4 0.6 0.8 1

Processor Balancedness

R
ea

l-T
im

e
P

er
fo

rm
an

ce

Figure 5a: The Processor Balance against Real-Time
Performance

4.2 The Dynamic Suitability of Static Load
Balancing

Figure 7 represents a typical scenario distribution on
each of the three processing nodes. The graph
indicates cumulative increment and publish times for
all the objects. The derivative (gradient) of the graph
therefore indicates the instantaneous processing load of
the associated object’s increment or publish phases. It
is clear that the nodes contain objects that adapt their
processing load. The dynamic suitability of the static
load distribution is analysed by ranking the
distributions according to performance over the first
half, called phase 1, of the simulation and then again
for the second half, called phase 2. These results are
shown in Table 2.

The distribution rankings do differ quite a bit between
the two phases. This indicates that the relative
dynamic suitability of the static distributions does vary.
The performance impact is minimal, though. The very
good performance of distribution 31, across both phase
one and phase two, indicates to the potential dynamic
suitability of a static distribution.

4.3 The Potential Performance Increase of
Dynamic Load Balancing

The manually balanced distribution 31 is still the best
performer, but the best statistical static distribution has
changed from 3 to (25+26) for the two phased load
balancing shown in Table 2. Even though the ranking
between the two phases is considerably different the
overall performance increase of the best case phased
distribution is a mere 0.66% as shown in Table 3. This
indicates to a rather poor potential performance
increase for dynamic load balancing.

5. CONCLUSION

Statistical round–robin distribution---with no attempt at
applying a load balancing heuristic---results, at worst,
in an execution performance that is within 82% of the

statistical best case distribution and within 75% of the
best case manually tweaked distribution. The current
analysis results indicate that a simple CPU load
balance heuristic driven static load reaches within 98%
of the statistical best case distribution and within 91%
of the best case manually tweaked load distribution
which is a 10% improvement on random round-robin
distribution.

The performance improvement of the best case
statistical distribution over the worst case is 15.75%
which is less than the measured parallelisation
performance gain of 30% [4] when parallelising the
execution of the scenario over four simulator nodes
instead of three. The cost of finding the optimum load
balancing heuristic must therefore carefully be weighed
against the cost of adding another simulator node. In
this particular architecture, the performance increase

Table 2: Dynamic Suitability of Static Load
Distributions

R a n k
S c e n a r io
D is tr ib u tio n

T im e B e h in d
R e a l-T im e
(P h a s e 1)

S c e n a r io
D is t r ib u t io n

T im e B e h in d R e a l-
T im e (P h a s e 2)

1 3 1 -1 5 2 .7 1 7 3 1 -1 0 0 .7 3 6
2 2 6 -1 4 2 .1 0 4 2 5 -9 4 .0 4 8
3 3 -1 4 1 .0 8 8 3 -9 3 .5 0 5
4 7 -1 4 0 .4 4 9 1 3 -9 2 .5 1 3
5 9 -1 4 0 .2 7 8 2 7 -9 2 .4 8 4
6 2 5 -1 4 0 .0 6 7 7 -9 1 .9 9 6
7 2 0 -1 3 9 .6 9 9 2 0 -9 1 .7 9
8 2 7 -1 3 9 .0 2 9 9 -9 0 .5 4 9
9 1 2 -1 3 8 .4 8 2 1 2 -9 0 .0 1 5

1 0 2 9 -1 3 8 .3 9 7 2 8 -8 9 .5 1 9
1 1 2 4 -1 3 8 .0 9 9 1 -8 9 .2 3 9
1 2 8 -1 3 7 .5 9 8 2 4 -8 9 .2 2 9
1 3 1 -1 3 6 .9 2 8 2 9 -8 8 .8 7 7
1 4 1 3 -1 3 6 .8 4 1 1 1 -8 8 .5 2 5
1 5 1 7 -1 3 6 .4 3 3 2 6 -8 8 .4 4 6
1 6 1 5 -1 3 6 .1 0 9 2 3 -8 7 .9 3 2
1 7 1 1 -1 3 5 .7 6 3 2 2 -8 7 .8 3 3
1 8 5 -1 3 5 .5 3 0 -8 7 .4 0 3
1 9 2 8 -1 3 5 .3 8 5 8 -8 6 .7 8
2 0 1 0 -1 3 5 .0 6 6 1 0 -8 6 .5 6 2
2 1 1 9 -1 3 4 .5 4 8 1 7 -8 6 .4 6 1
2 2 1 6 -1 3 4 .6 1 1 1 9 -8 4 .3 9 1
2 3 2 3 -1 3 3 .0 5 7 1 6 -8 3 .1 1 3
2 4 2 2 -1 3 2 .9 6 4 5 -8 1 .1 4 4
2 5 3 0 -1 3 2 .2 4 6 2 -8 0 .3 5 7
2 6 2 1 -1 2 9 .0 2 8 2 1 -8 0 .1 5 9
2 7 2 -1 2 8 .5 8 9 6 -7 9 .4 8 5
2 8 1 8 -1 2 6 .8 1 8 1 5 -7 9 .0 0 5
2 9 6 -1 2 6 .8 4 9 1 8 -7 8 .5 6 5
3 0 4 -1 2 2 .6 3 1 1 4 -7 1 .9 8 9
3 1 1 4 -1 2 2 .0 7 7 4 -7 0 .1 5 9

