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Abstract. Simulations with a large number of model insemanake use of parallel architectures to improve
performance. When using such a parallel architeciuchallenge is to effectively distribute the siation objects
across the processing platforms. Load balancingeastatic (pre-execution), or dynamic (adaptiyesformed during
execution). In this paper the authors exploreetttent to which static load balancing can optintieeperformance of a
distributed parallel---conservative and 100Hz ditettime---simulation of an air defence system. ifleasure to which
dynamic load balancing could further enhance théopmance is then explored. Such knowledge fornmeshasis for
further load balance research.

1. INTRODUCTION the simulation run. The assumption is not requiied
The South African Council for Scientific and Indist ~ dYnamic load balancing due to its nature of optings
Research has recently been involved in acquisition!0c@l execution directly.

decision support [8] for a Ground Based Air Defence The next section of this paper elaborates on the
(GBADS) acquisition program. To this end a syrithet distributed execution and communication architeztur
combat environment, dubbed Virtual GBADS of VGD to aid in identifying the set of potentialad
Demonstrator (VGD), has been developed. measuring metrics to consider. Statistical rouwtgirr

The synthetic combat environment must often interac Stafic load balancing is then applied to VGD ane th

in real-time, with human equipment operators or best, average and worst case performance analysed.
connect to ;eal equipment such as systems fatiliat From the analysis and the available literature the
situational awareness. Typical GBADS scenarios are2PPropriate metrics and a static load balancingisiéw

of such a scale though, that more computing ressurc 'S chosen and its performance compared to thateof t
than are available from a single computing platfeme statistical static load balancing. The dynamic

required to reach real-time simulation performance, Suitability of the static load balancing schemes is
The simulation of the scenario is therefore paliatie finally evaluated to estimate the performance iasee
across multiple computing platforms. that dynamic load balancing could potentially poevi

For the purpose of this paper, load ba}laqcing ined 2 VIRTUAL GBADSSIMULATOR
as the process of optimising the distribution oé th ) ) ) ) ,
simulation of the scenario across a certain nundber 1 NiS_section examines the details of VGD's custom

computing platforms; the goal being to reach tha-re archﬁtecture to identify anpl substantigte the pigén
time performance threshold. Static load balancing!0@ding metrics. The rationale behind the custom
attempts to distribute the simulation of the scinar a/chitecture and further details may be found jnajdd
during simulation setup based on a-priori knowledbe [71.

the runtime resources required for the simulatibthe VGD incorporates a publish-subscribe communication
scenario. architecture as the single way for scenario comptne

Dynamic load balancing is able to complement tree pr {0 communicate. ~ The publish - subscribe
existing knowledge with dynamically measured metric COmMmunication model is implemented on top of a peer
of which the behaviour trace may be difficult to {O-PE€r message passing architecture on a comrercia
estimate at start-up. A metric may be defined as Z0igabit Ethernet .|nfrastructure.. The synchronati
parameter that can be measured. The dynamicallP&tween processing platforms is performed at thel le
measured metrics can then, at run-time, cause®f the message passing, shown in Figure 1. Each

redistribution of the simulation of the elementstiog ~ Processing platform (node) goes through an incrémen
scenario as required. publish, gather and synchronise phase. The gather

hase includes both the reading of messages aad als
he network wait times for new messages to be
received.

For static load balancing, this paper assumes tha
minimising the global execution time of a simulatio
optimises the local second to second executionedls w
This assumption allows the execution efficiencyaof
distribution to be measured on the execution tirhe o



computational requirements  and information
bandwidth, to name but two aspects, the readertmigh
notice the following obvious short-falls with this

approach:
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These lead to some processing platforms always
finishing discrete simulation frames earlier thaheos

or intermittently waiting for information to rea¢chem.
Each node ends its publish phase by sending an “endThe conservative time management has the drawback
of-frame” message to all other nodes. A node maythat the frame-to-frame simulation execution eﬁlmy
continue with the next frame once an “end-of-frame” is dependent on the slowest (or most heavily lopded
message has been received from every other nodelrocessing platform.

