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Keynote addresses 
 
 
The difference that South Africa has made to Speaker Recognition 
David van Leeuwen 
 
Automatic speaker recognition is an area of speech technology that has 
received much attention from speech researchers in recent years.  Some 
believe that it is the cleanest of all speech related recognition 
problems.  Although simple in its formulation, the speaker recognition 
problem appears to have an intricate relation with its application. 
Text independent Speaker Recognition can be seen as a pattern 
recognition problem, where features are highly variable sequences 
related to a single source.  The task is to detect whether the source 
is of known identity. 
 
The engineering of speaker recognition systems depends largely on the 
availability of example material, in this case speech recordings of 
thousands of different speakers.  Performance is driven by 
international benchmark evaluations which have been carried out almost 
every year since 1996 by the National Institute of Standards and 
Technology in the United States.  These competitive evaluations 
donate new evaluation data to the research community, which guides 
research directions.  In recent years, the challenge of channel and 
session variability has been the focus of these evaluations. 
 
In this presentation, the typical characteristics of the speaker 
recognition approach are reviewed, and an overview of the machine 
learning techniques employed is given. 
 
In recent years, new approaches to the presentation of the speaker 
recognition output have been developed.  This way of presentation makes 
the technology applicable in a wider range of applications without the 
need of recalibration.  Both in the attempts to overcome channel 
variability and the application-independent presentation of speaker 
recognition output researchers from South Africa have played an 
important role. 
  
 
The Careful Listener: Speech Processing in Meetings 
Thomas Hain 
 
Meetings form an essential part of life for many people and the time spent in face to 
face meetings is ever increasing while more and more people complain about 
inefficiency, lack of planning and loss of information. Meetings have to be postponed 
due to lack of information at the time, essential participants that could not attend or 
deviation from the real topics at hand. While we are normally very eager to use tools 
that help to increase productivity in many areas, meetings seem to have been mostly 
excluded in this quest. 

1



  
 

 
Under the AMI and AMIDA projects observant technologies are developed that aim 
to assist humans in their tasks rather than replacing their functions. While many of 
these technologies use several modalities (such as video, speech, handwriting, etc) at 
the same time, the most important information to date can be derived from speech 
signals alone. However, most known algorithms have to be altered to cope with the 
complex acoustic situation and special information not relevant in other domains can 
be derived. 
 
In this presentation a brief overview of the AMIDA project is given, followed by a 
discussion of required information for several applications. The information related to 
speech signals are the speakers identity and location, the timing, the content, the 
presentation style. Hence speaker diarisation, speaker tracking, and speech 
recognition are at the core of speech technologies used. The presentation will give an 
overview of state of the art systems for meetings and their performance. Since 
processing should be minimally invasive microphone array processing is fundamental 
to all systems presented. Examples of systems for higher level information extraction 
using the output of these speech processing algorithms are given. 
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Heuristics for State Splitting in Hidden Markov Models

Benjamin Murrell, Jules Raymond Tapamo

School of Computer Science
University of KwaZulu-Natal

murrellb@gmail.com, tapamoj@ukzn.ac.za

Abstract
The Baum-Welch algorithm for training Hidden Markov

Models requires model topology and initial parameters to be
specified, and iteratively improves model parameters. Some-
times prior knowledge of the process being modelled allows
such specification, but often such knowledge is unavailable. Ex-
perimentation and guessing are resorted to. Techniques for dis-
covering the model topology from the observation data exist,
but their use is not commonplace. We propose a state split-
ting approach to structure discovery, where states are split based
on two heuristics: 1) Within-state autocorrelation and 2) transi-
tion dependence. Statistical hypothesis testing provides a natu-
ral termination criterion, and takes into account the number of
observations assigned to each state, splitting states only when
the data demands it. With synthetic data, we demonstrate the
algorithm’s ability to recover the structure of Hidden Markov
Models from their observation samples. We also show how
it outperforms regular Baum-Welch training in both achieving
lower training set AIC and BIC scores, and in a classification
task. This superior performance is despite the fact that in both
tasks, Baum-Welch training had the advantage of being initial-
ized with the number of states of the HMM that actually gener-
ated the data.

1. Introduction
Hidden Markov Models (HMMs) are efficient tools for mod-
eling time varying processes. They are used for classification,
prediction, and clustering [10] in fields diverse as speech recog-
nition, bioinformatics, finance and more. Rabiner [1] gives a
good introduction to the theory and the details of application.
Very briefly, an HMM is a Markov process in which the states
cannot be directly observed, but each state has a probability dis-
tribution over possible outputs, which can be observed. The
parameters of an HMM describe the initial state probability dis-
tribution, the state transition probability matrix, and the output
probability distribution per state. Following Rabiner [1] in ex-
position, let λ denote the complete set of model parameters,
and O a sequence of observations. There are three canoni-
cal problems associated with HMMs. The first is to calculate
P (O|λ), the probability of a particular observation sequence
given a model. This is achieved with the Forward algorithm.
The second, given a model λ and an observation sequence O,
is to calculate the optimal sequence of hidden states Q. This is
efficiently solved with the Viterbi algorithm. The third, when
given O and λ, is to adjust the model parameters to maximize
P (O|λ). The Baum-Welch algorithm is typically used for this,
but other faster approximate techniques such as segmental k-
means training [1] are also used.

When using HMMs for classification, one typically trains
one HMM, λw, per category w, by selecting a model archi-

tecture and initial parameters, and improving the parameters
through Baum-Welch reestimation until a (local) maximum for
P (Ow|λw) is reached, where Ow is the set of observation se-
quences known to be from category w. To categorize a novel
observation sequence O, P (O|λw) is computed for each λw

using the Forward algorithm and the novel sequence is assigned
to the category of the model with the highest such value.

It should be noted that the initialization of the models is
left to art, from selecting the appropriate number of states
through to setting the initial parameters of the output distribu-
tions. This, combined with the fact that Baum-Welch reesti-
mation gets stuck at local maxima, often leads to sub-optimal
performance in domains where there are few clues for model
initialization.

The rest of this paper will introduce structure discovery al-
gorithms in general and state splitting algorithms in particular.
Focusing on heuristic-based state splitting, we say why previ-
ously proposed heuristics don’t seem well justified, and propose
and motivate two new heuristics. We will evaluate their perfor-
mance on synthetic data, and describe how they can be com-
bined with an exhaustive approach to improve its efficiency.

2. Structure Discovery
Structure discovery algorithms attempt to circumvent prob-
lems of architecture selection and initialization by searching
for the appropriate architecture whilst learning the parameters.
It is useful to distinguish between top down state splitting ap-
proaches where the starting point is a single state, and bottom up
state merging approaches where the starting point is a complex
model with many states[4]. Some approaches use a combina-
tion of merging and splitting. Our approach falls into the top
down, state splitting family.

2.1. State Splitting

State splitting involves iteratively creating a new model with
one state more than the old model. A state in the old model is
duplicated, and the model parameters are reestimated. Two im-
portant questions that characterize state splitting approaches are
1) how they decide which state to split, and 2) how they decide
when to stop splitting. The answer to the first question suggests
a further division of state splitting algorithms. There are algo-
rithms that split every state in turn, and select the split (after
parameter reestimation) that produces the best improvement in
some model selection criterion (eg. Bayesian Information Cri-
terion [9]). For convenience, we will refer to these algorithms
as ‘exhaustive’, because at each step they try all possible splits.
This doesn’t mean that they try all possible model architectures.
Such techniques usually terminate when no split gives any fur-
ther improvement in the model selection criterion. Examples
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are Ostendorf and Singer [6] and Siddiqi et al. [4]. A differ-
ent class of algorithms use one or more heuristics for deciding
which state to split. This circumvents the need to retrain the
model once for every state when deciding which state to split.
We will focus on such approaches.

2.2. Previous Approaches

Li and Biswas [10] model the state outputs with a single Gaus-
sian. They propose an algorithm that selects the state with the
largest variance as a candidate for splitting. They also merge the
states with the closest means. They explore both the Bayesian
Information Criterion and the Cheeseman-Stutz Approximation
to decide when to stop splitting. Splitting the state with the
highest variance is a crude heuristic. If the process being mod-
elled really does have some high variance states, these will be
needlessly split. It does have the advantage of being fast, as the
states variance is one of the parameters in state output distribu-
tion.

Takami and Sagayama [2] describe an algorithm that mod-
els each state’s output with a mixture of two Gaussians. They
select as a split candidate the state with the largest divergence
between its two Gaussians. This is slightly more sophisticated
than the Li and Biswas approach, and will not split states sim-
ply because they have large variance in their outputs. There are
other objections to this as a splitting heuristic though. Firstly,
a state’s output might be genuinely bi-modal, and then it would
be unnecessarily split. Secondly, this restricts the state output
model to two Gaussians, whereas more are often required. In
[1] for instance, up to 9 mixture components are used for each
state output distribution.

Stenger et al. [12] consider a goodness-of-fit test to deter-
mine which state to split. After the model parameters have con-
verged through Baum-Welch reestimation, they use the Viterbi
algorithm to assign state labels to each observation. They then
build up a histogram of the outputs assigned to each state, and
use a chi squared goodness-of-fit test to compare that histogram
to the corresponding state’s output distribution. A bad fit im-
plies a bad approximation, so they consider the states with bad
fits as candidates for splitting.1

3. Rethinking the reasons for state splitting
The problem with all of the heuristics discussed in the previous
section is that they pay no attention to the temporal structure of
observations belonging to a state. They depend on assumptions
about the distribution of outputs, often advocating state splits in
situations that would be more profitably remedied by changing
the state observation model.

So when should a state be split? One answer is when we can
better approximate the observation sequence through that split.
If we do not want to make any assumptions about the output dis-
tributions for a given state, then the above heuristics lose their
motivation. So what reasons are left for splitting states? We
suggest that a good reason for splitting a state is if the obser-
vations produced by that state have temporal structure. Within
all runs2 of a particular state, if the output at a particular time
is not independent of previous outputs in that run, then a bet-
ter approximation can often be found with more states. In the

1Confusingly, they cite Montacie et al. [8], but Montacie et al. were
more sensibly using this technique to split mixtures within each state,
rather than add states when the histograms don’t match the distributions.

2A ”run” of a sequence is a maximal non-empty segment of the se-
quence consisting of adjacent equal elements.

case of HMMs with continuous valued outputs, one test for such
temporal structure is based on the autocorrelation of the outputs
for each state. This is analogous to checking the residuals of
a regression for significant autocorrelation, and increasing the
model complexity in an attempt to remove it. This introduces
our first heuristic for state splitting: Significant autocorrelation.

The autocorrelation of a process is the correlation of that
process with a time shifted version of itself (Figure 1). The
time shift is typically called the lag, and the autocorrelation at
lag k is defined as:

R(k) =
E[(Oi − µ)(Oi+k − µ)]

σ2
(1)

where σ2 is the variance and µ is the mean. For simplic-
ity, we only consider the autocorrelation at lag 1, although the
technique could easily be extended to a range of lags if such a
thing proves useful. Restricting to lag 1 the autocorrelation can
be rewritten as:

R =
E[(Oi − µ)(Oi+1 − µ)]

σ2
(2)

A number of runs of state q occur within our observation
sequence O. We want to compute the autocorrelation of obser-
vations assigned to state q in such a manner that the end of the
jth run of state q does not overlap with the start of the (j +1)th

run of state q. Thus we select the subsequence Oq of O where
the state of Oi and the state of Oi+1 are both q and then com-
pute a state q autocorrelation, Rq , as follows:

Rq =
E[(Oq

i − µq)(O
q
i+1 − µq)]

σ2
q

(3)

where µq and σ2
q are the mean and variance of Oq .

Outputs are assigned to states using the Viterbi algorithm,
and all runs of a state are considered. To evaluate whether or
not the observations for a particular state exhibit significant au-
tocorrelation, we use a statistical hypothesis test under the null
hypothesis that there is no autocorrelation, and reject it if the
p-value for the test is below a chosen alpha. We employ the
standard test for significant correlation using the Student’s T
distribution.3 If there is more than one state that exhibits signif-
icant autocorrelation, we split the state with the lowest p-value.

Splitting states based only on autocorrelation proves re-
markably successful at recovering the structure of models from
synthetically generated data. States are seldom split when they
shouldn’t be, except when chance dictates that autocorrelation
appears in the data when there is none in the generating pro-
cess, but such is the nature of hypothesis testing. It is possible
to construct cases where autocorrelation does not split states
that should be. If two states have very similar output distribu-
tions, splitting based on autocorrelation cannot separate them.
The example in Figure 2 (due to Siddiqi et al. [4]) illustrates
this. The output distributions for states 2 and 4 are identical,
but state 2 only transits to state 3, and state 4 only transits to
state 1. No 3 state model can capture the dynamics of such a
process, but autocorrelation alone as a splitting criterion never
discovers the difference between states 2 and 4.

For this reason, we propose a secondary heuristic, to be
employed when no significant autocorrelation remains in the

3The Ljung-Box test for autocorrelation would probably be more ap-
propriate here, and would certainly be essential when testing a range of
lags. We chose the simple test as it yields good results. It also has a rank
based non-parametric version which can be used if odd distributions are
inflating the significance
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Figure 1: Visualizing autocorrelation. Top is an observation
sequence O from a 2 state HMM with one observation distribu-
tion mean at -2 and the other at 2. Bottom is a scatter plot of
points whose x and y values are Ot and Ot+1 respectively. The
positive relationship is evident. If these observations were be-
ing credited to a single state, significant autocorrelation would
suggest that state be split.

outputs of any states. For convenience, we refer to it as the
‘transition dependence’ heuristic. It attempts to deal with situ-
ations such as Figure 2, where the observation distributions for
two states cannot be told apart, but their transition vectors are
different. This heuristic tests for dependence between where
a state transits to, and where it came from. The most likely
state path through the observation sequences is estimated using
the Viterbi algorithm. Let q denote the state under considera-
tion, and N the total number of states. A N × N matrix T
is constructed where each entry T (r, c) represents the number
of times a run of state q transitioned to state c, after being pre-
ceded by state r. Note that the qth row and column are empty
(as we are considering runs of q), and are removed from the ma-
trix leaving a (N − 1) × (N − 1) matrix. The differences in
the relative frequencies between these rows is a measure of how
much a state’s successor depends on its predecessor. If there
is only one state producing the observations we have attributed
to q, then we should expect these frequencies to differ only by
chance. We use a 2 sample chi-square test and compare each
row of frequencies to the frequencies summed over all the other
rows, under the null hypothesis that they came from the same
distribution. This is N − 1 different tests, and in order to ac-
count for this we use Bonferroni correction for multiple tests
and scale our alpha accordingly. If any of these N − 1 tests re-
ject the null hypothesis, then state q is a candidate for splitting.
This procedure is repeated for each state, and if more than one
states show significant transition dependence, then the one with
the lowest p-value is selected for splitting. 4

Using hypothesis tests means that states are split only
when the data demands it, which provides a natural stopping
point. The framework is also useful when using many different
heuristics, as a single parameter can be set for all of them.
It should be noted that, of two states, if the outputs are the
same and the transitions are the same, then the states may be
considered equivalent, as which of the two states the system is

4Another way of viewing this heuristic is as a test for the state se-
quence violating the Markov property in a particular way.
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Figure 2: Overlapping observation densities. A 4 state HMM,
with a single Gaussian output per state. Labeled ellipses denote
states that produced corresponding observations. Outputs for
states 1 and 3 have means -5 and 5 respectively, but outputs for
both states 2 and 4 have mean 0. We can tell states 2 and 4 apart,
however, because 2 always transits to itself or 3, and 4 always
transits to itself or 1.

in makes no difference to the present outputs or future states.

Algorithm 1 :Discover
1: Initialize: Create a single state model. Initialize output

model using k-means to identify mixture components (see
[1]).

