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ABSTRACT 

This paper is a brief introduction to some of the well known fundamental 
engineering properties of homogeneous isotropic linear elastic materials. It 
specifically shows the relationships between different elastic moduli. It covers 
some of the extensive (but not so well known) relationships between the 
various moduli of these materials and also illustrates the importance of 
parameters such as Poisson’s Ratio. The aim of the paper is to summarise 
the fundamental elastic properties of the above types of materials, as well as  
their interrelationships and to use these as background to engineering in road 
modelling and simulation. An additional aim is to show that moduli measured 
under different conditions should probably be treated differently, such as 
creep speed measurements of elastic surface deflection basins carried out 
with the Benkelman Beam (BB) (or Road Surface Deflectometer (RSD)) 
associated with Heavy Vehicle Simulator (HVS) testing, and those measured 
under relatively short time impulse loading (i.e. seismic) by means of the 
Falling Weight Deflectometer (FWD). 

 

1. INTRODUCTION 

1.1. Background 
 
Rehabilitation design and analysis of existing road structures require 
appropriate equipment for testing and for associated evaluation 
methodologies.  Current state-of-the-art equipment includes apparatus such 
as the Falling Weight Deflectometer (FWD), Rolling Deflectometer (RD), 
Deflectographs, high speed deflectometers, Benkelman Beam (BB), Multi-
Depth Deflectometers (MDD) etc. for the measurement of mainly elastic (i.e. 
recoverable) surface (and in-depth) deflection profiles of a road structure 
under pre-defined loading conditions.  These deflection results are then 
typically used in back-calculation routines for multi-layered road pavement 
systems based on the theory of homogenous isotropic linear elasticity. As this 
theory is used as an approximation of reality and since most solutions are 
non-unique, there are many practical problems associated with the theoretical 
back-calculation technique. A major problem is the allocation of the 
appropriate input engineering parameters such as the effective elastic moduli 
and the associated Poisson’s Ratios for the materials based on the theory of 
linear elasticity.  This paper addresses some of the fundamental definitions of 
these elastic parameters, especially those associated with creep (slow speed) 
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tyre loading conditions as opposed to those done at higher speed conditions 
(including impulse loading such as with the FWD). It is shown that Young’s 
moduli under seismic impulse small-strain loading can theoretically be as 
much as 3.5 times greater than those done at slower speed (and higher 
strain) conditions on the same material, depending on the assumed Poisson’s 
Ratio. Some practical guidelines are given here for the appropriate use of 
these parameters for the design and analysis of road pavement structures. 

1.2. Scope and aim of paper 
 
The scope of this paper is briefly to introduce some well referenced 
fundamental engineering properties of homogeneous isotropic linear elastic 
materials and specifically to show the relationships between different elastic 
moduli. It covers some extensive (but not so well known) relationships 
between the various moduli of these materials and also illustrates the 
importance of parameters such as Poisson’s Ratio. The aim of the paper is to 
summarize the fundamental elastic properties of the above types of materials 
and their interrelationships and to use these as background to engineering in 
road modelling and simulation. An additional aim is to show that moduli 
measured under different conditions should probably be treated differently, 
such as high strain creep speed measurements of elastic surface deflection 
basins measured by the BB, RSD (mainly associated with HVS testing) and 
those measured under relatively short-time impulse loading (i.e. relatively 
small strain seismic loading) with the Portable Seismic Pavement Analyser 
(PSPA) and possibly with the Falling Weight Deflectometer (FWD).  
 
Note: The main content of this paper was taken and adapted from 
http://en.wikipedia.org/wiki (Wiki, 2008) and is therefore not original but is 
intended for information sharing amongst pavement engineers and 
technicians. 
 