VGD therefore uses conservative time managementro find the fit static distribution is an NP probie(of

and implements a 100Hz logical time Discrete Time time O(¢") for the number of objects) where a number
System Specification (DTSS)[9][4]. The simulator of, possibly related, metrics have to be optimis@tie
may be run in As Fast As Possible (AFAP) mode er th gptimisation problem is demonstrated with procegsin
logical time may be throttled to not execute fashan  time and cumulative communication overhead in

real-time. general. The execution tingg of each object (scenario

Figure1l: The Layered Simulator Architecture

The two initial loading metrics considered for this
distributed conservative simulation are computaion
load and communication overhead. Additional logdin
metrics are identified in Section 3.4 below frone th
analysis of the statically distributed statistigains.

component)o excluding communication overhead can
be measured, by running a simulation of the scenari
once. Assuming a fixed scenario and similar nodgs,
is fixed and independent of the object's positiorthie

cluster of nodes. Unfortunately though, the

The benchmark scenario for the statistical runs acommunication overhead is a functifyrof, at least, the

GBAD system performance experiments.

multiple waves of incoming threats.

3. STATIC LOAD BALANCING

This section elaborates on static load balancingras
optimisation problem of a loading function. Theshe

It is a full
multi-layer GBADS deployment designed to analyse
the effectiveness of the air defence system agains

object's bandwidth requirements and the object's
osition in the cluster relative to the other olgecThis
akes it impractical to use empirical solutiond dior

predictive purposes such as required for load-
balancing.

If we rather use the functiofy, assuming that it is
known and solvable, then finding the optimal salnti

average and worst case static load distributiores ar for object distribution is equivalent to minimisinige

found experimentally from a statistical sample 6f a
possible distributions. A set of potential loading
metrics are applied to these distributions to fiad

subset of metrics applicable to static load balagnci

and a static load balancing heuristic.

3.1 TheStatic Optimisation Problem

global function F = ma>(zODO (e, + f,)OnO N)

whereQ,, is the set of objects on nodeandN is the set

of all nodes. The minimisation ¢ may be done by
means of a computational intelligence paradigm such
as particle swarm systems [6] or any other multi-
variable optimisation technique.

A simple way to perform static load balancing is to To find f, is unfortunately no easy task as it requires

randomly assign the simulation of scenario COMpPeN 6 gecurate modelling of the latencies and baritiwid
to the available processing nodes in a round robincghapilities of the node interconnection infrastnge.
fashion until all the scenario components have beenrpe following subsections discuss the load balancin

assigned. ~ Keeping in mind that the scenariojieraiure and analyse statistical distributions té
components might have very dissimilar weights in gimyjation of the benchmark scenario. This is done



with the goal of finding a static load balancing with object and network processing load monitors] a
heuristic, the use of which approximates the optimu a node idle time monitor. The simulator is runAis

solution ofF rather than finding the exact solution. Fast As Possible Mode (AFAP).
) ) A round robin approach is followed to distribute
32 Load Balancing Literature randomly shuffled scenario components to three

Static and dynamic load balancing, load metrics andseparate processing platforms. A sample of thirty
distribution heuristics have been studied extemgive scenario distributions is generated in this wayhe T
This section looks at some of the work that hambee assumption is made that round robin distribution
done for conservative peer-to-peer simulators. (approximately equal number of scenario entities pe
processing platform) creates a manageable, but
representative subset, of thprocessor balanced
distribution sample space. A second assumptitimais

the Ethernet throughput, and TCP’s flow and
congestion control is adequately managing the ndtwo
data. The second assumption is supported by a
measured stable, and real-time performance related,
network throughput to and from each processing
platform.