2: repeat
3: Run Baum-Welch reestimation until convergence. Com-

pute p-values for autocorrelation in each state(p-valAC)
4: if min(p-valAC) < alpha then
5: Split state argmin(p-valAC)
6: else
7: Compute p-values for transition dependence in each

state (p-valTD)
8: if min(p-valTD) < alpha then
9: Split state argmin(p-valTD)

10: end if
11: end if
12: until (min(p-valAC) ≥ alpha)) && (min(p-valTD)) ≥ al-

pha)

4. Evaluating Discover
We call our state splitting algorithm ‘Discover’ (see pseudocode
above, and Figure 3 for an example). Discover was evalu-
ated on synthetic data. Randomly generated HMMs were used,
with many different state sizes. A single Gaussian output was
assumed, and all the parameters were chosen randomly from
specified ranges. Each HMM was used to generate sample
sequences. Discover was compared to standard Baum-Welch
training, where an initial model is selected, and Baum-Welch
reestimation is iterated until convergence. Baum-Welch training
had the advantage of being initialized with the same number of
states as the model that generated the state sequence whilst Dis-
cover had no such clues and had to terminate naturally. A single
Gaussian output per state was assumed for both Discover, and
Baum-Welch training. Baum-Welch is known to be particularly
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sensitive to the initial parameters of the state output distribu-
tions [1] so we experimented with different state output distri-
bution initialization techniques. A k-means approach made for
the strongest opponent, and was used when initializing Baum-
Welch training in the following comparisons.

4.1. Performance on model selection criteria

Discover was evaluated using model selection criteria. We
chose the unpenalised log-likelihood, the Akaike’s Information
Criterion with a correction for small samples (AICc), and the
Bayesian Information Criterion (BIC). These measures are de-
fined by:

AICc = −2 ln L + 2k +
2k(k + 1)

n− k − 1

and

BIC = −2 ln L + k ln n

where L is the maximized value of the likelihood function
for the estimated model, k is the number of free parameters,
and n is the number of observations [9]. In both AICc and BIC,
the terms after the −2 ln L term are penalties in terms of the
number of parameters and the number of observations. BIC pe-
nalizes an increase in parameters more heavily than AICc. Note
that unlike log-likelihood values, lower AICc and BIC scores
correspond to better models.

We compared the model selection criterion scores for Dis-
cover against those of Baum-Welch training. For every experi-
ment, the means for all 3 criteria showed Discover outperform-
ing Baum-Welch training. The distribution of the differences
between the two methods for each set of sequences generated by
a particular model has a curious shape, and as such the full his-
tograms in Figure 4 tells a more detailed story than any compar-
ison of measures of central tendency. Note that values greater
than 0 indicate Baum-Welch training being outperformed by
Discover, and values less than 0 indicate the converse. The
number of states in the generating process did not qualitatively
affect the shape of the distributions. The histograms show that
very often the values achieved are similar. The tails closer to
0 correspond to smaller, but non-negligible differences (see [9]
for a discussion), and the tails spread further out correspond to
vast differences and severely deleterious local maxima (relative
to the other method). While the peak stays close to 0, the tails
are heavier to the positive side, indicating similar performance
on many sequence sets, but where differences occur, they more
often and more strongly favor Discover.

4.2. Classification tests

A more objective test of performance is a classification task.
As above, synthetic data was used from randomly generated
HMMs. A 20 ‘word’ vocabulary was created, with each word
corresponding to a randomly generated HMM. 30 observation
sequences, each with 400 observations were generated by each
word, 15 for its training set and 15 for its test set. For each
method, one model was trained on the training sequences of
each word, with Baum-Welch training once again being ini-
tialized with the number of states as the model that generated
the sequences. This yields 3 models per word, one from Dis-
cover, one from Baum-Welch training, and the original model
that generated the sequences. The original model is included
as an upper-bound for the classification accuracy, which will
change from one iteration of the experiment to the next, as the
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Figure 3: Discovering a 7 state model. Top is one of 15 obser-
vation sequences from a randomly designed 7 state model, and
bottom are the decreasing AICc (red) and BIC (blue) values as
Discover splits states to infer the model structure.

similarity between the randomly created models will determine
the similarity of the sequences generated and thus the difficulty
of the classification task. Basically, some experiment iterations
will result in more similar words than others, and using syn-
thetic data generated from known models allows an estimate of
the difficulty of the classification task.

Classification accuracies using Discover, Baum-Welch
training, and the original models are reported in Tables 1, 2,
3 and 4 for words with 4, 7, 10 and 20 states, with each clas-
sification experiment being performed 10 times. Remarkably,
the performance of Discover was extremely close to that of the
upper bound set by the original model for each iteration. Baum-
Welch training performed much worse, even though it was ini-
tialized with the correct number of states. The discrepancy be-
tween the performance difference in the classification task and
that in the model selection criteria evaluation seems large. Ex-
amining the confusion matrices is illuminating. Whilst with
the original models and Discover, a few errors occur for some
words, classification using the Baum-Welch models gets entire
words incorrect, with 0s at their corresponding entries along the
diagonal of the confusion matrix. We hypothesize that such er-
rors correspond to severe local minima as seen in the model se-
lection criteria evaluation, and it only takes a few to drastically
degrade classification accuracy.

5. Future research
The exhaustive state splitting algorithms described earlier have
shown to be very successful on a variety of datasets, especially
the STACS algorithm due to Siddiqi et al [4]. The efficiency of
such techniques is increased orders of magnitude by assuming
the state paths through the observation sequence remain fixed
for all states except the split one, so far fewer parameters need
reestimation after each split. Recall that such reestimation has
to happen in order to decide which state to split, so such effi-
ciency gains are crucial.

There are still situations in which useful splits will not be
discovered by either of our heuristics. For example, if two states
have the same output mean and state transition vectors, but the
output variance is different, neither autocorrelation nor transi-
tion dependence will tell them apart. For this reason, future

6



−50 0 50 100 150 200
0

50

100

150

−100 0 100 200 300 400
0

50

100

150

−100 0 100 200 300 400
0

50

100

Figure 4: Pairwise performance differences on model selection
criteria. Top, middle and bottom correspond to log-likelihoods,
AICc, and BIC respectively. Each histogram is the distribution
of differences between regular Baum-Welch training and Dis-
cover, for each set of observations generated from a randomly
designed model. The greater density to the right of 0 indicates
Discover outperforming regular Baum-Welch training. In the
above, 250 models were used, each with 7 states.

work will seek to produce a hybrid structure discovery algo-
rithm, combining the strengths of heuristic exhaustive methods.
Firstly, we will adopt the reestimation optimization described
above. States will be split by the heuristics described in the
present paper, and when no significant autocorrelation or transi-
tion dependence remains, we will switch to the exhaustive tech-
nique to exploit any undiscovered splits. We don’t expect this
to discover better models than the exhaustive techniques alone,
but we do expect it to be faster. Also, our current implementa-
tion deals only with univariate time series data. When general-
izing the test for significant autocorrelation to the multivariate
case, correction for multiple hypothesis testing will once again
be necessary. With very many observations, it might be neces-
sary to adopt a correction less severe than Bonferroni.We also
plan to generalize our heuristics to the discrete observation case.
This will have to take a form similar to our conditional depen-
dence, but between successive observations rather than states.

6. Conclusion
Two novel heuristics for HMM structure discovery through state
splitting, and their superior performance relative to the canon-
ical Baum-Welch technique used in most of the literature was
demonstrated. To our knowledge, these heuristics are better
motivated than previous ones. We also suggest how they can
be incorporated into existing exhaustive techniques, producing
a hybrid structure discovery algorithm.
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Table 1: Classification accuracies on 4 state HMMs
iteration 1 2 3 4 5 6 7 8 9 10 mean

Generating
Model 0.86 0.93 0.93 0.81 0.82 0.82 0.84 0.87 0.93 0.94 0.87

Structure
Discovery 0.86 0.92 0.93 0.81 0.82 0.82 0.82 0.87 0.92 0.94 0.87

Baum-Welch
Training 0.70 0.68 0.71 0.68 0.53 0.69 0.75 0.69 0.80 0.66 0.69

Table 2: Classification accuracies on 7 state HMMs
iteration 1 2 3 4 5 6 7 8 9 10 mean

Generating
Model 0.78 0.92 0.89 0.87 0.95 0.90 0.81 0.91 0.86 0.80 0.87

Structure
Discovery 0.78 0.90 0.90 0.87 0.96 0.89 0.82 0.90 0.85 0.79 0.87

Baum-Welch
Training 0.71 0.61 0.61 0.66 0.82 0.65 0.65 0.64 0.63 0.70 0.67

Table 3: Classification accuracies on 10 state HMMs
iteration 1 2 3 4 5 6 7 8 9 10 mean

Generating
Model 0.92 0.88 0.87 0.75 0.94 0.73 0.93 0.95 0.80 0.85 0.86

Structure
Discovery 0.91 0.84 0.85 0.75 0.93 0.73 0.92 0.95 0.79 0.84 0.85

Baum-Welch
Training 0.75 0.64 0.69 0.66 0.68 0.62 0.75 0.80 0.59 0.65 0.68

Table 4: Classification accuracies on 20 state HMMs
iteration 1 2 3 4 5 6 7 8 9 10 mean

Generating
Model 0.85 0.84 0.90 0.87 0.85 0.95 0.84 0.76 0.84 0.89 0.86

Structure
Discovery 0.77 0.80 0.87 0.82 0.80 0.85 0.79 0.71 0.82 0.88 0.81

Baum-Welch
Training 0.58 0.52 0.61 0.59 0.53 0.77 0.59 0.59 0.51 0.71 0.60
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Abstract
We investigate the use of Naive Bayesian classifiers for cor-
related Gaussian feature spaces and derive error estimates for
these classifiers. The error analysis is done by developing an
exact expression for the error performance of a binary clas-
sifier with Gaussian features while using any quadratic deci-
sion boundary. Therefore, the analysis is not restricted to Naive
Bayesian classifiers alone and can, for instance, be used to cal-
culate the Bayes error performance. We compare the analyt-
ical error rate to that obtained when Monte-Carlo simulations
are performed for a 2 and 12 dimensional binary classification
problem. Finally, we illustrate the robust performances ob-
tained with Naive Bayesian classifiers (as apposed to a maxi-
mum likelihood classifier) for high dimensional problems when
data sparsity becomes an issue.

1. Introduction
The popularity of Naive Bayesian (NB) classifiers has increased
in recent years [1, 2], among others due to exceptional classi-
fication performance in high dimensional feature spaces. NB
classifiers ignore all correlation between features and are in-
expensive to use in high dimensional spaces where it becomes
practically infeasible to estimate accurate correlation parame-
ters. An attempt to estimate correlations can often lead to over
fitting and decrease the performance (both efficiency and accu-
racy) of the classifier. Empirical evidence and an intuitive ex-
planation on why NB classifiers perform so well in high dimen-
sional feature spaces (in terms of the bias-variance problem) can
be found in [3].

The increase in popularity of NB classifiers has not been
matched by a similar growth in theoretical understanding (such
as proper error analysis and feature selection). In one of our
previous papers [2], we developed analytical tools for estimat-
ing error rates and used them as similarity measures for feature
selection in discrete environments (all features were assumed to
be multinomial).

In this paper, we focus on developing an exact expression
for the error rates of binary (two-class) NB classifiers where all
features are continuous, correlated multivariate Gaussian distri-
butions.

There have been a few misunderstandings in the past re-
garding NB classifiers. One good example as pointed out by [3]
is the confusion between NB classifiers and linear classifiers in
[4]. Consider, for example, a parametric classifier where all fea-
tures are assumed to be Gaussian. The only way that one can
obtain a piecewise linear boundary, is if all classes have identi-
cal covariance matrices, which is clearly not the case for general
NB classifiers. Therefore, later on in this paper, we discuss the

different decision boundaries that can be obtained in a binary
NB classification problem with Gaussian features and discuss
their intuitive meaning.

In order to calculate the error performance of a binary NB
classifier we turn to basic decision theory were we calculate an
NB decision boundary that separates two hyperspace partitions
Ω1 andΩ2. Whenever an observed feature vector falls within
regionΩ1 or Ω2, we classify the pattern to come from classω1

orω2 respectively. Therefore we can calculate the classification
error rate by computing eq. 1[5]

ǫ = p(ω1)

Z

Ω2

p(x|ω1)dx + p(ω2)

Z

Ω1

p(x|ω2)dx, (1)

where ǫ is the classification error rate,x is the input vector
andp(ω1) andp(ω2) are the prior probabilities for classesω1

andω2 respectively. Therefore, the very specific challenge ad-
dressed in this paper, is to calculate the integral parts in eq. 1,
wherep(x|ω1) andp(x|ω2) are correlated Gaussian distribu-
tions of arbitrary dimensionality. Since we are working with NB
classifiers, the decision boundary will generally be a quadratic
surface.

There exist many upper bounds on the Bayes error rate for
Gaussian classification problems. Some popular loose bounds
that can be calculated efficiently include the Chernoff bound [6]
and the Bhattacharyya bound [7]. Some tighter upper bounds
include the equivocation bound [8], Bayesian distance bound
[9], sinusoidal bound [10] and exponential bound [11]. Un-
fortunately, none of these bounds are useful for the analysis of
NB classifiers, since they obtain bounds for the Bayes error rate
which do not allow us to investigate the effects of the assump-
tion of uncorrelatedness. In order to investigate these effects, we
choose to calculate an asymptotically exact error rate. The eas-
iest way to do this, is to do Monte-Carlo simulations where we
generate samples from the class distributions and simply count
the errors; this is a time-consuming exercise, but does asymp-
totically converge to the true error rate. Instead, we derive an
exact analytical expression similar to work done in [12, 13]. In
our derivation, we first transform the integral problems in eq. 1
into a problem of finding the cumulative distribution (cdf) of a
linear combination of chi-square variates.

The main contribution of the current paper is that we are
able to derive exact analytic expressions for the Naive Bayesian
error rate in the general case, whereas previous authors were
able to do so only in terms of computationally expensive series
expansions [14] or imprecise approximations [13].

The rest of this paper is organized as follows. In section 2,
we derive the equations needed to transform the classification
problem into one represented as a linear combination of chi-
square variates. In section 3, we discuss all possible quadratic
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decision boundaries obtained in the context of the work done in
section 2 and we show the exact solution to the cdf for most of
these boundaries. In section 4, we run simulations to compare
NB error rates obtained from both Monte-Carlo simulations and
the analytical expressions found.

None of the theory developed in sections 2 and 3 is limited
to NB classifiers and applies to quadratic discriminant analysis
(QDA) in general. To be more specific, Sections 2 and 3 focus
on methods for calculating

R

Ω2

p(x|ω1)dx. It is easy to cal-

culate
R

Ω1

p(x|ω2)dx by simply reversing the roles ofω1 and
ω2.

2. Linear combinations of non-central
chi-square variates

Let us assume thatp(x|ω1) andp(x|ω2) are both Gaussian dis-
tributions with meansµ1 andµ2 and covariance matricesΣ1

andΣ2 respectively. Therefore

p(x|ωi) =
1

(2π)D/2|Σi|1/2
exp(−1

2
(x−µi)

T
Σ

−1

i
(x−µi)),

(2)
whereD is the dimensionality of the problem. Unfortunately,
the exact values forµi andΣi are almost never known and need
to be estimated, with saŷµi andΣ̂i. For NB classifiers,̂Σi is
a diagonal matrix. For simplicity we assume thatµ̂1 = µ1 and
µ̂2 = µ2 – inaccuracy in estimating the sample means is best
treated as a separate issue.

We can use these estimates to calculate the decision bound-
ary for a binary classification problem. Eq.3 is the simplest way
to describe the decision boundary hyperplane in terms of the
estimated parameters.

p(ω1)p(x|µ̂1, Σ̂1) = p(ω2)p(x|µ̂2, Σ̂2) (3)

When we take the logarithm on both sides of eq. 3 and use eq. 2,
we get the following representation for the decision boundary:

β1(x) = (x−µ̂1)T
Σ̂

−1

1 (x−µ̂1)−(x−µ̂2)T
Σ̂

−1

2 (x−µ̂2) = t1,
(4)

where

t1 = log(
|Σ̂2|
|Σ̂1|

) + 2 log(
p(ω1)

p(ω1)
).