2. LINEAR ELASTICITY 

 
In linear elasticity, the Lamé parameters (named after Gabriel Lamé) consist 
of two parameters ø, also called Lamé's first parameter, and µ, the Shear 
modulus or Lamé's second parameter which, in homogenous, isotropic 
materials, satisfy Hooke’s Law in 3 dimensions: 
 

( )tr I 2σ λ ε µε= +                                 (1) 

 

Where: σ  is the stress, ( )εtr  the trace function of the strain matrix, I the 

identity matrix and ε  the strain tensor. The first parameter λ  (Lame Modulus) 
has no physical interpretation, but serves to simplify the stiffness matrix in 
Hooke’s Law above. Both parameters constitute a parameterization of the 
elastic moduli for linear isotropic (uniformity in all directions) homogeneous 
media and are thus related to the other elastic moduli. Hooke’s Law is a two-
parameter material model. For an isotropic material, the deformation of a 
material in the direction of one axis will produce a deformation (i.e. elastic 
deflection) of the material along the other axes in three dimensions. Thus it is 
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possible to generalize Hooke’s Law into three dimensions, given by Equation 
2 below: 

( )[ ]
zyxx

E
σσνσε +−=

1
 

( )[ ]
zxyy

E
σσνσε +−=

1
        (2) 

( )[ ]
yxzz

E
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Where: 
z

and, εεε
yx

 are strain in the direction of the x, y and z axes and 

z
and, σσσ yx

 are stresses in the direction of the x, y and z axes and ν  is 

Poisson's Ratio (which, in the case of linear isotropic homogeneous materials, 
is the same in the x, y and z directions. Also the stress and strain responses 
are linearly related at any position in such a material (Nair and Chang, 1973)). 
 
3. EXAMPLES OF VARIOUS MODULI TYPES AND FORMULATIONS 

3.1. Bulk Modulus (K) 
 
The bulk modulus (K) of a substance essentially measures the resistance of a 
substance to uniform compression. It is defined as the increase in pressure 
required resulting in a given relative decrease in volume. See Figure 1. 
 
 
 
 
 
 
 
 
 

 

Figure 1. Isostatic pressure (P) compression of a cube 
 
As an example, let us suppose that a spherical iron cannon ball with a bulk 
modulus of 160 GPa (gigapascal) is to be reduced in volume by 0.5 per cent. 
This would require a pressure increase of 0.005×160 GPa = 0.8 GPa. If the 
cannon ball were subjected to a pressure increase of only 100 MPa, it would 
decrease in volume by a factor of 100 MPa/160 GPa = 0.000625, or 0.0625 
per cent. The bulk modulus K can be formally defined by Equation 3 below: 
 

V
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VK

∂

∂
−=           (3) 

  

Where: p is pressure, V is volume, and ∂ ∂P V  denotes the partial derivative 

of pressure with respect to volume.  
 
The inverse of the bulk modulus indicates the compressibility of a substance. 
Strictly speaking, since bulk modulus is a thermodynamic quantity, it is 
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P 
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necessary to specify how the temperature varies in order to specify a bulk 
modulus: constant-temperature (KT), constant-enthalpy (adiabatic KS) and 
other variations are possible. In practice, such distinctions are usually only 
relevant for gases. Bulk modulus values for some substances are given by 
way of example in Table 1. A very important piece of information for road 
pavement engineers is that the bulk modulus of water is 2 200 MPa. This 
could have great implications for saturated and partially saturated 
granular/particulate media (un-drained), which in essence are multiphase 
materials (i.e. rock grains, water and air) in pavements, especially under the 
impact (or impulse) loading of the FWD.   
  
Table 1. Typical Bulk Moduli for some known substances 
 

Substance Bulk Modulus (MPa) COMMENTS 
Water 2 200 Value increases at higher pressures 

Air 0.142 Adiabatic bulk modulus (KS ) 

Air 0.101 Constant temperature bulk modulus (KT) 

Steel 1.6×105 Approximate 

Solid Helium 50 Approximate 

Glass 3.5×104 to 5.5×104 
See- http://en.wikipedia.org/wiki/Glass 

(Wiki, 2008) 

 
Saturated materials (or road layers) will therefore exhibit relatively large 
values of back-calculated “effective moduli” (Mavko et al., 1998), which need 
to be understood when pavement performance results based on FWD testing 
are analysed or when these are compared with results obtained from creep 
speed or “static” devices such as the RSD (and/or the BB) where pore water 
pressure may decrease (i.e. drained conditions). For a gas (such as air within 
compacted road materials), the adiabatic bulk modulus KS is approximately 
given by 
 

pKS κ=           (4) 

 
Where: κ  is the adiabatic index, (sometimes calledγ ); p is the pressure.  