A third assumption is that the simulation behaviur
reasonably similar across the different scenario

‘domain knowledge' to pre-partiion the scenario distributions.  Differences may arise due to the

components into groups. This exploits pre-knowéedg processing p_Iatforms’_ ps_eudo random num_ber
about the communication patterns such that S€quences bgmg applied Fj|fferently fpr each unique
communication between the groups are minimised scenario distribution. The time correlation betwéee

They then follow known load distribution strategtes weapon-target kills across the different distribos
load balance or anneal the pre-partitions. and the similar s_hapes_, (.)f _the performance graphs
] o ) support the behaviour similarity assumption. See t
The static load distribution approaches discuss@h |owered performance spikes encircled on  the
in common that a set of known physically based performance graphs for the best and worst perfagmin
metrics are applied on a pre-run of the scenar an gtatistical distributions in Figure 2 and Figure 3
then used to load balance subsequent runs of the sa yegpectively. Each weapon kil is the result af tir
or similar scenario. Dynamic load balancing has th gefence control behaviour and then a throw of aigse
advantage of not explicitly needing to know which random dice biased by the kill probability. Eacw!
physically based metrics to apply and a pre-ruthef  performance spike is due to an audible kill fee#tbac

scenario is not necessarily required. The disadg@n 544 short pause setup for this purpose.
is of coarse higher runtime overhead in assesgiglg a

correcting load imbalances.

Boukerche and Tropper [1] use a ‘simulated anngalin
algorithm to find good static distribution partiti® that
balance processor load and minimise inter-partition
communication. Each partition is allocated to a
processing node. Simulated annealing is a prookss
starting with many partitions and then gradually
increasing the size of partitions until a pre-defin
number of partitions is reached. The annealinggs®s
tries to gradually grow a good distribution.

A different static partitioning approach is follotvdy
Carlisle and Merkle [3]. They use what they call

The results of the performance ranked statistical
) distributions are shown in Table 1. Note that a
Boukerche and Das [2] use the notion of processomegative time indicates being ahead of real-time.
queue length to dynamically measure load balancescenario distribution 31 is a manually ‘tweaked’
between processors. The load migration then takegjistribution that is explained in Section 3.4.2.heT
place at run-time to optimise load balance. Furttee  geal performing simulation distribution, accordity
the load to migrate is chosen in such a way as tohe original static load balancing assumptjohas a
minimise the communication overhead. minimum execution time when run in AFAP mode.
From the cited literature it does however seemftitiat  The performance histogram is shown in Figure 4e Th
choice and performance difference between static an best case statistical distribution (distributionr@ched
dynamic, the loading metrics and the distribution an un-throttled logical time execution performarmde
heuristics are very application dependent. Iniqalr, 188.39% real-time and the worst case statistical
the influence on load distribution strategies oe th distribution (distribution 4) reached a logical &m
specific type of simulator architecture under execution performance of 162.76% real-time.
investigation is not apparent.

3.3 Statistical Static Load Balancing

This subsection discusses the statistical expetsrian
static load distribution. The simulator is instremed



*  balancing processor usage balances, on
average, the number of scenario components
and, consequently, on average the platform
bandwidth.

Table1l: Scenario Distribution Performance Results

25 il Rank Scenario Time Behind |Real-Time
Distribution Real-Time Performance
- 45 .8
3 234.50 3
- 4.11
2 7 232.44
1 27 231
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This subsection analyses the statistical best,ageer o+ :
and worst case simulation distributions accordmgrn -234.6 -224.1 -213.7 -203.2 -192.8
initial  processor loading metric. Distribution Performance Bin
performance anomalies are then explained by looking
at additional metrics.

Figure4: The Binned Performance Histogram

34.1 Analysisand Initial Heuristic The loadbalance of the processing nodes is calculated
by the difference between the nodes’ maximum and

The authors reason that initially using a h_eurlﬂma:t minimum CPU time divided by the average CPU time.
purely balances processor usage, ignoring network

overhead, gives reasonable performance. Graphing (Figure 5a) the node performance balance,
the initial heuristic seems to hold. A least sggdine

fitting process is followed to assess thevRlue of fit

*  the network processing and transfer of data of the metrics to the real-time performance. THe R
takes place in a separate operating system value of fit to a direct proportionality of reahte
thread controlling a largely independent performance to processor balance is 0.626. Daiad |
hardware communication subsysfeand balancing purely on processor loading with a badanc

of 0.25 and better gets to within 98% of the stiatid

best real-time performance, which is 4% higher than

This is due to two factors, nl:

'Adequate TCP send and receive buffers are allocated
to minimise blocking sends and read wait times [4].



the average and 16% higher than the worst caseverloading the heaviest node and staggering the TC
statistical distribution. data transportation might have to be found as

From the analysis results it does seem as if theMentioned again in theuture Work section.

distribution performance is directly related (segufFe
5b, R value of fit of 0.9961) to the frame execution Processor Balancedness against Real-
time of the slowest processing platform. Lookirtg a Time Performance
the simulator’s time stepped design shown in Figyre
a platform’s time spent on a simulation frame isiaq 200.00%
to the platform’s combined: 2 8 w0.00% g ..

e object increment and publish processing r_'_-u E 180.00% - (R S

time, &% 70.00% Rz 000k~
. message send time, % 10.00% c e
0 0.2 0.4 0.6 0.8 1
° receive wait time, and Processor Balancedness
e  receive message processing time (Gather)
for that frame. Figure5a: The Processor Balance against Real-Time

The increment and message processing times have Performance
been accounted for in the processor loading already
instrumented. The measurable message send tirge onl Frame Execution Time of the Slowest
includes copying the data to the TCP send buffer, a Performing Platform against Real-Time
mentioned, and has also already been included in the Performance
processor loading. A node’s ‘receive wait timethe
part of the TCP data transportation that could not o oo
happen in parallel with the increment and publish o 8 £ oo \
processing phase of the node’s simulation framkis T I E S e o
is because there is nothing to increment or publish| 8 & ¢ £ oo SN
during such a wait time. o3 g o ‘\\~
Analysing both the node send balance and the < 0 S
maximum ‘Node Total Sent’ (Figure 6) against real- Real-Time Performance
time performance reveals the expected trend oflegve

performance on increased bandwidth, but with a very
low R? value of fit. This enforces the idea that thd-rea
time performance, and thus the ‘network wait tims’,
related to both processor balancing and network
bandwidth and, quite possibly, other aspects as wel 4. DYNAMIC LOAD BALANCING

o ) The loading metrics identified in the previous two
34.2  Remaining Performance Anomalies sections are used to find the dynamic suitabilftpath
Scenario distribution 31 is distributed manually by the statistical best case and the heuristic dristatic
dividing the scenario into object groups that miisien  load balancing. The advantages of dynamic load
the communication between groups. In effect apglyi balancing compared to static load balancing and the
the domain knowledge as Carlisle and Merkle [3] potential metrics and dynamic load balancing héiass
discuss. These groups are processor balancedéretwe are then explored.
the nodes and the distribution tweaked, by triad an
error, until an optimum distribution is found. 4.1 The Dynamic Optimisation Problem

Distribution 31 and the other performance outliers The major difference in doing load balancing
above the processor balance trend line seem to &ave dynamically is that a load balancing heuristicppléed
load balance closer to 0.37:0.34:0.29 thanto gradually and adaptively optimise the run-time
0.33:0.33:0.33. Reuvisiting Figure 2 and the sinmarla simulation performance. In effect:

architecture this behaviour may be linked to the
specific conservative and peer-to-peer synchrdoisat
mechanism and its implementation. It seems that to ~ *  decide what load to tentatively migrate to
lower the network wait times, the node loading nhest increase the simulation performance, and

staggered. An optimum balance between not . act by intelligently migrating the load.

Figure5b: Frame Execution Time of the Slowest
Performing Platform against Real-Time Performance

observe current performance,
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Figure 6: The Maximum ‘Node Total Sent” against
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4.2 The Dynamic Suitability of Static L oad
Balancing

Figure 7 represents a typical scenario distribution
each of the three processing nodes.
indicates cumulative increment and publish times fo
all the objects. The derivative (gradient) of traph
therefore indicates the instantaneous processamd &b
the associated object’s increment or publish phases
is clear that the nodes contain objects that athegt
processing load. The dynamic suitability of thatist
load distribution is analysed by ranking the
distributions according to performance over thetfir
half, called phase 1, of the simulation and theairag
for the second half, called phase 2. These reandts
shown in Table 2.