In the context of eq. 1, it is easy to see that

Z

Ω2

p(x|ω1)dx = p(β1(x) ≥ t1), (5)

wherex ∼ N(µ1,Σ1).
In the rest of this section, we focus our efforts on transform-

ing eq. 4 into a much more usable form,

F (Φ,m, t) = p(

D
X

i=1

φi(yi −mi)
2 ≤ t), (6)

wherey ∼ N(0, I), F (Φ,m, t) is a function that we can relate
to the error (see section 3),φi andmi are variance and bias
constants. We do the transformation in four steps as follows.

2.1. Shift means byµ1

We definez = x − µ1 and with a little manipulation (and as-
sumingµ̂1 = µ1 andµ̂2 = µ2) we can rewrite eq. 4 as follow.

β2(z) = z
T
B1z − 2bT

1 z = t2

B1 = Σ̂
−1

1 − Σ̂
−1

2

b
T

1 = (µ1 − µ2)T
Σ̂

−1

2

t2 = t1 + (µ1 − µ2)T
Σ̂

−1
2 (µ1 − µ2)

z ∼ N(0,Σ1) (7)

Note thatB1 is in general not a positive-definite matrix, but is
symmetric and can be rotated.

2.2. Rotate matrices to DiagonalizeΣ1

Sincez is centered at the origin, we can rotateΣ1 to be diago-
nal, as long as we rotate the decision boundary too. We define
v = UT

ω1
z, whereUω1

is the eigenvector matrix ofΣ1 satis-
fying
UT

ω1
Σ1Uω1

= Λω1
,

Λω1
= diag(λω1,1, ...λω1,D),

whereλω1,1, ..., λω1,D are the eigenvalues ofΣ1. From this
we can derive eq. 8.

β3(v) = v
T
B2v − 2bT

2 v = t2

B2 = U
T

ω1
(Σ̂−1

1 − Σ̂
−1

2 )Uω1

b
T

2 = (µ1 − µ2)T
Σ̂

−1

2 Uω1

v ∼ N(0,Λω1
) (8)

2.3. Scale dimensions to normalize all variances inΣ1

We assume thatΛω1
is positive-definite and therefore none of

the eigenvalues are zero. If some of the eigenvalues are zero,
the dimensionality of the problem can either be reduced or the
classification problem is trivial (ifω2 has a variance in this di-
mension or a different mean). (Of course, an NB classifier may
not be responsive to this state of affairs, and therefore perform
sub-optimally. However, we do not consider this degenerate
special case below.)

We defineu = Λ
−1/2
ω1

v and derive eq. 9.

β4(u) = u
T
Bu − 2bT

3 v = t2

B = Λ
1/2
ω1

U
T

ω1
(Σ̂−1

1 − Σ̂
−1

2 )Uω1
Λ

1/2
ω1

b
T

3 = (µ1 − µ2)T
Σ̂

−1

2 Uω1
Λ

1/2
ω1

u ∼ N(0, I) (9)

2.4. Rotate matrices to diagonalize the quadratic boundary

Now thatu is normally distributed with mean0 and covariance
I, it is possible to rotateB until it is diagonal without inducing
any correlation between random variates. Therefore, we define
UB andΛB to be the eigenvector matrix and diagonal eigen-
value matrix ofB respectively.

We finally definey = UT

Bu and derive eq. 10.

β(y) = y
T
ΛBy − 2bT

y = t2

b
T = (µ1 − µ2)T

Σ̂
−1

2 Uω1
Λ

1/2
ω1

UB

y ∼ N(0, I) (10)

It is easy to derive the values forΦ, m andt in eq. 6 using eq.
10. These values are given in equation 11.
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φi = λB,i ∀i ∈ {1, ..., D}

mi =
bi
λB,i

∀i ∈ {1, ..., D}

t = t2 +

D
X

i=1

b2i
λB,i

. (11)

It is possible for some of theλB,i values to be zero in which
case some of themi coefficients become infinite or undefined
(this is also the case for t). This happens when some of the
random variates only have a linear component in eq. 10 or if
the variates make no discriminative difference (in which casebi
is also zero). These cases are discussed in the next section.

3. Decision boundaries and their solutions
In this section we discuss all possible quadratic boundaries
derivable from the theory developed in section 2. We also give
analytical solutions to the error rate performances associated
with each decision boundary (except for paraboloidal decision
boundaries discussed later).

3.1. Linear decision boundaries

Linear decision boundaries are the simplest case to solve and
occur whenΛB = B = 0. From eq. 9 it is easy to see that
Σ̂1 = Σ̂2 for this to be true and it follows that

Z

Ω2

p(x|ω1)dx = p(−2bT
y > t2)

−2bT
y ∼ N(0, 4bT

b) (12)

From eq. 12 it is easy to prove that

Z

Ω2

p(x|ω1)dx =
1

2
erfc(

t2√
8bTb

) (13)

3.2. Ellipsoidal decision boundaries

Ellipsoidal decision boundaries occur when eitherB or −B is
positive-definite. In other words the eigenvaluesλB,1, ..., λB,D

are either all negative or all positive. This is a special case
that occurs in NB classifiers when one class consistently has a
larger variance than the other class for all dimensions. Sincem

(see eq. 11) is defined (none of the eigenvalues are zero), we
can attempt to solve eq. 6. Many solutions have been proposed
for this problem (see, for example [14]), but the one that we
find most efficient is proposed in [13, 15] and is restated here.

Theorem 1.Fory ∼ N(0, I) andF (Φ,m, t) as defined in eq.
6, we have

F (Φ,m, t) =

∞
X

i=0

αiFD+2i(
t

p
), φi > 0 ∀i ∈ {1, ..., D},

whereFn(x) is defined to be the cdf of a central chi-square dis-
tribution withn degrees of freedom,p is any constant satisfying

0 < p ≤ φi ∀i ∈ {1, ..., D},

andαi can be calculated with the recurrence relations

α0 = exp(−1

2

D
X

j=1

m2
j)

v

u

u

t

D
Y

j=1

p/φj

αi =
1

2i

i−1
X

j=0

αjgi−j

gr =
D

X

i=1

(1 − p/φi)
r + rp

D
X

i=1

m2
i

φi
(1 − p/φi)

r−1

Also, theα coefficients above will always converge and

∞
X

i=0

αi = 1

Finally, a bound can be placed on the error from summing only
k terms as follows

0 ≤ F (Φ,m, t) −
k−1
X

i=0

αiFD+2i(
t

p
)

≤ (1 −
k−1
X

i=1

αi)FD+2k(t/p)

Proof. The proof can be found in [15].

For optimal convergence in the above series we selectp =
inf{φ1, ..., φD}, the largest possible value forp.

A useful recurrence relation for calculatingFn(x) is as fol-
lows

F1(x) = erf(

r

x

2
)

F2(x) = 1 − exp(−x
2
)

Fn+2(x) = Fn(x) − (x/2)n/2e−x/2

Γ(n/2 + 1)
(14)

We discussed analytical solutions for the case where allαi’s
are greater than zero. A symmetric statement can be made for
all αi’s less than zero. Therefore, we conclude that

R

Ω2

p(x|ω1)dx

=



F (−Φ,m,−t) sup{φ1, ..., φD} < 0
1 − F (Φ,m, t) inf{φ1, ..., φD} > 0

(15)

3.3. Hyperboloidal decision boundaries

Hyperboloidal decision boundaries occur whenB is indefinite
and invertible. Therefore, some of the eigenvalues ofB will be
positive and others negative, but none of them zero. This is the
most frequently occurring case and also the most difficult to
solve. Although much research has been done on solving the
definite quadratic form (as for the elliptic boundary discussed
above), finding an exact analytical expression for the indefinite
quadratic form has been unsuccessful (see [12, 13, 14, 16]).
The existing solutions all lead to estimates, bounds or unwieldy
solutions (and unusable for NB error analysis). In contrast, we
propose a solution that is exact and efficient.
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Theorem 2.Fory ∼ N(0, I) andF (Φ,m, t) as defined in eq.
6, we can rewriteF (Φ,m, t) as follows.

F (Φ,m, t) = p(

d1
X

i=1

φ′

i(yi −m′

i)
2 −

d2
X

j=1

φ∗

j (yd1+j −m∗

j )
2 ≤ t),

φ′

i, φ
∗

j > 0 ∀i ∈ {1, ..., d1},∀j ∈ {1, ..., d2},

whered1 + d2 = D. From this, we can show that

F (Φ,m, t) = 1 −
∞

X

i=0

∞
X

j=0

α′

iα
∗

jΥd1+2i,d2+2j(t/p), t ≥ 0

where we calculate theα′

i and α∗

j coefficients by apply-
ing theorem 1 (with common valuep) to F (Φ′,m′, t) and
F (Φ∗,m∗, t) respectively. Note that theα′

i andα∗

j coefficients
are independent oft. p can be any arbitrary constant satisfying

0 < p ≤ φ′

i, φ
∗

j ∀i ∈ {1, ..., d1},∀j ∈ {1, ..., d2}

Υk1,k2
(z) can be calculated using the following recurrence

ralations.

Υ1,0(z) =
1√
π

Γ(1/2, z/2)

Υ1,1(z) =
1

2

h

1 − z

2

“

K0(
z

2
)L−1(

z

2
) +K1(

z

2
)L0(

z

2
)
”i

Υ2,k2
(z) = 2−k2/2e−z/2

Υk1,k2
(z) = Υk1−2,k2

(z) +Dk1,k2
(z)

Υk1,k2
(z) = Υk1,k2−2(z) −Dk1,k2

(z),

where

Dk1,k2
(z) =

e−z/2

2(k1+k2)/2−1Γ(k1/2)
ψ(1 − k1

2
, 2 − k1 + k2

2
; z)

Γ(a) is the gamma function andΓ(a, x) is the upper incomplete
gamma function.Kn(x) is the modified Bessel function of
the second kind andLn(x) is the modified Struve function.
ψ(a, b; z) is the Tricomi confluent hypergeometric function
(also known as theU(a, b; z) function discussed in [17]).

Finally, a bound can be placed on the error from summing only
K andL terms.

0 ≤ 1 −
K

X

i=0

L
X

j=0

α′

iα
∗

j Υd1+2i,d2+2j(t/p) − F (Φ,m, t)

≤ (1 −
K−1
X

i=0

α′

i)(

L−1
X

j=0

α∗

j )Υd1+2K,d2+2L(t/p)

+1 −
L−1
X

j=0

α∗

j

Proof. Partial proofs can be found in [12, 13]. Unfortunately,
the full proof of this theorem is fairly involved and will be
provided in a future paper.

It becomes impractical to calculateDk1,k2
(z) for large val-

ues ofk1 andk2 and therefore the following recurrence rela-
tions become useful

Dk1,k2
(z) =

1

4 − 2k1
[(4 − k1 − k2 − 2z)Dk1−2,k2

(z)

+zDk1−4,k2
(z)]

Dk1,k2
(z) =

1

4 − 2k2
[(4 − k1 − k2 + 2z)Dk1,k2−2(z)

−zDk1,k2−4(z)]

Dk1,k2
(z) =

1

2
(Dk1−2,k2

(z) +Dk1,k2−2(z)) (16)

Although it is theoretically possible to use only the first two re-
currence relations in eq. 16, numerical experiments show that
when combined, quantization noise will increase rapidly with
each iteration. Therefore we use the first two recurrence rela-
tions independently and fill all the remaining gaps with recur-
rence relation three in eq. 16. Notice that theorem 2 only applies
for cases wheret ≥ 0. A symmetric argument can be expressed
for cases wheret < 0. Finally, we conclude that

R

Ω2

p(x|ω1)dx

=



F (−Φ,m,−t) t < 0
1 − F (Φ,m, t) t ≥ 0

(17)

3.4. Cylindrical decision boundaries

Cylindrical decision boundaries occur when some of the eigen-
valuesλB,i and their corresponding linear partsbi are zero. It
is fairly easy to see from eq. 10 that these features can simply
be dropped and the dimensionality decreased.

3.5. Paraboloidal decision boundaries

Paraboloidal decision boundaries occur when some of the
eigenvaluesλB,i are zero, but their corresponding linear parts
bi are none-zero. In the context of NB classifiers, this only hap-
pens when some of the estimated variances (in a given dimen-
sion) are identical forω1 andω2, but their means differ. Unfor-
tunately, an exact solution for this problem does not yet exist.
Therefore, as a temporary solution, we simply add a small dis-
turbanceδλi to eq. 10 to get an approximate hyperboloidal or
ellipsoidal decision boundary.

4. Results
In this section, we compare the error performance of simple bi-
nary classifiers of different dimensionalities for both the Bayes
error rate and that obtained using NB classifiers. These error
rates will be obtained using two methods: Monte-Carlo simu-
lations and the analytical methods proposed above. Our experi-
mental configurations are similar to those proposed in [13].

4.1. Example 1: A two dimensional classification problem

For this example we will explore the error rates of a two dimen-
sional Gaussian binary classification problem with parameters

µ1 =

"

1

1

#

Σ1 = α

"

3 −1

−1 3

#

,

µ2 =

"

−1

−1

#

Σ2 = α

"

5 −2

−2 1

#

,
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Figure 1: Naive and Bayes error rates for two dimensional
problem in example 1 with increasing class covariances.
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Figure 2: Naive and maximum likelihood estimate error rates
for two dimensional problem in example 2 while increasing the
number of training samples.

whereα is a covariance scalar. Figure 1 shows the Bayes and
NB (perfect estimate) error rates obtained with the analytical
model developed and Monte-Carlo simulations. For this exper-
imentp(ω1) = p(ω2) = 0.5 and 10000 samples in total were
generated for the simulations.

Figure 2 shows the analytical results obtained forα = 1
where we estimate both the Maximum likelihood (ML) and NB
parameters using a varying number of training samples.

It is clear from this experiment that the low dimensional
ML classifier provides superior performance to the NB classi-
fier, and that our analytic estimates agree with those obtained
by Monte-Carlo simulation.

4.2. Example 2: A 12 dimensional classification problem

Now we explore a high dimensional problem (12 dimensional)
to illustrate the power of NB classifiers. For this example we
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Figure 3:Naive and Bayes error rates for 12 dimensional prob-
lem in example 2 with increasing class covariances.
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whereα is a covariance scalar. Figure 3 shows the Bayes and
NB (perfect estimate) error rates obtained with the analytical
model developed and Monte-Carlo simulations. For this exper-
imentp(ω1) = p(ω2) = 0.5 and 10000 samples in total were
generated for the simulations.

Figure 4 shows the analytical results obtained forα = 1
where we estimate both the Maximum likelihood (ML) and NB
parameters using a varying number of training samples.

It is clear from figure 4 that for high dimensional prob-
lems, NB classifiers perform better when data sparsity is an is-
sue. This is due to the high variance in the ML estimate. NB
classifiers are robust for sparse problems and for this specific
problem, NB performs relatively well even when more than a
hundred training samples are provided.

5. Conclusion
In this paper, we derived analytical solutions for calculating er-
ror probabilities in correlated Gaussian feature spaces for arbi-
trary quadratic decision boundaries. We applied the theory in
the context of NB classifiers and showed the validity for both a
2 and 12 dimensional problem by comparing the analytical so-
lutions to those obtained with Monte-Carlo simulations. Both
of these case-studies had hyperboloidal Bayes and NB decision
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boundaries, a problem that had not been solved analytically pre-
viously.

We also demonstrated the robust behavior of NB classifiers
in data sparse and high dimensional environments (see figure
4).

Unfortunately, we still don’t have a proper solution for the
paraboloidal decision boundaries and we suggested a method
for approximating the boundary with a hyperboloidal or ellip-
soidal boundary; this method has also been proposed in [13]. It
should be noted that this method is not without problems, since
theαi terms in theorem 1 take longer to converge when an ex-
ceptionally smallφi value or largemi value is present. From
eq. (11) it is clear that a small value forλB,i will produce a
small value forφi and a large value formi.