 
In a fluid (such as moisture in compacted road materials), the adiabatic bulk 
modulus KS and the density ρ  determine the speed of sound c (pressure 

waves), according to Equation 5 below: 
 

ρ
=

sK
c           (5) 

  
3.2. Young’s Modulus (E) 
 
In solid mechanics, Young’s Modulus (E) is a measure of the stiffness of a 
given material. It is also known as the Young modulus, Modulus of elasticity, 
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Elastic modulus, and Tensile or Compression moduli. (Bulk modulus (K) and 
Shear modulus (G, S or µ) are different types of elastic moduli, see later) For 
relatively small strains (i.e. < 100 microns) it is defined as the ratio of the rate 
of change of stress with strain (Mavko et al.,1998). This can be determined 
experimentally from the slope of a stress-strain curve created during tensile 
(or compressive) tests conducted on a sample of the material. Young’s 
Modulus is named after Thomas Young, the 18th Century British scientist. The 
SI unit of modulus of elasticity, E is the pascal. Given the large values typical 
of many common materials, figures are usually quoted in megapascals or 
gigapascals. An alternative unit form, kN/mm², is sometimes used, which has 
the same numeric value as a gigapascal. Young’s Modulus allows the 
behaviour of a material under load to be calculated. For instance, it can be 
used to predict how much a wire will extend under tension or to predict the 
load at which a thin column will buckle under compression. Some calculations 
also require the use of other properties of the material, such as shear modulus, 
density or Poisson's Ratio. Young’s Modulus, E, can be calculated by dividing 
the tensile stress by the tensile strain: 
 

F A FL
E

L L A L
0 0

0 0

tensile stress

tensile strain

σ

ε
= = = =

∆ ∆
      (6) 

 
Where: 

E is the Young’s Modulus (modulus of elasticity) measured in pascal;  
F is the force applied to the object;  
A0 is the original cross-sectional area through which the force is applied;  
∆L is the amount by which the length of the object changes;  
L0 is the original length of the object.  

 
The above are also applicable to linear elastic materials in compression. The 
Young’s Modulus of a material can be used to calculate the force exerted 
under a specific strain. 
 

∆
= 0

0

EA L
F

L
          (7) 

 
Where: F is the force exerted on the material (or layer) when compressed or 
stretched by ∆L. From this formulation Hooke’s Law can be derived, which 
describes the stiffness of an ideal spring by Equation 8 below: 
 

 
= ∆ = 
 

0

0

EA
F L kx

L
         (8) 

 

Where: = 0

0

EA
k

L
 and = ∆x L  

Depending on the exact composition of the material, Young’s Modulus can 
vary considerably. For example, the Young’s Modulus for most metals can 
vary by 5 per cent or more, depending on the precise composition of the alloy 
and on any heat treatment applied during manufacture. Consequently, many 
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of the values here (as well as those generally found and used in pavement 
engineering practice as given in Theyse et al., 1996) are only approximations 
of reality. For the approximate Young's moduli (E) of various solids see 
http://en.wikipedia.org/wiki/Young%27s_modulus (Wiki, 2008).   
 
3.3. Shear modulus (G, S or µ) 
 
In materials science, shear modulus, G (sometimes S or µ ) and sometimes 

referred to as the modulus of rigidity, is defined as the ratio of shear stress to 
the shear strain:   
 

= =
∆ ∆

F A Fh
G

x h xA
         (9) 

 
Where: F / A = shear stress; force F acts on area A; ∆x / h = shear strain; with 
initial length h and transverse displacement ∆x.   