The distribution rankings do differ quite a bit Wween
the two phases. This
dynamic suitability of the static distributions doeary.
The performance impact is minimal, though. Theyver
good performance of distribution 31, across bothsgh
one and phase two, indicates to the potential di;mam
suitability of a static distribution.

4.3 ThePotential Perfor mance I ncrease of
Dynamic L oad Balancing

The manually balanced distribution 31 is still thest
performer, but the best statistical static disttidou has
changed from 3 to (25+26) for the two phased load
balancing shown in Table 2. Even though the ramkin
between the two phases is considerably differeat th

overall performance increase of the best case pihaseT

distribution is a mere 0.66% as shown in TablérBis
indicates to a rather poor potential performance
increase for dynamic load balancing.

5. CONCLUSION

Statistical round—robin distribution---with no atipt at
applying a load balancing heuristic---results, @trst,
in an execution performance that is within 82% rad t

The graph

indicates that the relative

statistical best case distribution and within 75p4he
best case manually tweaked distribution. The cairre
analysis results indicate that a simple CPU load
balance heuristic driven static load reaches wigd#o

of the statistical best case distribution and wit&iL%

of the best case manually tweaked load distribution
which is a 10% improvement on random round-robin
distribution.
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Figure7: Cumulative Object Execution Times of the
Objects on Node 1

Table2: Dynamic Suitability of Satic Load
Distributions

Time Behind

Real-Time

(Phase 1)
-152.717

Time Behind Real-
Time (Phase 2)

Scenario
Distribution

Scenario

Rank Distribution

-100.736
-94.048

-142.104
-141.08

NANN

4 3
-14 4
4 6
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-139.
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-13
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1

4
14

-122.631
-122.077

he performance improvement of the best case
statistical distribution over the worst case is7556
which is less than the measured parallelisation
performance gain of 30% [4] when parallelising the
execution of the scenario over four simulator nodes
instead of three. The cost of finding the optimioad
balancing heuristic must therefore carefully beghed
against the cost of adding another simulator nobte.
this particular architecture, the performance iasee



due to load balancing only exceeds that of adding aAnother important future task is to do research on

node once the simulation reaches a node countoeftab
8 to 10. At this point the performance of the
distributed simulator architecture time management
becomes a limiting factor for increasing the nodert
further.

Table 3: Dynamic Suitability of Two Phase Static
Load Distributions

Combined Two Phase
Real-Time Performance

Scenario
Distribution
(Phase 1)

Scenario
Distribution
(Phase 2)

Improvement over
Single Phase
Distribution

3
2

-253.4
-236.

00.
00.

nof=] fvofw
x[]ola|o

EEEEE
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-208.
-205.
-205.4

e o

-194
-192.2

4

The overhead associated with the dynamic load
balancing measurements and the run-time migration o
load may nullify the potential performance increa$e
dynamic load balancing over a reasonably goodcstati
load distribution. The different systems of the AZES

battery goes through increased loading phases at

similar times as waves of targets come in. The main
argument for using only static load balancing ntagnt

be that there are not many systems being spawned

dynamically and that the existing distribution stay
balanced.

It is however the case that through analysis it was
discovered that staggering the processor loadingdco
be advantageous. Making use of dynamic load
balancing---which is not based on a pre-conceived
notion of what impacts performance---thereforel stil
has an advantage. When making use of a largetyarie
of metrics, dynamic load balancing might create the
opportunity to automatically explore and exploihet
such, possibly as yet unknown, performance drivers.

6. FUTURE WORK

It is hypothesised that the nodes must be arramnged
the staggered loading ratio to increase the pedoo®.
This should be investigated further. One suggesso

to run the same experiments, but with a statistical
sample of scenarios that is better representafivomnm-
processor balanced distributions as well.

bringing the network wait time down, possibly thgbu
interleaving the messages with the execution in an
innovative way. Currently the network is mostly
utilised in spikes of activity.

Similar performance experiments should also beorun
simulations which require distribution over 8 or reo
nodes such that the effect of load balancing may be
measured when the network is stressed.
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