For future work, we propose to find an exact analytical so-
lution for the error rates obtained when paraboloidal decision
boundaries occur. Although these boundaries are themselves
degenerate (requiring exactly equal class covariances), the same
computational issues arise when the hyperboloidal boundaries
are almost paraboloidal (i.e. when the relevant class covariances
are close).
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Abstract

This paper describes a mathematical technique [1] for
dealing with dimensionality reduction. Given data in a
high-dimensional space, we show how to find parameters
that describe the lower-dimensional structures of which it
is comprised. Unlike other popular methods such as Prin-
ciple Component Analysis and Multi-dimensional Scal-
ing, diffusion maps are non-linear and focus on discov-
ering the underlying manifold (lower-dimensional con-
strained “surface” upon which the data is embedded). By
integrating local similarities at different scales, a global
description of the data-set is obtained. In comparisons, it
is shown that the technique is robust to noise perturbation
and is computationally inexpensive. Illustrative examples
and an open implementation are given.

1. Introduction: Dimensionality Reduction
The curse of dimensionality, a term which vividly re-
minds us of the problems associated with the process-
ing of high-dimensional data, is ever-present in today’s
information-driven society. The dimensionality of a data-
set, or the number of variables measured per sample, can
easily amount to thousands. Think, for example, of a
100 by 100 pixel image, where each pixel can be seen
to represent a variable, leading to a dimensionality of
10, 000. In such a high-dimensional feature space, data
points typically occur sparsely, causes numerous prob-
lems: some algorithms slow down or fail entirely, func-
tion and density estimation become expensive or inaccu-
rate, and global similarity measures break down [4].

The breakdown of common similarity measures ham-
pers the efficient organisation of data, which, in turn, has
serious implications in the field of pattern recognition.
For example, consider a collection of n × m images,
each encoding a digit between 0 and 9. Furthermore, the
images differ in their orientation, as shown in Fig.1. A
human, faced with the task of organising such images,
would likely first notice the different digits, and there-
after that they are oriented. The observer intuitively at-
taches greater value to parameters that encode larger vari-

ances in the observations, and therefore clusters the data
in 10 groups, one for each digit. Inside each of the 10
groups, digits are furthermore arranged according to the
angle of rotation. This organisation leads to a simple two-
dimensional parametrisation, which significantly reduces
the dimensionality of the data-set, whilst preserving all
important attributes.

Figure 1: Two images of the same digit at different rota-
tion angles.

On the other hand, a computer sees each image as a
data point in Rnm, an nm-dimensional coordinate space.
The data points are, by nature, organised according to
their position in the coordinate space, where the most
common similarity measure is the Euclidean distance.

A small Euclidean distance between vectors almost
certainly indicate that they are highly similar. A large
distance, on the other hand, provides very little informa-
tion on the nature of the discrepancy. This Euclidean dis-
tance therefore provides a good measure of local similar-
ity only. In higher dimensions, distances are often large,
given the sparsely populated feature space.

Key to non-linear dimensionality reduction is the re-
alisation that data is often embedded in (lies on) a lower-
dimensional structure or manifold, as shown in Fig. 2. It
would therefore be possible to characterise the data and
the relationship between individual points using fewer di-
mensions, if we were able to measure distances on the
manifold itself instead of in Euclidean space. For ex-
ample, taking into account its global structure, we could
represent the data in our digits data-set using only two
variables: digit and rotation.
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Figure 2: Low dimensional data measured in a high-
dimensional space.

The challenge, then, is to determine the lower-
dimensional data structure that encapsulates the data,
leading to a meaningful parametrisation. Such a repre-
sentation achieves dimensionality reduction, whilst pre-
serving the important relationships between data points.
One realisation of the solution is diffusion maps.

In Section 2, we give an overview of three other well
known techniques for dimensionality reduction. Section
3 introduces diffusion maps and explains their function-
ing. In Section 4, we apply the knowledge gained in a
real world scenario. Section 5 compares the performance
of diffusion maps against the other techniques discussed
in Section 2. Finally, Section 6 demonstrates the organi-
sational ability of diffusion maps in an image processing
example.

2. Other Techniques for Dimensionality
Reduction

There exist a number of dimensionality reduction tech-
niques. These can be broadly categorised into those that
are able to detect non-linear structures, and those that are
not. Each method aims to preserve some specific property
of interest in the mapping. We focus on three well known
techniques: Principle Component Analysis (PCA), multi-
dimensional scaling (MDS) and isometric feature map
(isomap).

2.1. Principal Component Analysis (PCA)

PCA [3] is a linear dimensionality reduction technique.
It aims to find a linear mapping between a high dimen-
sional space (n dimensional) and a subspace (d dimen-
sional with d < n) that captures most of the variability in
the data. The subspace is specified by d orthogonal vec-
tors: the principal components. The PCA mapping is a
projection into that space.

The principal components are the dominant eigenvec-
tors (i.e., the eigenvectors corresponding to the largest
eigenvalues) of the covariance matrix of the data.

Principal component analysis is simple to implement,
but many real-world data-sets have non-linear character-
istics which a PCA mapping fails to encapsulate.

2.2. Multidimensional Scaling (MDS)

MDS [6] aims to embed data in a lower dimensional
space in such a way that pair-wise distances between data
points, X1..N , are preserved. First, a distance matrix DX

is created. Its elements contain the distances between
points in the feature space, i.e. DX [i, j] = d(xi, xj).
For simplicity sake, we consider only Euclidean distances
here.

The goal is to find a lower-dimensional set of feature
vectors, Y1..N , for which the distance matrix, DY [i, j] =
d(yi, yj), minimises a cost function, ρ(DX , DY ). Of the
different cost functions available, strain is the most pop-
ular (MDS using strain is called “classical MDS”):

ρstrain(DX , DY ) = ||JT (D2
X −D2

Y )J)||2F .

Here, J is the centering matrix, so that JTXJ sub-
tracts the vector mean from each component in X .
The Frobenius matrix norm, ||X||F , is defined as√∑M

i=1

∑N
j=1 |xij |

2.
The intuition behind this cost function is that it pre-

serves variation in distances, so that scaling by a constant
factor has no influence [2]. Minimising the strain has a
convenient solution, given by the dominant eigenvectors
of the matrix − 1

2J
TD2

XJ .
MDS, when using Euclidean distances, is criticised

for weighing large and small distances equally. We
mentioned earlier that large Euclidean distances provide
little information on the global structure of a data-set,
and that only local similarity can be accurately inferred.
For this reason, MDS cannot capture non-linear, lower-
dimensional structures according to their true parameters
of change.

2.3. Isometric Feature Map (Isomap)

Isomap [5] is a non-linear dimensionality reduction tech-
nique that builds on MDS. Unlike MDS, it preserves
geodesic distance, and not Euclidean distance, between
data points. The geodesic represents a straight line in
curved space or, in this application, the shortest curve
along the geometric structure defined by our data points
[2]. Isomap seeks a mapping such that the geodesic dis-
tance between data points match the corresponding Eu-
clidean distance in the transformed space. This preserves
the true geometric structure of the data.

How do we approximate the geodesic distance be-
tween points without knowing the geometric structure of
our data? We assume that, in a small neighbourhood
(determined by K-nearest neighbours or points within a
specified radius), the Euclidean distance is a good ap-
proximation for the geodesic distance. For points fur-
ther apart, the geodesic distance is approximated as the
sum of Euclidean distances along the shortest connecting
path. There exist a number of graph-based algorithms for
calculating this approximation.
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Once the geodesic distance has been obtained, MDS
is performed as explained above.

A weakness of the isomap algorithm is that the ap-
proximation of the geodesic distance is not robust to noise
perturbation.

3. Diffusion maps

Figure 3: A random walk on a data set. Each “jump”
has a probability associated with it. The dashed path
between nodes 1 and 6 requires two jumps (i.e., two
time units) with the probability along the path being
p(node 1, node 2) p(node 2, node 6).

Diffusion maps are a non-linear technique. It achieves
dimensionality reduction by re-organising data according
to parameters of its underlying geometry.

The connectivity of the data set, measured using a lo-
cal similarity measure, is used to create a time-dependent
diffusion process. As the diffusion progresses, it inte-
grates local geometry to reveal geometric structures of
the data-set at different scales. Defining a time-dependent
diffusion metric, we can then measure the similarity be-
tween two points at a specific scale (or time), based on
the revealed geometry.

A diffusion map embeds data in (transforms data to)
a lower-dimensional space, such that the Euclidean dis-
tance between points approximates the diffusion distance
in the original feature space. The dimension of the diffu-
sion space is determined by the geometric structure un-
derlying the data, and the accuracy by which the diffu-
sion distance is approximated. The rest of this section
discusses different aspects of the algorithm in more de-
tail.

3.1. Connectivity

Suppose we take a random walk on our data, jumping be-
tween data points in feature space (see Fig. 3). Jumping
to a nearby data-point is more likely than jumping to an-
other that is far away. This observation provides a relation
between distance in the feature space and probability.

The connectivity between two data points, x and y, is
defined as the probability of jumping from x to y in one
step of the random walk, and is

connectivity(x, y) = p(x, y). (1)

It is useful to express this connectivity in terms of a non-
normalised likelihood function, k, known as the diffusion
kernel:

connectivity(x, y) ∝ k(x, y). (2)

The kernel defines a local measure of similarity within a
certain neighbourhood. Outside the neighbourhood, the
function quickly goes to zero. For example, consider the
popular Gaussian kernel,

k(x, y) = exp

(
−|x− y|

2

α

)
. (3)

The neighbourhood of x can be defined as all those
elements y for which k(x, y) ≥ ε with 0 < ε � 1. This
defines the area within which we trust our local similar-
ity measure (e.g. Euclidean distance) to be accurate. By
tweaking the kernel scale (α, in this case) we choose the
size of the neighbourhood, based on prior knowledge of
the structure and density of the data. For intricate, non-
linear, lower-dimensional structures, a small neighbour-
hood is chosen. For sparse data, a larger neighbourhood
is more appropriate.

The diffusion kernel satisfies the following proper-
ties:

1. k is symmetric: k(x, y) = k(y, x)

2. k is positivity preserving: k(x, y) ≥ 0

We shall see in Section 8 that the first property is re-
quired to perform spectral analysis of a distance matrix,
Kij = k(xi, xj). The latter property is specific to the
diffusion kernel and allows it to be interpreted as a scaled
probability (which must always be positive), so that

1
dX

∑
yεX

k(x, y) = 1. (4)

The relation between the kernel function and the connec-
tivity is then

connectivity(x, y) = p(x, y) =
1
dX

k(x, y) (5)

with 1
dX

the normalisation constant.
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Define a row-normalised diffusion matrix, P , with
entries Pij = p(Xi, Xj). Each entry provides the con-
nectivity between two data points,Xi andXj , and encap-
sulates what is known locally. By analogy of a random
walk, this matrix provides the probabilities for a single
step taken from i to j. By taking powers of the diffusion
matrix1, we can increase the number of steps taken. For
example, take a 2× 2 diffusion matrix,

P =
[
p11 p12

p21 p22

]
.

Each element, Pi,j , is the probability of jumping between
data points i and j. When P is squared, it becomes

P 2 =
[
p11p11 + p12p21 p12p22 + p11p12

p21p12 + p22p21 p22p22 + p21p12

]
.

Note that P11 = p11p11 + p12p21, which sums two prob-
abilities: that of staying at point 1, and of moving from
point 1 to point 2 and back. When making two jumps,
these are all the paths from point i to point j. Similarly,
P tij sum all paths of length t from point i to point j.

3.2. Diffusion Process

As we calculate the probabilities P t for increasing values
of t, we observe the data-set at different scales. This is the
diffusion process2, where we see the local connectivity
integrated to provide the global connectivity of a data-set.

With increased values of t (i.e. as the diffusion pro-
cess “runs forward”), the probability of following a path
along the underlying geometric structure of the data set
increases. This happens because, along the geometric
structure, points are dense and therefore highly connected
(the connectivity is a function of the Euclidean distance
between two points, as discussed in Section 2). Pathways
form along short, high probability jumps. On the other
hand, paths that do not follow this structure include one
or more long, low probability jumps, which lowers the
path’s overall probability.

In Fig. 4, the red path becomes a viable alternative
to the green path as the number of steps increases. Since
it consists of short jumps, it has a high probability. The
green path keeps the same, low probability, regardless of
the value of t .

1The diffusion matrix can be interpreted as the transition matrix of
an ergodic Markov chain defined on the data [1]

2In theory, a random walk is a discrete-time stochastic process,
while a diffusion process considered to be a continuous-time stochastic
process. However, here we study discrete processes only, and consider
random walks and diffusion processes equivalent.

Figure 4: Paths along the true geometric structure of the
data set have high probability.

3.3. Diffusion Distance

The previous section showed how a diffusion process re-
veals the global geometric structure of a data set. Next,
we define a diffusion metric based on this structure. The
metric measures the similarity of two points in the obser-
vation space as the connectivity (probability of “jump-
ing”) between them. It is related to the diffusion matrix
P , and is given by

Dt(Xi, Xj)2 =
∑
uεX

|pt(Xi, u)− pt(Xj , u)|2 (6)

=
∑

k

∣∣P tik − P tkj∣∣2 . (7)

The diffusion distance is small if there are many high
probability paths of length t between two points. Unlike
isomap’s approximation of the geodesic distance, the dif-
fusion metric is robust to noise perturbation, as it sums
over all possible paths of length t between points.

As the diffusion process runs forward, revealing the
geometric structure of the data, the main contributors to
the diffusion distance are paths along that structure.

Consider the term pt(x, u) in the diffusion distance.
This is the probability of jumping from x to u (for any
u in the data set) in t time units, and sums the probabil-
ities of all possible paths of length t between x and u.
As explained in the previous section, this term has large
values for paths along the underlying geometric structure
of the data. In order for the diffusion distance to remain
small, the path probabilities between x, u and u, y must
be roughly equal. This happens when x and y are both
well connected via u.

The diffusion metric manages to capture the similar-
ity of two points in terms of the true parameters of change
in the underlying geometric structure of the specific data
set.

3.4. Diffusion Map

Low-dimensional data is often embedded in higher di-
mensional spaces. The data lies on some geometric struc-
ture or manifold, which may be non-linear (see Fig. 2).
In the previous section, we found a metric, the diffusion
distance, that is capable of approximating distances along
this structure. Calculating diffusion distances is computa-
tionally expensive. It is therefore convenient to map data
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points into a Euclidean space according to the diffusion
metric. The diffusion distance in data space simply be-
comes the Euclidean distance in this new diffusion space.

A diffusion map, which maps coordinates between
data and diffusion space, aims to re-organise data accord-
ing to the diffusion metric. We exploit it for reducing
dimensionality.

The diffusion map preserves a data set’s intrinsic ge-
ometry, and since the mapping measures distances on a
lower-dimensional structure, we expect to find that fewer
coordinates are needed to represent data points in the new
space. The question becomes which dimensions to ne-
glect, in order to preserve diffusion distances (and there-
fore geometry) optimally.

With this in mind, we examine the mapping

Yi :=


pt(Xi, X1)
pt(Xi, X2)

...
pt(Xi, XN )

 = PTi∗. (8)

For this map, the Euclidean distance between two
mapped points, Yi and Yj , is

‖Yi − Yj‖2E =
∑
uεX

|pt(Xi, u)− pt(Xj , u)|2

=
∑

k

∣∣P tik − P tkj∣∣2 = Dt(Xi, Yj),2

which is the diffusion distance between data points
Xi and Xj . This provides the re-organisation we sought
according to diffusion distance. Note that no dimension-
ality reduction has been achieved yet, and the dimension
of the mapped data is still the sample size, N .