 
The shear modulus is one of several parameters used for measuring the 
strength of materials. All of them arise in the generalized Hooke’s Law. 
Young’s Modulus describes the response of a material to linear strain (e.g.  
pulling on the ends of a wire), the bulk modulus describes the response of a 
material to uniform pressure and shear modulus relates to the response of a 
material to shearing strains. Shear modulus is usually measured in GPa 
(gigapascal).   For typical values of shear modulus at room temperature (see 
http://en.wikipedia.org/wiki/Shear_modulus (Wiki, 2008)). Anisotropic 
materials, such as wood, paper and some road materials, exhibit different 
material responses to stress or strain when tested in different directions. 
Shear modulus is concerned with the deformation of a solid when it 
experiences a force parallel to one of its surfaces while its opposite face 
experiences an opposing force (such as friction). In the case of an object 
shaped like a rectangular prism, it will deform into a parallelepiped.  
 
4. P-WAVE MODULUS (or MASS MODULUS, M or Emass) 

 

In solids there are two kinds of seismic body waves, namely pressure waves 
and shear waves. The speed of shear waves is controlled by the shear 
modulus, G (or S or µ ). Solids can also sustain transverse waves. In the case 

of solids an additional elastic modulus, for example the shear modulus, G 
(or µ ), is needed to determine wave speeds.  In linear elasticity, the P-wave 

modulus, M, is one of the elastic moduli available to describe linear isotropic 
homogeneous materials. M, the “Mass Modulus” (or Emass) is generally 
measured under small strain impulse loading (i.e. PSPA) and/or under 
“seismic” conditions in road engineering, i.e. where impulse loads are applied 
over relatively short periods, typically less than 50 milli-seconds as is the case 
with the FWD. (However, more research is needed to quantify these effects 
for the FWD on southern African pavements). 
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The P-wave modulus is defined as the ratio of axial stress to axial strain in a 
uniaxial strain state: 
 

σ ε=zz zzM                    (10) 

 

With strains: xx yy xy xz yz 0ε ε ε ε ε= = = = =    

This is equivalent to stating that: ρ= 2

PM V , where 
PV  is the velocity of a P-

wave and ρ  the material density. The elastic moduli P-wave modulus, M, is 

defined so that M = K + 4µ / 3 and M can then be determined by Equation 11, 
with a known speed Vp 
 

P

M
V 2

ρ
=                                (11) 

 
It should however also be noted that Emass (or M or Constrained moduli) are 
obtained from the speed of body waves that are sufficiently far from the 
source that there is no or negligible deformation (i.e. small strain) 
perpendicular to the propagation direction of the wave inside a solid medium.  
This is in fact the modulus determined by the PSPA apparatus but probably 
not in the case of FWD.  For improved FWD back-calculation a dynamic 
method is proposed (i.e. inertia and damping included) by various authors 
(Magnuson, 1988, Kikuta et al., 2004, Lourens, 1992, 1995). 
 
 
5. POISSON'S RATIO, ν  

 
When a sample of material is stretched in one direction, it tends to get thinner 
in the other two directions and, when compressed, it tends to get thicker in the 
other two directions. Poisson's Ratio (ν ), named after Simeon Poisson, is a 
measure of this tendency. Poisson's Ratio is the ratio of the relative 
contraction strain or transverse strain (normal to the applied load to the 
relative extension strain, or axial strain (in the direction of the applied load). In 
the case of a perfectly incompressible material (like rubber) that is deformed 
elastically at small strains, its Poisson's Ratio would be exactly 0.5. Most 
practical engineering materials have ν - values of between 0.0 and 0.5. The 
ν - value of cork is close to 0.0, that of most steels around 0.3 and that of 
rubber is almost 0.5. See Figure 2. Note: Auxetic materials, such as polymer 
foams, have negative Poisson's Ratios. If these  materials are stretched in 
one direction, they become thicker in perpendicular directions.  
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Figure 2. Rectangular incompressible specimen subject to compression, 

with Poisson's ratio of approximately 0.5 (i.e. rubber).  
 
If it is assumed that the material is compressed along the axial direction then: 
 

trans

axial

 = -
ε

ν
ε                            (12) 

 

Where:  ν  is the resulting Poisson's ratio;
trans

ε  is transverse strain and
axial

ε  is 

axial strain.  
 