Cumulative Object Execution Time aga inst Simulation Logica l Time

0

1

2

3

4

5

6

7

8

9

0 100 200 300 400 500 600
Simulation Logical Time (s)

C
um

ul
at

iv
e

O
bj

ec
t E

xe
cu

tio
n

Ti
m

e
(s

)

Figure 7: Cumulative Object Execution Times of the
Objects on Node 1

Maximum 'Node Total Sent' against Real-
Time Performance

R2 = 0.1357

160.00%

170.00%

180.00%

190.00%

375000000

0

395000000

0

415000000

0

435000000

0

455000000

0
Maximum 'Node Total Sent' (Bytes)

R
ea

l-
T

im
e

P
er

fo
rm

an
ce

Figure 6: The Maximum ‘Node Total Sent” against
Real-Time Performance

due to load balancing only exceeds that of adding a
node once the simulation reaches a node count of about
8 to 10. At this point the performance of the
distributed simulator architecture time management
becomes a limiting factor for increasing the node count
further.

The overhead associated with the dynamic load
balancing measurements and the run-time migration of
load may nullify the potential performance increase of
dynamic load balancing over a reasonably good static
load distribution. The different systems of the GBADS
battery goes through increased loading phases at
similar times as waves of targets come in. The main
argument for using only static load balancing may then
be that there are not many systems being spawned
dynamically and that the existing distribution stays
balanced.

It is however the case that through analysis it was
discovered that staggering the processor loading could
be advantageous. Making use of dynamic load
balancing---which is not based on a pre-conceived
notion of what impacts performance---therefore still
has an advantage. When making use of a large variety
of metrics, dynamic load balancing might create the
opportunity to automatically explore and exploit other
such, possibly as yet unknown, performance drivers.

6. FUTURE WORK

It is hypothesised that the nodes must be arranged in
the staggered loading ratio to increase the performance.
This should be investigated further. One suggestion is
to run the same experiments, but with a statistical
sample of scenarios that is better representative of non-
processor balanced distributions as well.

Another important future task is to do research on
bringing the network wait time down, possibly through
interleaving the messages with the execution in an
innovative way. Currently the network is mostly
utilised in spikes of activity.

Similar performance experiments should also be run on
simulations which require distribution over 8 or more
nodes such that the effect of load balancing may be
measured when the network is stressed.

REFERENCES

1. Boukerche, A & Tropper, C. (1994) “A Static
Partitioning and Mapping Algorithm for
Conservative Parallel Simulations,”
Proceedings of the eighth workshop on
Parallel and distributed simulation, pp 164-
172.

2. Boukerche, A & Das, S. (1997) “Dynamic
Load Balancing Strategies for Conservative
Parallel Simulations,” Proceedings of the
eleventh workshop on Parallel and distributed
simulation, pp 20-28.

3. Carlisle, M & Merkle, L. (2004) “Automated
Load Balancing of a Missile Defence
Simulation Using Domain Knowledge,”
JDMS, Vol. 1, Issue 1, April, pp 59-68.

4. Duvenhage, B & Kourie, D. (2007)
“Migrating to a Real-Time Distributed
Parallel Simulator Architecture,” Proceedings
of the 2007 Summer Computer Simulation
Conference.

5. El-Khatib, K & Tropper, C. (1999) “On
Metrics for the Dynamic Load Balancing of
Optimistic Simulations,” HICSS.

6. Engelbrecht, A. (2002) “Computational
Intelligence, An Introduction,” John Wiley.

7. le Roux, W. (2006) “Implementing a low cost
distributed architecture for real-time
behavioural modelling and simulation,”
Proceedings of the 2006 European Simulation
Interoperability Workshop.

8. Naidoo, S & Nel, J. (2006) “Modeling and
Simulation of a Ground Based Air Defense
System and Associated Tactical Doctrine as
Part of Acquisition Support,” Proceedings of
the 2006 Fall Simulation Interoperability
Workshop.

9. Zeigler, B & Kim, T & Praehofer, H. (2000)
“Theory of Modeling and Simulation, Second
Edition” Academic Press.

Table 3: Dynamic Suitability of Two Phase Static
Load Distributions

Scenario
Distribution
(Phase 1)

Scenario
D istribution
(Phase 2)

Combined Two Phase
Real-T ime Performance

Improvem ent over
Single Phase
Distribution

31 31 -253.453 100.00%
26 25 -236.152 100.66%

3 3 -234.593 100.20%
7 13 -232.962 100.22%
9 27 -232.762 100.54%

25 7 -232.063 100.25%
20 20 -231.489 100.29%
27 9 -229.578 99.58%
12 12 -228.497 99.63%
29 28 -227.916 99.75%
24 1 -227.338 100.00%

8 24 -226.827 99.80%
1 29 -225.805 99.84%

13 11 -225.366 100.21%
17 26 -224.879 100.22%
15 23 -224.041 99.89%
11 22 -223.596 100.31%

5 30 -222.903 100.58%
28 8 -222.165 100.53%
10 10 -221.628 100.38%
19 17 -221.009 100.62%
16 19 -219.002 100.03%
23 16 -216.17 99.29%
22 5 -214.108 98.83%
30 2 -212.603 98.83%
21 21 -209.187 100.00%

2 6 -208.074 99.58%
18 15 -205.823 99.75%

6 18 -205.414 100.02%
4 14 -194.62 100.29%

14 4 -192.236 99.71%