Dimensionality reduction is done by neglecting cer-
tain dimensions in the diffusion space. Which dimen-
sions are of less importance? The proof in Section 8 pro-
vides the key. Take the normalised diffusion matrix,

P = D−1K,

where D is the diagonal matrix consisting of the row-
sums of K. The diffusion distances in (8) can be ex-
pressed in terms of the eigenvectors and -values of P as

Y ′i =


λt1ψ1(i)
λt2ψ2(i)

...
λtnψn(i)

 , (9)

where ψ1(i) indicates the i-th element of the first eigen-
vector of P . Again, the Euclidean distance between
mapped points Y ′i and Y ′j is the diffusion distance. The
set of orthogonal left eigenvectors of P form a basis for
the diffusion space, and the associated eigenvalues λl in-
dicate the importance of each dimension. Dimension-
ality reduction is achieved by retaining the m dimen-
sions associated with the dominant eigenvectors, which

Figure 5: Original Data

ensures that
∥∥Y ′i − Y ′j ∥∥ approximates the diffusion dis-

tance, Dt(Xi, Xj), best. Therefore, the diffusion map
that optimally preserves the intrinsic geometry of the data
is (9).

4. Diffusion Process Experiment
We implemented a diffusion map algorithm in the Python
programming language. The code was adapted for the
machine learning framework Elefant (Efficient Learning,
Large Scale Inference and Optimisation Toolkit), and will
be included as part of the next release. The basic algo-
rithm is outlined in Algorithm 1.

Algorithm 1 Basic Diffusion Mapping Algorithm
INPUT: High dimensional data set Xi, i = 0 . . . N − 1.

1. Define a kernel, k(x, y) and create a kernel matrix,
K, such that Ki,j = k(Xi, Xj).

2. Create the diffusion matrix by normalising the
rows of the kernel matrix.

3. Calculate the eigenvectors of the diffusion matrix.

4. Map to the d-dimensional diffusion space at time
t, using the d dominant eigenvectors and -values as
shown in (9).

OUTPUT: Lower dimensional data set Yi, i = 0..N − 1.

The experiment shows how the algorithm integrates
local information through a time-dependent diffusion to
reveal structures at different time scales. The chosen
data-set exhibits different structures on each scale. The
data consists of 5 clusters which, on an intermediate
scale, has a noisy C-shape with a single parameter: the
position along the C-shape. This parameter is encoded in
the colours of the clusters. On a global scale the structure
is one super-cluster.
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As the diffusion time increases, we expect different
scales to be revealed. A one dimensional curve charac-
terised by a single parameter should appear. This is the
position along the C-shape, the direction of maximum
global variation in the data. The ordering of colours along
the C-shape should be preserved.

4.1. Discussion

In these results, three different geometric structures are
revealed, as shown in figures (5) and (6):

At t = 1, the local geometry is visible as five clusters.
The diffusion process is still restricted individual clusters,
as the probability of jumping to another in one time-step
is small. Therefore, even with reduced dimensions, we
can clearly distinguish the five clusters in the diffusion
space.

At t = 3, clusters connect to form a single structure in
diffusion space. Paths of length three bring them together.
Being better connected, the diffusion distance between
clusters decreases.

At this time scale, the one-dimensional parameter of
change, the position along the C-shape, is recovered: in
the diffusion space the order of colours are preserved
along a straight line.

At t = 10, a third geometric structure is seen. The
five clusters have merged to form a single super-cluster.
At this time scale, all points in the observation space are
equally well connected. The diffusion distances between
points are very small. In the lower dimensional diffu-
sion space it is approximated as zero, which projects the
super-cluster to a single point.

This experiment shows how the algorithm uses the
connectivity of the data to reveal geometric structures at
different scales.

5. Comparison With Other Methods

We investigate the performance of those dimensionality
reduction algorithms discussed in Section 2, and compare
them to diffusion maps. We use a similar data set as in
the previous experiment, the only difference being an in-
creased variance inside clusters. Which of the algorithms
detect the position along the C-shape as a parameter of
change, i.e. which of the methods best preserve the or-
dering of the clusters in a one-dimensional feature space?
Being linear techniques, we expect PCA and MDS to fail.
In theory, isomap should detect the C-shape, although it
is known that it struggles with noisy data.

5.1. Discussion

Figure 10: The one-dimensional diffusion space.

5.1.1. PCA

In observation space (Fig. (5)), most variation occurs
along the z-axis. The PCA mapping in Fig. 7 preserves
this axis as the first principal component. The second
principal component runs parallel to x = y, and is or-
thogonal to the z-axis. The variation in the third dimen-
sion is orthogonal to these principal components, and pre-
serves the C-shape. Once data is projected onto the two
primary axes of variation, the ordering along the non-
linear C-shape is lost. As expected, PCA fails to detect a
single parameter of change.

5.1.2. MDS

Similar to PCA, MDS preserves the two axes along which
the Euclidean distance varies most. Its one-dimensional
projection fails to preserve the cluster order, as shown in
Fig. 8. Suppose we had fixed the red data points in a one
dimensional feature space (see Fig. 11), and wanted to
plot the other data points such that Euclidean distances
are preserved (this is the premise of MDS). Data points
lying on the same radius would then be plotted on top of
one another. Due to the non-linear structure of the data,
MDS cannot preserve the underlying clusters.

Figure 11: Failure of MDS for non-linear structures
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Figure 6: Projection onto diffusion space at times t = 1, t = 2, t = 3 and t = 10 (in clock-wise order, starting from the
top-left).
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Figure 7: The two- and one-dimensional feature spaces of PCA.

Figure 8: The two- and one-dimensional feature spaces of MDS.

Figure 9: The two- and one-dimensional feature spaces of isomap.
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5.1.3. Isomap

When determining geodesic distances, isomap searches
a certain neighbourhood. The choice of this neighbour-
hood is critical: if too large, it allows for “short circuits”
whereas, if it is too small, connectivity becomes very
sparse. These “short circuits” can skew the geometry of
the outcome entirely. For diffusion maps, a similar chal-
lenge is faced when choosing kernel parameters.

Isomap is able to recover all the clusters in this ex-
periment, given a very small neighbourhood. It even pre-
serve the clusters in the correct order. Two of the clusters
overlap a great deal, due to the algorithm’s sensitivity to
noise.

5.1.4. Comparison with Diffusion Maps

Fig. 10 shows that a diffusion map is able to preserve the
order of clusters in one dimension. As mentioned before,
choosing parameter(s) for the diffusion kernel remains
difficult. Unlike isomap, however, the result is based on
a summation over all data, which lessens sensitivity to-
wards kernel parameters. Diffusion maps are the only
one of these techniques that allows geometric analysis at
different scales.

6. Demonstration: Organisational Ability

A diffusion map organises data according to its under-
lying parameters of change. In this experiment, we vi-
sualise those parameters. Our data-set consists of ran-
domly rotated versions of a 255 × 255 image template
(see Fig. 12). Each rotated image represents a single,
65025-dimensional data-point. The data is mapped to the
diffusion space, and the dimensionality reduced to two.
At each 2-dimensional coordinate, the original image is
displayed.

Figure 12: Template: 255 x 255 pixels.

6.1. Discussion

Figure 13: Organisation of images in diffusion space.

In the diffusion space, the images are organised accord-
ing to their angle of rotation (see Fig. 13). Images with
similar rotations lie close to one another.

The dimensionality of the data-set has been reduced
from 65025 to only two. As an example, imaging running
a K-means clustering algorithm in diffusion space. This
will not only be much faster than in data space, but would
likely achieve better results, not having to deal with a
massive, sparse, high-dimensional data-set.

7. Conclusion
We investigated diffusion maps, a technique for non-
linear dimensionality reduction. We showed how it inte-
grates local connectivity to recover parameters of change
at different time scales. We compared it to three other
techniques, and found that the diffusion mapping is more
robust to noise perturbation, and is the only technique that
allows geometric analysis at differing scales. We further-
more demonstrated the power of the algorithm by organ-
ising images. Future work will revolve around applica-
tions in clustering, noise-reduction and feature extraction.

8. Proof
This section discusses the mathematical foundation of
diffusion maps. The diffusion distance, given in (7), is
very expensive to calculate but, as shown here, it can be
written in terms of the eigenvectors and values of the dif-
fusion matrix. These values can be calculated efficiently.

We set up a new diffusion space, where the coordi-
nates are scaled components of the eigenvectors of the
diffusion matrix. In the diffusion space, Euclidean dis-
tances are equivalent to diffusion distances in data space.

Lemma 1: Suppose K is a symmetric, n × n kernel
matrix such that K[i, j] = k(i, j). A diagonal matrix, D,
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normalises the rows of K to produce a diffusion matrix

P = D−1K. (10)

Then, the matrix P ′, defined as

P ′ = D1/2PD−1/2, (11)

1. is symmetric

2. has the same eigenvalues as P

3. the eigenvectors, x′k of P ′ are multiplied by D−1/2

and D
1
2 to get the left (eTP = λeT ) and right

eigenvectors (P v = λv) of P respectively.

Proof: Substitute (10) into (11) to obtain

P ′ = D−1/2KD−1/2. (12)

As K is symmetric, P ′ will also be symmetric.
We can make P the subject of the equation in (11),

P = D−1/2P ′D1/2. (13)

As P ′ is symmetric, there exists an orthonormal set of
eigenvectors of P ′ such that

P ′ = SΛST , (14)

where Λ is a diagonal matrix containing the eigenvalues
of P ′ and S is a matrix with the orthonormal eigenvectors
of P ′ as columns.

Substituting (14) into (13),

P = D−1/2SΛSTD1/2.

Since S is an orthogonal matrix

P = D−1/2SΛS−1D1/2

= (D−1/2S)Λ(D−1/2S)−1 (15)
= QΛQ−1. (16)

Therefore, the eigenvalues of P ′ and P are the same. Fur-
thermore, the right eigenvectors of P are the columns of

Q = D−1/2S, (17)

while the left eigenvectors are the rows of

Q−1 = STD
1
2 . (18)

From (17) we see that the equation for the eigenvectors
of P can be given in terms of the eigenvectors x′k of P ′.
The right eigenvectors of P are

vk = D−
1
2 x′k (19)

and the left eigenvectors are

ek = D
1
2 x′k. (20)

From (15) we then obtain the eigen decomposition,

P =
∑
k

λkvkeTk . (21)

When we examine this eigen decomposition further, we
see something interesting. Eq. 21 expresses each row of
the diffusion matrix in terms of a new basis: ek, the left
eigenvectors of the diffusion matrix.

In this new coordinate system in Rn, a row i of P is
represented by the point

Mi =


λ1v1[i]
λ2v2[i]

...
λnvn[i]

 ,
where vn[i] is the i-th component of the n-th right eigen-
vector. However, P is not symmetric, and so the coordi-
nate system will not be orthonormal, i.e.

eTk ek 6= 1

or, equivalently,
eTk I ek 6= 1

and
eTl I ek 6= 0 for l 6= k.

This is a result of the scaling applied to the orthogonal
eigenvectors of P ′ in (19) and (20). This scaling can be
counter-acted by using a different metric Q, such that

eTkQek = 1

and
eTl Q ek = 0 for l 6= k

where Q must be a positive definite, symmetric matrix.
We choose

Q = D−1,

where D is the diagonal normalisation matrix. It satisfies
the two requirements for a metric and leads to

eTkQ ek = eTk (D−
1
2 )T (D−

1
2 ) ek

= x′Tk x′k
= 1,

using (20). In the same way we can show that

eTl D
−1ek = 0 for l 6= k.

Therefore the left eigenvectors of the diffusion matrix
form an orthonormal coordinate system of Rn , given that
the metric is D−1. We define Rn with metric D−1 as the
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diffusion space, denoted by l2(Rn, D−1). For example,
the Euclidean distance between two vectors, a and a′, is
normally

d(a, a′)l2 = d(a, a′)l2(Rn,I) = (a− a′)T (a− a′)

in l2. In l2(Rn, D−1), it becomes

d(a, a′)l2(Rn,D−1) = (a− a′)TD−1(a− a′).

Lemma 2: If we choose our diffusion coordinates as in
(9), then the diffusion distance between the points in the
original space is equal to the Euclidean distance in the
diffusion space.

Proof : We are required to prove that

Dt(xi, xj)2 = ‖pt(xi, ·)− pt(xj , ·)‖2l2(Rn,I)
(22)

= ‖Mi −Mj‖2l2(Rn,D−1)
(23)

=
∑

k

λ2t
k (vk[i]− vk[j])2. (24)

Here, pt(xi, xj) = Pij are the probabilities which form
the components of the diffusion matrix. For simplicity
we assume t = 1. Then

D(xi, xj)2 = ‖p(xi, ·)− p(xj , ·)‖2l2(Rn,I)

= ‖P [i, ·]− P [j, ·]‖2l2(Rn,I)
.

According to the eigen decomposition in (21), this equals

=

∣∣∣∣∣∑
k

λkvk[i]eTk −
∑
k≥0

λkvk[j]eTk

∣∣∣∣∣
2

=

∣∣∣∣∣∑
k

λkeTk (vk[i]− vk[j])

∣∣∣∣∣
2

=

∣∣∣∣∣∑
k

λkx′Tk D
1
2 (vk[i]− vk[j])

∣∣∣∣∣
2

=

∣∣∣∣∣∑
k

λkx′Tk (vk[i]− vk[j])D
1
2

∣∣∣∣∣
2

In l2(Rn, D−1), the diffusion space, this distance be-
comes(∑

k

λkx′Tk (vk[i]− vk[j])D
1
2

)
D−1

(∑
m

λmx′Tm (vm[i]− vm[j])D
1
2

)T

=

(∑
k

λkx′Tk (vk[i]− vk[j])D
1
2

)
D−1

(
D

1
2

∑
m

λmx′m (vm[i]− vm[j])

)
=

∑
k

λkx′Tk (vk[i]− vk[j])
∑

m

λmx′m (vm[i]− vm[j])

Since {x′k} is an orthonormal set,

x′Tm x′k = 0 for m 6= k.

Therefore

D(xi, xj)2 =
∑

k

λ2
k (vk[i]− vk[j])2 . (25)

We’ve therefore shown that the diffusion distance,
Dt(xi, xj)2, is simply the Euclidean distance between
mapped points, Mi and Mj , in diffusion space.
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Abstract 
 

The process of relating pixels in a satellite image 

to known land cover classes is referred to as image 

classification. As demonstrated in this paper, 

ensemble feature selection offers a unique 

approach to land cover mapping, especially for 

very high dimensional hyperspectral data. 

Ensemble classification is premised on ensuring 

diversity among the base classifiers and adopting 

appropriate means of combining their outputs into 

a single classification result. This paper explores 

ensemble feature selection as a means of ensuring 

diversity for land cover mapping of hyperpectral 

data. Results show that random selection of 

features (bands) yielded the best results as 

compared to building base classifiers depending on 

search algorithms or as was used in this case, 

sequentially arranging the features into base 

classifiers. Of the combination techniques, the 

single best technique yielded better results than 

majority vote, however in most cases the 

difference between the results was not significant.  

 

1. Introduction 
 
The extraction of land cover information from 

satellite imagery has been one of the major 

beneficiaries of developments in machine learning. 

Techniques such as support vector machines, 

neural networks, fuzzy logic, genetic algorithms 

etc. which have taken root in remote sensing  

studies owe their origin to advancements in 

computational intelligence (and by extension 

machine learning). Ensemble classification is 

another such technique that has taken root in 

machine learning and is making inroads in image 

classification for land cover mapping. In literature, 

ensemble classification goes by several names such 

as multiple classifier systems, committee of 

classifiers, mixture of experts and ensemble based 

systems (Polikar [1]). The essence of ensemble 

classification is to have a final classification result 

‘in consultation’ with a group of classifiers. It is 

akin to getting a second, third (or more) opinion 

about a financial, medical or social decision one 

may have to make (Polikar [1]). For ensemble 

systems to perform effectively, it has been shown 

that the constituent base classifiers need to have 

diversity in their predictions (Opitz [2]; Tsymbal et 

al. [3]; Foody et al. [4]). One way of ensuring 

diversity in ensemble classifiers is in the use of 

different feature subsets or so called ensemble 

feature selection (Tsymbal et al. [3]). In land cover 

mapping this would entail having an ensemble of 

different spectral band combinations and having 

the final classification result based on a pre-

stipulated ‘consensus’ (e.g. plurality vote) of the 

different band combinations (Chen et al. [5]). 