At first glance, a Poisson's Ratio greater than 0.5 does not make sense 
because, at a specific strain, the material would have a zero volume and any 
further strain would give the material a "negative volume". Unusual Poisson’s 
Ratios are usually found in materials with a complex architecture.  For 
Poisson's Ratio values for different materials – see 
http://en.wikipedia.org/wiki/Poisson%27s_ratio (Wiki, 2008). Tensile 
deformation is usually considered positive and compressive deformation is 
considered negative. This definition of Poisson's Ratio contains a minus sign 
so that normal materials have a positive ratio. Poisson's ratio is usually 
represented as a lower case Greek nu, ν . The cross sections of virtually all 
common materials become narrower when these materials are stretched. The 
reason for this, in the continuum view, is that most materials are more 
resistant to a change in volume as determined by the bulk modulus K than to 
a change in shape, as determined by the shear modulus G.  Poisson’s ratio is 
directly proportional to the material properties of Bulk modulus (K), Shear 
modulus (G), and Young’s Modulus (or strain modulus, E). These moduli all 
reflect some aspect of the stiffness of the material and are themselves a 
derivation of stress-to-strain ratios. The following equations show how these 
properties are all related: (See also Table 2): 
 

( ) ( )ν − += 3 2 / 6 2K G K G                                                                (13) 

( )ν= +2 1E G                                                                                      (14) 

 
The theory of isotropic elasticity makes provision for Poisson's Ratios in the 
range from -1 to +0.5. Physically it means that the material needs to be stable 
and that the stiffnesses must be positive: the bulk and shear stiffnesses are 
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interrelated by formulae which incorporate Poisson's Ratio. As the elastic 
properties of homogeneous isotropic linear elastic materials are uniquely 
determined by any two of the above moduli (M, E), any of the other elastic 
moduli can be calculated. See the interrelationships of M and E in Table 2. 
 

Table 2. Conversion formulas between elastic properties of homogeneous isotropic linear elastic 
materials (modified from Mavko et al., 1998). [The symbols are defined below.] 

 ( )µλ,  ( )µ,E  ( )λ,K  ( )µ,K  ( )νλ,  ( )νµ,  ( )ν,E  ( )ν,K  ( )EK ,  
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Definition of Symbols in Table 2: 

=K  Bulk Modulus; =E  Young’s Modulus (or Static Modulus); =λ  Lame 
Modulus; =µ  Shear Modulus ; =ν  Poisson’s Ratio; =M  Mass Modulus, P-

Wave Modulus, Constrained Modulus, or Seismic Modulus.  

 

6. SEISMIC LOADING AND THE RELATIONSHIP BETWEEN YOUNG’S 
MODULUS (E) AND MASS MODULUS (M) 

6.1. Seismic Loading 
 
Seismic loading normally refers to relatively small engineering strains ( λ ) on 
the body being tested (Roesset et al., 1990). Saeed and Hall (2002) showed 
the changes in the complex moduli of asphalt, especially for asphaltic base 
layers, depending on loading frequency. 
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Figure 3. Dependence of complex moduli of asphalt (25 degrees C) on 

loading frequency, after Saeed and Hall (2002) (modified in this paper). 
 

Figure 3 shows an increase in complex moduli with loading frequency (asphalt 
in this case) depending on loading frequency. Similar findings were reported 
by Roesset et al., (1990) and Nazarian et al., (2002, 2005). Also shown on the 
figure are the relative loading frequencies of the Heavy Vehicle Simulator 
(HVS), Falling Weight Deflectometer (FWD) and the Portable Seismic 
Pavement Analyser (PSPA). It is clear that, for asphalt materials at least, care 
should be taken when measuring field moduli with different devices.  
However, more dedicated research is needed to evaluate the effect of load 
frequency on typical “thin” pavement structures in southern Africa. The effect 
of inertia and damping also need further quantification for these pavement 
structures, as it is well known that these factors (i.e. inertia and damping) are 
completely ignored with back-analyses of routine testing e.g. with the FWD, as 
was demonstrated adequately by Lourens (1992, 1995). 