Previous work on the application of ensemble 

classification to land cover mapping has focused 

mostly on ensuring diversity by using different 

classifiers. In this paper, the application of 

ensemble feature classification is explored on 

hyperspectral data. Hyperspectral data by its nature 

consists of a very high dimensional feature space 

(e.g. 200 bands/features) and presents an ideal 

situation to explore the use of ensemble feature 

classification for land cover mapping. This paper is 

organized as follows: section 2.0 gives an 

overview of ensemble classification, section 3 

briefly discusses support vector machines which 

are the classifiers of choice in this research, section 

4 presents the developed methodology in executing 
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this work, while sections 5 and 6 highlight the 

results, discussions and conclusions thereof. 

 

2. Ensemble Classification 
 

As alluded to before, ensemble classification is a 

multiple classifier system in which the aim is to 

combine the outputs of several classifiers in order 

to derive an accurate classification (Foody et al. 

[4]).  There is a general consensus that ensemble 

classifiers yield favorable results compared to 

those of single systems for a broad range of 

applications (Bruzzone et al. [6]). However, Foody 

et al. [4]  and Liu et al. [7] argue that whereas the 

adoption of an ensemble based approach may 

typically yield a classification with an accuracy 

that is higher than that of the least accurate 

classifier used in the ensemble, it may not 

necessarily be better than each of the base 

(constituent) classifiers.  

 

Polikar [1] raises a number of reasons justifying 

the need for an ensemble approach. One reason is 

that, combining the output of several classifiers by 

say averaging may reduce the risk of an 

unfortunate selection of a poor performing 

classifier (Polikar [1]). Polikar [1] further states 

that whereas the final output of the ensemble may 

not beat the performance of the best classifier in 

the ensemble, it certainly reduces the risk of 

making a particularly poor choice. In his second  

justification, Polikar [1] proposes an ensemble 

approach in the face of large volumes of data, 

especially in cases where the amount of data may 

be too large to be handled by a single classifier. 

Partitioning the data into smaller subsets and 

training different classifiers with different portions 

of data and combining the outputs using an 

intelligent combination rule could potentially 

prove to an efficient approach (Polikar [1]). 

 

The functionality of ensemble systems involves 

generating the individual base classifiers and 

devising a means of combining the outputs of these 

base classifiers. One way of ensuring improved 

performance of the ensemble system is to ensure 

that the individual classifiers make errors 

differently (Polikar [1]).  The premise is that if 

each classifier makes errors differently, i.e. that 

there is diversity among the base classifiers, then a 

strategic combination of these classifiers can 

reduce the total error (Polikar [1]). Diversity in 

ensemble systems can be achieved through using 

different: training datasets, classifiers, features or 

training parameters (Polikar [1]). Chen et al. [5] 

categorizes ensemble classification into those 

based on several different learning algorithms and 

those based on just one.  The former involves using 

several classifiers on the same dataset. The 

drawback of this ensemble system is to have to 

handle different classifiers which increases the 

complexity of the processing (Chen et al. [5]). In 

the second categorization, only one classifier is 

used and the ensemble is created by changing the 

training set. Two popular examples of this include 

bagging or bootstrap aggregating (Breiman [8]) 

and Adaboost or reweighting boosting (Freund et 

al. [9]).  

 

Under the second categorization is an effective 

approach for generating an ensemble system by the 

use of different feature subsets or the so called 

ensemble feature selection (Opitz [2]). Varying the 

feature subsets used to generate the base classifier 

potentially promotes diversity since the classifiers 

tend to err in different subspaces of the instance 

space (Oza et al. [10]; Tsymbal et al. [3]). Some of 

the techniques used to identify features to be used 

in ensemble systems include genetic algorithms 

(Opitz [2]), exhaustive search methods and random 

selection of feature subsets (Ho [11]). 

 

Equally important to the generation of an ensemble 

is how the base classifier outputs are to be 

combined. There are two basic approaches in 

literature which have been suggested as means of 

integrating ensemble output (Tsymbal et al. [3]): a 

combination approach and secondly a selection 

approach. A range of methods are available for the 

combination of information from multiple 

classifiers (Giancinto et al. [12]; Valentini et al. 

[13]; Huang et al. [14]). Some of the methods 

include majority voting (Chen et al. [5]), weighted 

majority voting (Polikar [1]) or more sophisticated 

methods like consensus theory (Benediksson et al. 

[15] and stacking (Džeroski et al. [16]). A number 

of selection approaches have also been proposed to 

solve the integration of ensemble data (Tsymbal et 

al. [3]). One of the most popular and simplest 

selection techniques is Cross Validation Majority 

(CVM) also called single best. In CVM, the cross 
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validation accuracy for each base classifier is 

estimated using the training set and then the 

classifier with the highest accuracy is selected 

Tsymbal et al. [3].   

 

3. Support Vector Machines 
 

Support Vector Machines (SVMs) are a supervised 

classification technique having their roots in 

Statistical Learning Theory. Given a training 

dataset, the decision boundary between the 

individual classes is a linear discriminant placed 

midway between the classes and is expressed as 

(Foody et al. [4]):  f(x) = sign�∑ ��
�
��� ��	�
, 
�� 
 �� 

where yi defines the classes, αi, i = 1,2,…,r are the 

Lagrange multipliers, b is bias and k(x,xi) is a 

kernel function. In many practical cases, a linear 

discriminant between the training data classes is 

not feasible and in order to cater for this nature of 

data, it is nonlinearly projected into a higher 

dimension space using the kernel k(x,xi) . Placing a 

linear discriminant in this high dimension feature 

space is equivalent to placing a nonlinear 

discriminant in the previous space. Examples of 

kernels that can be used for this purpose include: 

polynomial, sigmoid and Gaussian functions. For 

each kernel, corresponding parameters are obtained 

through cross validation before the eventual 

classification. A more detailed treatise of SVMs 

can be found in references such as Vapnik [17], 

Christianini et al. [18] and Campbell [19]. 

 

4. Methodology 
 

4.1 Data Description 

 
The hyperspectral data used in this paper was 

sourced from the AVIRIS sensor [20] and 

represents Indiana’s Indian Pines in the United 

States of America. It is a freely accessible online 

dataset which comes with accompaigning ground 

truth data. Of the 224 bands, 4 were discarded 

because they contained zeros and of the remaining 

bands only 180 were used in this research. The rest 

of the bands were left out because of being 

affected by atmospheric distortion (Bazi et al. 

[21]). The classes of interest included; alfalfa, 

corn-notill, corn-minimum till, corn, grass/pasture, 

grass/trees, grass/pasture-mowed, hay-windrowed, 

oats, soybeans-notill, soybeans-minimum till, 

soybean-clean, wheat, woods, building-grass-tree-

drives, stone-steel towers. These classes were 

selected in reference to the ground truth data. 

 

4.2 Research Design 

 
Based on Chen et al. [5]’s categorization, this 

paper focused on the ensemble approach dependent 

on one learning algorithm (In this case Gaussian 

SVMs), with diversity being enforced through 

using different feature (band) combinations. Two 

ensemble feature selection techniques were used 

namely exhaustive search and random selection of 

feature subsets. The evaluation function for the 

exhaustive search was the Bhattacharyya Distance 

separability index (Bhattacharyya [22]). The 

results of the base classifiers in each ensemble 

were combined using two methods; majority 

voting and an adaptation of Cross Validation 

majority (CVM) also called single best. In CVM, 

cross validation data is used as a basis for selecting 

the best out of the whole ensemble. In this paper, 

this was modified to consider the final 

classification results of each base classifier instead. 

For comparison, another ensemble was derived by 

sequentially grouping subsequent bands into 10 

base classifiers. i.e.  bands 1-18 made up the first 

base classifier, bands 19 – 36 the second base 

classifier etc, making a total of 10 base classifiers 

for all the 180 bands. 

 

For each base classifier and corresponding 

ensemble, classification was carried out in 

MATLAB with the results being imported into 

IDRISI Andes for data integration and generation 

of a land cover map.  Classification accuracies 

were then calculated for each derived land cover 

map, by making comparisons between the 

predicted output from the base and ensemble 

classifiers and the ground truth data. These results 

were then used as the basis upon which to evaluate 

ensemble feature classification and its 

corresponding effect on land cover mapping. 

 

5. Results and Discussions 
 

The Table 1 shows the results of the different 

ensembles considered. The classification accuracy 

is given in terms of the Kappa coefficient of 

agreement (Cohen [23]), which is a measure of 
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how well the derived map compares with ground 

truth data.  It ranges from 0 to 1 with 0 implying 

no agreement between predicted land cover and 

ground truth, and 1 indicating complete agreement.  

 

All the ensembles had ten base classifiers, the 

figure ten having been arbitrarily chosen. The base 

classifiers in Ensembles 1, 2, 3 and 4 consisted of 

10, 14, 18 and 18 features (bands) respectively, 

each with different band combinations (feature 

configurations). Ensembles 1 and 2 were derived 

from an exhaustive search strategy, with the ten 

best base classifiers being selected based on their 

separability indices. Ensemble 3 was constituted 

by sequentially arranging the 180 bands into ten 

base classifiers, each with 18 features. On the other 

hand, all the features constituting the base 

classifiers in Ensemble 4 were randomly selected. 

 

Table 1: A summary of the classification accuracy 

of the various ensembles considered 

Ens. 1 2 3 4 

BC 1 0.6209 0.6214 0.4591 0.6176 

BC 2 0.6134 0.6323 0.4737 0.6531 

BC 3 0.6112 0.6264 0.3383 0.6084 

BC 4 0.6232 0.6418 0.3937 0.6605 

BC 5 0.6128 0.6317 0.4141 0.6276 

BC 6 0.6149 0.6323 0.4687 0.6314 

BC 7 0.6125 0.6281 0.4885 0.5803 

BC 8 0.6190 0.6242 0.5288 0.6425 

BC 9 0.6202 0.6168 0.4067 0.6151 

BC 10 0.6338 0.6435 0.3593 0.5989 

MV 0.6212 0.6314 0.4707 0.6482 

SB 0.6338 0.6418 0.5288 0.6605 

Where Ens. – Ensemble, BC – Base Classifier,   

MV – Majority Vote, SB – Single Best 

 

From Table 1 it can be observed that in all cases 

single best had better results than majority voting. 

It is also observed that in general, results from 

ensemble 3 were the poorest, while ensemble 4 

yielded the best results. To get a better 

appreciation of the differences between these 

results, a binomial test of significance was carried 

out for each ensemble to ascertain the pairwise 

difference between majority voting and single best, 

results of which are illustrated in Table 2.  

 

 

Table 2: Binomial Test of Significance between 

Majority Vote and Single Best 

Ensemble |z| 

1 0.99 

2 0.82 

3 4.43 

4 0.99 

 

In the simple case of determining if there is a 

difference between two classifications (2 sided 

test), the null hypothesis (Ho) that there is no 

significant difference will be rejected if |Z| > 1.96 

(Congalton et al., [24]; Rosenfield et al. [25]; 

Congalton et al. [26]). In this case, it is only in 

ensemble 3 that there is a significant difference 

between majority vote and single best approaches. 

The same test was carried out to establish if there 

was any significant difference between the 

different ensembles, the results of which are shown 

in Table 3 and 4. Table 3 depicts the pairwise 

difference between the ensembles based on the 

majority vote values, while Table 4 refers to single 

best values. In both tables E1, E2, E3 and E4 refer 

to Ensembles 1,2,3 and 4 respectively. 

 

 Table 3: Binomial tests of significance between 

the different ensembles based on majority vote 

values 

 E1 E2 E3 E4 

E1 0    

E2 0.80 0   

E3 11.65 12.47 0  

E4 2.14 1.33 13.84 0 

 

Table 4: Binomial tests of significance between the 

different ensembles based on single best values 

 E1 E2 E3 E4 

E1 0       

E2 0.63 0     

E3 8.15 8.79 0   

E4 2.13 1.49 10.31 0 

 

From Tables 3 and 4, it can be seen that the results 

of ensemble 4 are significantly better than the 

results from ensemble 1 and 3. Whereas the results 

of ensemble 4 are better than ensemble 2, the 

difference is not significant. The results from 
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ensemble 3 are significantly worse than all the 

results of the ensembles 1,2 and 4. 

 

Of the ensembles considered, evidently the one 

based on random selection yielded the best 

classification results. Sequentially selecting bands 

into base classifiers yielded significantly poorer 

results. Feature selection resulted in better 

classification results compared to sequentially 

selecting the features, however ensemble 2 

performed better than ensemble 1. This may have 

been as a result of using more features in each base 

classifier. The difference however was not 

significant 

 

6. Conclusions  
 

The results show that to effect ensemble 

classification through feature selection for 

hyperspectral data, generation of base classifiers 

can best be done using the random selection of 

features. This however comes with a disadvantage 

of not being able to exactly replicate previous 

results. The other methods used in this research 

however provided a more ‘controlled environment’ 

to explore feature selection. Of the said methods, 

building the base classifiers through sequentially 

arranging the features resulted in the poorest 

results. Feature selection through exhaustive search 

always yielded comparatively better results. Of 

Ensembles 1 and 2, Ensemble 2 yielded better 

results. As mentioned before this may be as a result 

of the base classifiers in Ensemble 2 having more 

features than Ensemble 1. The significance of the 

number of features per base classifier pales when it 

is observed that Ensemble 3 which had 18 features 

per base classifier performed poorer than 

Ensembles 1 and 2 which had 10 and 14 features 

per base classifier. Of the combination methods, 

apart from Ensemble 3 which proved to be a 

poorly constituted ensemble, there was no 

significant difference between majority voting and 

single best. However, single best always yielded 

comparatively better results.  
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Abstract
Suppose one wants to model a dynamic process that is contam-
inated by noise, i.e. one seeks the state of the process given
some noisy measurements. From a Bayesian point of view, the
aim is to find the joint probabilistic density function (pdf) of
the state and measurement vector; a complete solution for the
problem. Conceptually this problem can be solved by the re-
cursive Bayes filter. If the relevant pdfs are Gaussian and the
processes are linear, this conceptual solution is the Kalman fil-
ter. However, for more general cases, e.g. the case when pro-
cesses are non-linear and the pdfs are multi-modal, the exact
solution is intractable due to insolvable integrals. Monte Carlo
methods provide a numerical solution for these intractable in-
tegrals. The Monte Carlo approximation of the recursive Bayes
filter is known as the particle filter.

The concepts presented here have been extensively invest-
igated in the literature. Our aim is to provide a concise summary
of the theory of particle filters, together with an application in
tracking and references for further reading.

1. Introduction
Suppose one wants to model a dynamic process that is contam-
inated by noise, for example tracking an object through an im-
age sequence. The process is usually described by a state vector
at time t denoted by xt ∈ Rnx . Furthermore, suppose the state
vector xt is not observed directly, but is known through some
noisy measurements zt ∈ Rnz and knowledge of the dynamic
evolution of the system. Using all the available information,
i.e., all measurements and knowledge of the dynamic process,
the aim is to find the best possible estimate for the state xt.

In particular, we assume that the states evolve according to

xt = f t−1 (xt−1,vt−1) (1)

where f t−1 is a known, possibly non-linear function and vt−1

is the process noise. The target state is related to the measure-
ments via the measurement equation

zt = gt (xt,wt) (2)

where gt is again a known, possibly non-linear function and
wt is the measurement noise. The state equation (1) describes
the transitional probability, p (xt|xt−1), whereas the likelihood
p (zt|xt) is depicted by the measurement equation (2).