 
6.2. Mass Modulus vs Static Modulus 
 
There is a very important difference (which may not be so well known by 
pavement engineers) between moduli measured in static (or creep) loading 
conditions (i.e. low frequency testing) and those measured at relatively high 
loading frequencies, but under small engineering strain conditions. The former 
modulus is known as “Estatic” (or E) and the latter “Emass” (or M, or also known 
as Constrained Modulus). In the case of linear elastic isotropic homogenous 
materials these two moduli are related via the Poisson’s Ratio, ν . This 
relationship is shown below in Equation 15 as well as in Table 2. 
 

( )
( )( )

υ

υ υ

 −
= =  

+ −  

1

1 1 2
mass staticM E E                                                      (15) 

HVS 
Test 
Speed 

FWD 

PSPA 
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Typical values of Poisson’s Ratio for road materials range between 0.25 and   
0.45. A graphical representation of Equation 14 is illustrated in Figure 3.   
Figure 3 shows that the increase in the multiplying factor (i.e. Poisson’s factor) 
Estatic for above is exponential and increases drastically above Poisson’s 
Ratios of about 0.4. Typical Poisson’s ratios used in South Africa for granular 
and asphaltic materials are 0.35 and 0.44 respectively. Thus it can be seen in 
Figure 4 that the ratios between M (Emass) and Estatic (i.e. Emass / Estatic) are 1.6 
and 3.24 for granular and asphalt materials respectively, (assuming of course 
that these are homogeneous, isotropic linear elastic materials).  
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Figure 4. Ratio of Emass (or M) vs Estatic (or E) for different Poisson’s Ratios 

with ranges generally applicable to road materials. 
 
The importance of this is that this factor (referred to here as “Poisson’s factor”) 
should be clear from the fundamentals and, ideally, should be introduced into 
practical engineering as soon as possible. Field measurements are, however, 
needed to evaluate this concept before its practical application in, for example, 
the conversion of moduli values from M to E and vice versa during the back-
calculation of these constants and its application in pavement rehabilitation 
engineering. This obviously relates to the type of testing on the pavement 
being carried out (i.e. small-strain seismic, impulse or creep-speed loading, 
together with the position of receivers relative to the loading (impact) source. 
 
 
7. DISCUSSION 

From the fundamental descriptions of material properties such as moduli and 
Poisson’s Ratios for homogeneous isotropic linear elastic materials it is clear 
that pavement engineers should be aware of the different effective moduli that 
are available and that can be used in practice. Some of these basic 
differences might account for the current confusion arising from the use of 
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moduli obtained from PSPA (and possibly the FWD) impact measurements by 
comparison with those developed over the years in South Africa under creep 
loading of the Heavy Vehicle Simulator (HVS) and RSD testing, as well as 
from Multi-Depth Deflectometer (MDD) tests, in which the “creep” or “static” 
loading mode was used for load application during measurements of elastic 
road deflections. Further, the importance of obtaining the “correct” or 
appropriate Poisson’s Ratios cannot be over-estimated. However, more 
research is needed to quantify these effects, especially those associated with 
the FWD, in order to provide more appropriate practical guidelines for design 
and maintenance of road pavements in southern Africa. 
 
8. CONCLUSIONS AND RECOMMENDATIONS 

8.1. Conclusion  
 
A basic understanding of the fundamental definitions of the elastic parameters 
for homogeneous isotropic linear elastic materials in road pavement design 
and analysis is urgently needed for modern mechanistic analysis of road 
pavement by engineers and technicians.  
 
8.2. Recommendation 
 
The information in this paper should be made available to students and 
practitioners at as early a stage as possible in road pavement design courses. 
It is also recommended that, in particular, the Poisson’s factor between Mass 
Modulus (M or Emass) and Young’s Modulus (E or Estatic) be evaluated from 
practical experience and from measurements on road materials/layers as a 
matter of urgency. 
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