A special case is the linear Gaussian dynamic system when
equations (1) and (2) reduce to

xt = Ft−1xt−1 + vt−1 (3)
zt = Gtxt + wt, (4)

with vt−1 and wt Gaussian distributed random variables. The
exact solution to equations (3) and (4) is given by the Kalman

filter [1]. In this case Ft−1 is called the state transition matrix
and Gt the measurement matrix.

The stochastic filtering problem described by Equations (1)
and (2) can also be depicted as a Bayesian network, illustrated in
Figure 1. Here we clearly see that the current state xt depends
on the previous state xt−1 and the measurement at time t, zt,
depends on the state xt, but is independent of the measurements
at other time steps. This is consistent with equations (1) and (2).

· · · · · ·xt−1 xt xt+1

zt−1 zt zt+1

f t−1 f t

gt−1 gt gt+1

Figure 1: Graphical model of stochastic filtering

The aim of stochastic filtering is thus to find the pdf
p (xt|zt) that is a complete solution for the problem. However,
this is often intractable since typically p (xt|zt) is a density
function and not a point estimate. Nevertheless, it is instruct-
ive to understand the exact conceptual solution. Here we use
the conceptual solution (discussed in Section 2.1) as a starting
point in the development of the ideas underlying a Monte Carlo
approximation to the problem: the particle filter (presented in
Section 2.3). En route we present the Kalman filter as the exact
solution to the special case described by Equations (3) and (4) in
Section 2.2 and review Monte Carlo methods in Section 2.3.1.
Algorithmic issues are discussed in Section 3, followed by an
example in Section 4.

The concepts presented here have been extensively investig-
ated in the literature. The goal of this paper is to provide a con-
cise summary of the theory of particle filters, together with an
application in tracking to aid in the understanding of the topic.
We also provide references for further investigation.

2. Recursive Bayes Filter
In this section we discuss the conceptual solution to the
stochastic filtering problem described by Equations (1) and (2)
[2, 3], the Kalman filter as the exact solution of a special case
and the particle filter as a numerical approximation.
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2.1. The conceptual solution

We use the notation x0:t to denote the set of states, up to and
including the state at time t, i.e., x0:t , {x0,x1, . . . ,xt}.
(An alternative notation used in the literature is Xt ,
{x0,x1, . . . ,xt}, for example in [4] and [5].)

Implicit in the model described above, are the assump-
tions that the states follow a first order Markov process, that
is p (xt|x0:t−1) = p (xt|xt−1), and that the measurements are
independent of each other.

The goal in solving the stochastic filtering [6] problem in
a Bayesian framework, is finding the posterior pdf of the states
given the measurements, p (xt|z0:t). This posterior pdf con-
tains all the information about the hidden states and can thus be
used to find estimates of the state. The recursive Bayesian filter
provides a formal way to propagate the posterior pdfs over time
if an initial condition is assumed.

In order to see how the recursive Bayesian filter operates,
let us consider the posterior pdf p (xt|z0:t) at time t. Using
Bayes’ rule1, we obtain

p (xt|z0:t) =
p (z0:t|xt) p (xt)

p (z0:t)
.

By first using the definition of z0:t, followed by the product
rule2 and another application of Bayes’ rule, we have

p (xt|z0:t) =
p (zt,z0:t−1|xt) p (xt)

p (zt,z0:t−1)

=
p (zt|z0:t−1,xt) p (z0:t−1|xt) p (xt)

p (zt|z0:t−1) p (z0:t−1)

=
p (zt|z0:t−1,xt) p (xt|z0:t−1) p (z0:t−1) p (xt)

p (zt|z0:t−1) p (z0:t−1) p (xt)
.

Cancelling terms and using the initial assumptions of independ-
ence, we obtain a recursive formula for the posterior pdf,

p (xt|z0:t) =
p (zt|xt) p (xt|z0:t−1)

p (zt|z0:t−1)
. (5)

Note that, even though we have assumed zt to be independent
of z0:t−1, we leave the denominator as p (zt|z0:t−1). This is
purely to make the following derivations easier.

The recursive formula for the posterior pdf (5) consists
of the prior p (xt|z0:t−1), the likelihood p (zt|xt) and the
model evidence p (zt|z0:t−1). Using the state transition pdf
p (xt|xt−1), the posterior at time t − 1, p (xt−1|z0:t−1), and
marginalising3 over xt−1 the prior is written as

p (xt|z0:t−1) =

Z
p (xt|xt−1) p (xt−1|z0:t−1) dxt−1. (6)

The likelihood p (zt|xt) is the probability of the measurement
given the current state, i.e., how likely the measurement zt is.
The evidence normalises the pdf and is therefore calculated as

p (zt|z0:t−1) =

Z
p (zt|xt) p (xt|z0:t−1) dxt. (7)

Using the posterior pdf at time t, it is possible to calculate
several estimates for the state. One such estimate is the condi-
tional mean

xj|k , E[xj |z0:k] =

Z
xj · p (xj |z0:k) dxj ; (8)

1Bayes’ rule: P (A|B) =
P (B|A)P (A)

P (B)
.

2Product rule: P (A, B) = P (A|B) P (B).
3Also known as the Chapman-Kolmogorov equation.

another is the conditional variance

Pj|k , E
h`

xj − xj|k
´ `

xj − xj|k
´T |z0:k

i
. (9)

In all the cases we will consider, j 6 k.
The recursive Bayesian filter is seldom implemented be-

cause the analytical solutions of (6) and (7) are intractable.

2.2. The Kalman filter

Thus far we have presented the conceptual solution to the re-
cursive Bayesian filter. In the special case of a linear Gaussian
system, the recursive Bayesian filter reduces to the Kalman fil-
ter [1, 7]. Here we present the Kalman filter, as viewed from
the recursive Bayes point [2, 3]. Our derivation is similar to
Chen [8].

The Kalman filter operates in two steps (this can also be
said for the recursive Bayes filter). In the first step, we calculate
the likelihood p (zt|xt) and prior p (xt|z0:t−1) without seeing
the measurement zt. We will refer to this step, as the time up-
date. In the second step, the measurement update (5) is updated
in the light of the new measurement, using the values obtained
during the time update. These two steps are repeated one after
another in order to obtain a recursive formulation.

For the linear Gaussian system, we assume that the process
and measurement models are given by (3) and (4) respectively,
listed again for convenience:

xt = Ft−1xt−1 + vt−1

zt = Gtxt + wt.

We denote a Gaussian distribution with mean m and cov-
ariance C as N (m, C). Using this notation, we assume that
vt ∼ N (0, Qt) and wt ∼ N (0, Rt) and that vt and vt′ are
independent for t 6= t′. Similarly, wt and wt′ are assumed to
be independent for t 6= t′. We also assume that the noise vt

and wt are independent. These assumptions imply that xt and
zt are Gaussian random variables and that they are independent
at different time steps. Since xt is a Gaussian random variable,
it is only necessary to calculate the mean xt|t and the covari-
ance Pt|t to fully describe the pdf of p (xt|z0:t). The reader
is reminded that the mean (first order moment) and covariance
(second order moment) are sufficient statistics for a Gaussian
distribution.

Given our notation, the goal of Kalman filtering is
to propagate xt−1 ∼ N

`
xt−1|t−1, Pt−1|t−1

´
to xt ∼

N
`
xt|t, Pt|t

´
using all available information. This will be

done in two steps as described above.

2.2.1. Time update

Since p (zt|z0:t−1) in (5) is only a normalising factor, we will
only calculate the statistics for the prior and likelihood.

Consider the likelihood p (zt|xt). The mean is given by

zt , E [zt|xt]

= E [Gtxt + wt|xt]

= GtE [xt|xt]

= Gtxt. (10)

For the covariance we have that

E
h
(zt − zt) (zt − zt)

T |xt

i
= Rt. (11)
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The second term to consider in (5) is p (xt|z0:t−1). The
mean can be shown to be

xt|t−1 = E [xt|z0:t−1]

= E
ˆ
Ftxt−1|t−1 + vt−1|z0:t−1

˜
= FtE [xt−1|z0:t−1] + E [vt−1|z0:t]

= Ftxt−1|t−1. (12)

To derive the covariance, we first consider the state prediction
error ext|t−1. This is given by

ext|t−1 = xt − xt|t−1

= Ftxt−1 + vt−1 − Ftxt−1|t−1

= Ftext−1|t−1 + vt−1. (13)

Now the covariance can be calculated as

Pt|t−1 = E
hext|t−1

`ext|t−1

´T i
= E

h`
Ftext−1|t−1 + vt−1

´ `
Ftext−1|t−1 + vt−1

´T i
= FtE

hext−1|t−1

`ext−1|t−1

´T i
FT

t + E
h
vt−1v

T
t−1

i
= FtPt−1|t−1F

T
t +Qt. (14)

So far we have updated (5) without a new measurement.
Now we observe zt and use it to adjust the pdf p (xt|z0:t−1) to
p (xt|z0:t). This is discussed next.

2.2.2. Measurement update

From the information calculated in the time step, we have

p (xt|z0:t) ∝ p (zt|xt) p (xt|z0:t−1)

= N (Gtxt, Rt)N
`
xt|t−1, Pt|t−1

´
. (15)

Our goal is to find the sufficient statistics, i.e., the mean and the
covariance of (15). The mean of a Gaussian pdf is equivalent
to the value that maximises the underlying exponential. This is
the same value where all the derivatives of (15) vanish. Thus

∂ log p (xt|z0:t)

∂xt
= 0 (16)

when xt = xt|t. Solving (16) gives

xt|t = xt|t−1 +Kt

`
zt −Gtxt|t−1

´
(17)

where

Kt = FtPt|t−1G
T
t

“
GtPt|t−1G

T
t +Rt

”−1

. (18)

In order to calculate the covariance, we again consider the
state prediction error,

ext|t = xt − xt|t

= xt − xt|t−1 −Kt

`
zt −Gtxt|t−1

´
= ext|t−1 −Kt

`
Gtxt + wt −Gtxt|t−1

´
= ext|t−1 −Kt

`
Gtext|t−1 + wt

´
= (I −KtGt) ext|t−1 −Ktwt. (19)

Now we have that

Pt|t = E
hext|t

`ext|t
´T i

= (I −KtGt)Pt|t−1 (I −KtGt)
T +KtQtK

T
t . (20)

Pt|t is in the Joseph norm, (20) can be rewritten to other forms
used elsewhere in the Kalman filter literature.

In summary, during the time update we propagate the pdf
p (xt−1|z0:t−1) to p (xt|z0:t−1) using (12) and (14). Then a
new measurement becomes available. By using (17), (18) and
(20) we propagate the pdf p (xt|z0:t−1) to p (xt|z0:t).

2.3. The Particle Filter

As we discussed in Section 2.1, exact inference in the Bayesian
filter is not in general possible due to the intractable integrals. In
general, p (xt|z0:t) could be multivariate, multi-modal or even
non-standard, in these cases one has to resort to Monte Carlo
techniques to approximate the integrals. Hence we proceed
providing an overview of Monte Carlo (MC) methods. They
form the cornerstone for the numerical approximations of the
recursive Bayesian filter. Thereafter we apply the MC tech-
niques to the recursive Bayesian filter resulting in Sequential
Importance Sampling (SIS) [9, 4, 5], also known as the particle
filter.

2.3.1. Monte Carlo Methods

Loosely following the notation of Bishop [10], we provide an
overview of Monte Carlo (MC) methods.

In the MC framework, we wish to estimate the expected
value of a function f (x) with pdf p (x),

E [f ] =

Z
f (x) p (x) dx. (21)

We assume thatN independent samples x(i), with i = 1, . . . N ,
drawn from p (x) are available. Then the expectation in (21) is
approximated by

f̂ =
1

N

NX
i=1

f
“
x(i)

”
, (22)

that is by the empirical mean of the samples under the function
f .

The MC techniques suffer from several problems. Amongst
others, it may difficult or impossible to sample from p; in this
case one can use importance sampling. The idea behind im-
portance sampling is to use a proposal density function q (x)
that is easy to sample from, instead of p (x). The support of the
proposal pdf should be the same as p (x), i.e.,

p (x) > 0 =⇒ q (x) > 0. (23)

Now we sample N independent samples from q (x). We
can write the expectation in (21) as

E [f ] =

Z
f (x) p (x) dx

=

Z
f (x)

p (x)

q (x)
q (x) dx

≈ 1

N

NX
l=1

p
“
x(i)

”
q (x(i))

f
“
x(i)

”
. (24)

The importance sampling estimate in (24) is similar to the
MC estimate (22). The only difference is the additional factor,
p(x(i))
q(x(i))

that corrects the bias since we are not sampling from
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p (x); we define this as the importance weights

w(i) ,
p
“
x(i)

”
q (x(i))

. (25)

Suppose further that p can only be evaluated up to a norm-
alising constant, such that

p (x) =
ep(x)

Zp
,

where ep can be easily evaluated and Zp is the normalising con-
stant. Similarly, we assume that q can be evaluated up to a nor-
malising constant Zq where eq can be easily evaluated,

q (x) =
eq(x)

Zq
.

Then we calculate the MC estimate as

E [f ] =

Z
f (x) p (x) dx

=
Zq

Zp

Z
f (x)

ep (x)eq (x)
q (x) dx

≈ Zq

Zp

1

N

NX
i=1

ew(i)f
“
x(i)

”
(26)

where ew(i) =
ep(x(i))eq(x(i))

.

We proceed by calculating the MC estimate for the normal-
ising factor as

Zp

Zq
=

1

Zq

Z ep (x) dx

=

Z ep (x)eq (x)
q (x) dx

≈ 1

N

NX
i=1

ew(i), (27)

and hence the weights are given by

w(i) =
ew(i)

1
N

PN
m=1 ew(m)

. (28)

This result should be emphasised. Equation (27) tells us that
if p and q can only be evaluated up to a normalising constant,
we can find an approximation for this constant by normalising
the importance weights. We will use this fact to simplify the
equations when we derive the particle filter.

2.3.2. Sequential Importance Sampling (SIS)

At this point we have introduced all the numerical techniques
that is used to approximate the recursive Bayesian filter. The
fundamental idea of particle filtering is to approximate the pdf
p (xt|z0:t) by a weighted sample set St. Thus, suppose N
samples x

(i)
t from the pdf p (xt|z0:t) are available, with a

weight w(i)
t associated with each sample x

(i)
t normalised such

that
PN

i=1 w
(i)
t = 1. Using (21) and (24) we have that

p (xt|z0:t) ≈
NX

i=1

w
(i)
t δ

“
xt − x

(i)
t

”
. (29)

To derive the recursive formulation, using a notation similar
to Ristic et al. [5], we begin by solving a more general problem
approximating the pdf p (x0:t|z0:t). We assume thatN samples
x

(i)
0:t−1 with associated weights w(i)

t−1 are available approximat-
ing the posterior p (x0:t−1|z0:t−1). Using Bayes rule, we write
the posterior at time t as

p (x0:t|z0:t) =
p (z0:t|x0:t) p (x0:t)

p (z0:t)
. (30)

Consider the likelihood. Using standard rules of probability we
have that

p (z0:t|x0:t) = p (zt|x0:t,z0:t−1) p (z0:t−1|x0:t)

= p (zt|x0:t,z0:t−1)
p (x0:t|z0:t−1) p (z0:t−1)

p (x0:t)
. (31)

Substituting (31) in (30) yields

p (x0:t|z0:t) =
p (zt|x0:t,z0:t−1) p (x0:t|z0:t−1)

p (zt|z0:t−1)

=
p (zt|xt) p (xt|xt−1)

p (zt|z0:t−1)
p (x0:t−1|z0:t−1)

∝ p (zt|xt) p (xt|xt−1) p (x0:t−1|z0:t−1) . (32)

Since we use importance sampling, the importance weights
in (25) are

w
(i)
t ∝

p
“
x

(i)
0:t|z0:t

”
q
“
x

(i)
0:t|z0:t

” . (33)

Here we make use of the fact that we can calculate the import-
ance weights only up to a normalising factor and by normalising
them, we get an MC approximation for the normalising factor.

We assume that the proposal density factorises as

q (x0:t|z0:t) = q (xt|x0:t−1,z0:t) q (x0:t−1|z0:t−1) . (34)

By substituting (32) and (34) in (33), we obtain

w
(i)
t ∝

p
“
x

(i)
0:t|z0:t

”
q
“
x

(i)
0:t|z0:t

”
∝
p
“
zt|x(i)

t

”
p
“
x

(i)
t |x

(i)
t−1

”
p
“
x

(i)
0:t−1|z0:t−1

”
q
“
x

(i)
t |x

(i)
0:t−1,z0:t

”
q
“
x

(i)
0:t−1|z0:t−1

”
= w

(i)
t−1

p
“
zt|x(i)

t

”
p
“
x

(i)
t |x

(i)
t−1

”
q
“
x

(i)
t |x

(i)
0:t−1,z0:t

” (35)

We make one further assumption that
q
“
x

(i)
t |x

(i)
0:t−1,z0:t

”
= q

“
x

(i)
t |x

(i)
t−1,zt

”
, and hence

the importance weights are given by

w
(i)
t ∝ w

(i)
t−1

p
“
zt|x(i)

t

”
p
“
x

(i)
t |x

(i)
t−1

”
q
“
x

(i)
t |x

(i)
t−1,zt

” . (36)

The resulting algorithm is summarised in Figure (2).
A common simplification often used is to choose

the proposal density q as the transitional density, i.e.,
q
“
x

(i)
t |x

(i)
t−1,zt

”
= p

“
x

(i)
t |x

(i)
t−1

”
. Then the importance

weights simplify to

w
(i)
t ∝ w

(i)
t−1p

“
zt|x(i)

t

”
. (37)
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• Input: Samples x
(i)
t−1 with weights w(i)

t−1, i =
1, . . . , N . Measurement zt.

• FOR i = 1 : N

– Sample x
(i)
t from q

“
x

(i)
t |x

(i)
t−1,zt

”
.

– Evaluate the importance weights using (36).

• END FOR

• Normalise weights using (28).

Figure 2: Sequential Importance Sampling

3. Algorithmic issues
When the algorithm in Figure 2 is implemented, many times
all but one of the weights become zero. The result is that the
algorithm performs badly in practice.

Doucet et al. [11] proved that when the proposal density q
is written as in (34), the variance of the weights increases over
time, resulting in unavoidable degeneracy. A measure of the
degeneracy phenomenon is the effective sampling size

bNeff =
1PN

i=1

“
w

(i)
t

”2 . (38)

Note that bNeff = 1 when all but one weight is zero; bNeff = N
if the weights are uniform.

A remedy to the problem is resampling: Whenever the ef-
fective sampling size falls below a certain thresholdNthr , a new
set of particles is sampled from the current set, each sample pro-
portional to its weight, i.e., a new sample x

(i)∗
t is chosen such

that

P
n

x
(i)∗
t = x

(j)
t

o
= w

(j)
t . (39)

Several resampling methods exist. One can implement res-
ampling directly obeying (39); other alternatives include sys-
tematic resampling [12] and residue sampling [13]. Embedding
resampling in SIS yields Sequential Importance Resampling
(SIR). The algorithm is given in Figure 3.

• Input: Samples x
(i)
t with weights w(i)

t obtained
from SIS[ x

(i)
t−1, w(i)

t−1, zt ].

• Calculate bNeff using (38).

• IF bNeff < Nthr

– Resample such that (39) holds. Any tech-
nique can be used.

• END IF

Figure 3: Sequential Importance Sampling

4. An example in tracking
A wide variety of computer vision applications rely on accurate
object tracking. For example, video surveillance, traffic mon-
itoring, image sequence (e.g. facial expression) analysis and

human-computer interfaces all require tracking as a core com-
ponent. Particle filters are suited for tracking since they can
handle multi-modal and non-linear systems. In this example,
we consider the simpler case of tracking an object’s position in
an image [14, 15], rather than the complete outline of the object
[4]. Tracking only the position of an object, is also known as
blob tracking. Our example follows a discussion similar to the
blob tracker implemented by Fleck and Straßer [16].

Using a particle filter for object tracking, requires the spe-
cification of the state vector x

(i)
t for each particle, the trans-

itional density and the measurement likelihood. Furthermore,
the proposal density is chosen as the transitional density lead-
ing to the simpler weight update (37).

Since only the object’s centre is tracked, the state vector
merely consists of the x− y position as well as the correspond-
ing velocities (ẋ, ẏ). Hence the state vector at time t is

x
(i)
t =

h
x(i), y(i), ẋ(i), ẏ(i)

iT

. (40)

Note that each particle i has an x−y position and corresponding
velocity.

The transitional density predicts the movement of the ob-
ject from one frame to the next. Not much is known about the
movement and therefore a constant velocity model

xt = Axt−1 + vt−1 (41)

is assumed. Here vt−1 is zero-mean Gaussian noise with vari-
ance σ2

v . The noise term captures the uncertainty of the moving
object. A can be experimentally specified or calculated by a
training procedure [17].

Before we can describe the likelihood, it is necessary to
discuss the representation of the object being tracked. For blob
tracking, the object in question is represented by the histogram
of the colour pixels. The pixels around the point

“
x(i), y(i)

”
are sampled at a given time step t in the HSV space. Next the
corresponding histograms h(i)

HS (b) and h(i)
V (b) are calculated.

Here b is a variable over the bin numbers. The histograms h(i)
HS

and h(i)
V are then combined into a single histogram h

(i)
t (b) us-

ing alpha blending. The latter histogram is compared with the
histogram h0 (b) of the object calculated at the beginning of the
tracking procedure using

ρ
h
h

(i)
t (b) , h0 (b)

i
=
X

b

q
h

(i)
t (b)h0 (b). (42)

Now we calculate the Bhatthacharyya distance

d
(i)
t =

r
1− ρ

h
h

(i)
t (b) , h0 (b)

i
(43)

between the two histograms. The measurement likelihood is
finally given by

w
(i)
t = exp

0B@−
“
d
(i)
t

”2

2σ2

1CA . (44)

From the likelihood we see that if x
(i)
t is close to the object

being tracked in the image, the similarity value will be large.
Therefore d(i)

t will be small and the corresponding weight w(i)
t

will be larger than if x
(i)
t is far away from the object being

tracked.

37



5. Conclusions
We discussed the estimation of a process state if only noisy
measurements are seen. The recursive Bayesian filter provides
a solution to this problem. However, this is seldom implemen-
ted due to intractable integrals. In the special case of a linear
Gaussian system, the Kalman filter though is the exact solution
to the problem, i.e., the recursive Bayesian filter reduces to the
Kalman filter. Otherwise one has to use numerical approxim-
ations; when Monte Carlo methods are used the result is the
particle filter. We demonstrated using the particle filter through
a common problem in computer vision.
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Abstract 
 

The problem of missing data has recently gained the 
attention of the artificial intelligence field. Whilst much 
investigation has been done into many different methods, 

there is no standardized way of assessing the success of 
an estimator. At present there are two main approaches of 
measuring performance. One considers accuracy and the 
other, statistics. This paper shows that both methods are 
somewhat lacking and proposes an alternative, impact 
assessment. This method considers how the data will be 
used in decision making, and measures the impact that 
the estimates have on these decisions. The paper uses this 
methodology to compare two methods, k-Nearest 

Neighbours (kNN) and one based on auto-encoder neural 
networks. HIV sero-prevalence data is used, making a 
Generalized Linear Model (GLM) appropriate for impact 
assessment. The GLM provides insight into the systems 
that accuracy and statistical measures do not, such as the 
impact of estimating each variable and a true reflection 
of the effect of multiple missing variables. kNN shows a 
better accuracy whilst the neural network approach per-

forms better statistically. Impact assessment shows the 
two methods to be equally matched, with kNN handling 
multiple missing values with more success. 
 

1. Introduction 
 
From machine monitoring to sociological surveying, any 
field dependent on collecting data from the environment 
is affected by the problem of missing data. most of mod-
elling techniques fail when presented with incomplete 
data. Ignoring incomplete instances is an unnecessary 
sacrifice of information that leads to a bias within the 
model [1]. Many methods have been developed to esti-

mate these missing data without adulterating the integrity 
of the set. Options span from statistical methods such as 
Multiple Imputation (MI) to machine learning based 
approaches and have shown impressive results [2].  
 
Whilst these methods produce viable outcomes, there is 
at present no standardized way to benchmark the sys-
tems. This paper will use HIV sero-prevalence data from 
antenatal clinics to compare the various assessment pro-

cedures from the literature. This data was chosen as 
much prior investigation in estimating missing data from 
it has been conducted [3,4,5] and because the data is 
heterogeneous, i.e. consists of both nominal and numeri-
cal attributes. Assessments based on accuracy are com-
pared with those based on statistics. A novel approach to 
benchmarking the estimator is proposed by considering 
the purpose of the data. Data such as this is most often 

used by governmental agencies or insurance firms to 
assess the risk of HIV infection and analyse its causes. A 

Generalized Linear Model (GLM) is used to ascertain the 
probability of being HIV positive based on demographic 
inputs [6]. By comparing a target instance passed through 
this model with a simulation of missing data, the impact 
of the estimation paradigm can be better understood.  
 
Two imputation models are compared, an Auto-encoder 
Neural Network (ANN) and Genetic Algorithm (GA) 

based approach and k-Nearest Neighbours (kNN). The 
ANN-GA paradigm is the most investigated imputation 
scheme for this data set. [7] has shown that refining the 
approach to be a local search method, that is to only base 
its estimates on instances with a high similarity instead of 
considering the entire data set, out-performed the global 
search version. kNN is another local search technique 
that has found wide application in the field of missing 
data [12]. To better assay the suitability of an impact 

assessment approach, the GLM is benchmarked against 
mode substitution and random imputation.  
 
The report begins with a background section (2) explain-
ing the problem of missing data in further detail and 
describing the most common methods, as well as present-
ing the data set. This is followed by explanations of the 
ANN-GA (3) and of kNN imputation (4). An explanation 

of the three approaches to assessment (5) precedes the 
results (6). Finally these results are critically analysed 
and the models are compared (7). 

 

2. Background 
 

2.1. What is missing data? 
 
Consider a set of records coming either from measure-
ments of surveys. Each record, or instance, may contain 
multiple attributes. A data set is thus easily visualized by 
considering a matrix whose rows represent instances and 
whose columns are attributes. Table 1 shows the antena-

tal clinic data in this manner. Missing data refers to in-
stances in which some attributes are unknown, such as 
rows 2 and 4 in Table 1. 
 
The problem of missing data has always afflicted re-
searchers. Up until the development of the EM algorithm 
in 1977 [8], missing data was handled mostly through 
editing [1]. [9] formalized the problem in 1976 and de-
scribed three separate mechanisms to explain how data 

can go missing. This work gained widespread attention 
amongst the statistical world with the publication of [10] 
in 1986 which refined these ideas, one year prior to the 
proposal of multiple imputation, a procedure that has 
arguably become the most popular method for handling 
missing data. Mechanism refers to how the fact that data 
are missing is related to the actual values of the data. 
These mechanisms are: 
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1) Missing Completely At Random (MCAR) is the 
mechanism for a missing datum if its reason for be-
ing missing is independent of both observed and un-
observed data. 

2) Missing At Random (MAR) is the mechanism for a 

missing datum if its reason for being missing is de-
pendent on observed data only. 

3) Missing Not At Random (MNAR) is the mechanism 
for a missing datum if its reason for being missing is 
dependent on unobserved data (such as the missing 
value itself). 

  

2.2. Popular methods for estimating missing data 

 
This section will detail some of the popular methods 
available for estimating missing data. More conclusive 
lists can be found in [1,5,11]. One can consider these 
methods in two classes: statistical and machine learning. 
 
2.2.1. Statistical methods of data imputation 
 

 Case Deletion: Instances with missing data are sim-
ply removed from the set. This is only suitable when 
the percentage of incomplete data within the set is 

negligible. This method introduces bias into the set 
and sacrifices potentially useful information [1]. 

 Mean, Median or Mode Substitution: Where a miss-

ing attribute is replaced with the mean, median, or 
for discrete or nominal data, the mode of that attrib-
ute from the rest of the set. This method does not 
predict physically plausible results [11].  

 Hot Deck Imputation: Assigns a value based on the 

class of the missing instance. Most commonly this 
value is chosen randomly from other complete in-
stances sharing an output class [11]. 

 Regression Models: Uses the set of complete data to 

build a regression model, which is essentially an 
analytical equation of a hyper-plane describing the 
data [11]. Regression models breakdown when a 
simple analytical equation cannot describe the data. 

 Expectation Maximization (EM): An advanced sta-
tistical algorithm that iteratively and simultaneously 

estimates the model parameters and the missing val-
ues using a maximum likelihood approach [2]. 

 Multiple Imputation (MI): Multiple imputation is 

one of the most popular methods for estimating 
missing data at present. It tries multiple different es-
timates for every missing value and uses the now 
completed sets to find the optimal choice [1]. 

 
2.2.2. Machine Learning Methods of Data Imputation 
 

 k-Nearest Neighbours: kNN is a hot deck method 

that uses instance based learning to find estimates. 
kNN is explained in detail in section 4. 

 Decision Trees: A basic form of machine learning 
classifier. A tree structure is grown with a route to 
every possible outcome [5,12]. 

 Auto-encoder Neural Networks: NN create a regres-
sion model of the data to find optimal inputs using 

GA. This method is explained in detail in section 3. 

 Support Vector Machines (SVM): SVM form a su-
pervised learning paradigm based on statistical 

learning theory. These models can handle both clas-
sification and regression with a high accuracy [4]. 

 

2.3. HIV sero-prevalence data set 
 
Tests are performed on data collected by the South Afri-
can government in 2001 [13]. To assess the sero-
prevalence of HIV, surveys were conducted in public 

antenatal clinics across the country. Missing data from 
this set is mostly due to non-response from the partici-
pants. Around 25% of instances reported contain some 
missing data. Many investigations into imputing data 
from this survey have been performed in the past [2-5,7]. 
However, all these studies use different metrics to assess 
success. This is explored further in section 5.  
 

Table 1 shows a sample from the data set. Each instance 
is comprised of 8 attributes. The following is a brief 
summary of the attributes: 
 

 Province: Nominal data expressing which of South 

Africa's 9 provinces the data was collected in. 

 Race: Nominal data expressing a subject’s race. 

 Age: The subject’s age at the time of the survey. 

 Education: The highest school grade completed by a 
subject. 0 means no schooling while 13 implies a 

tertiary education.  

 Gravidity: The number of times a subject has fallen 
pregnant. 

 Parity: The number of times a subject has given 
birth. 

 Father's Age: The age of the father responsible for 
the current pregnancy. 

 HIV: HIV status. 

 
Table 1: Sample of data set 

 
Pro Rac Age Edu Gra Par Fat HIV 

GP AF 23 8 4 2 38 0 

MP WH 20 ? 1 0 23 0 

NW AF 40 2 3 1 50 1 

WC CO ? 12 6 3 ? 1 

 

3. Neural network based imputation 
 
This method, proposed in [3], uses Neural Networks 

(NN) to create a model of the data set. The model is 
trained such that if its inputs are from the data set, its 
outputs will equal these inputs, however if the inputs do 
not fit the statistical nature of the set upon which the 
model was built, there will be a discrepancy between the 
inputs and the outputs. GA is used to find replacements 
for missing inputs so as to minimize the error between 
the inputs and the outputs. Further details on NN and GA 

can be found in [14] and [15] respectively.  
 
This missing data imputation paradigm proposed by [3] 
trains an ANN on the complete data set. The incomplete 
data are then passed into this model (in other words the 
known attributes Xk), the remaining unknown inputs (the 
missing values, Xu) are found using the GA. The error 
between all the inputs and outputs of the model is used as 

the GA fitness function. GA runs until this error reaches 
a small enough threshold. Fig. 1 illustrates this system.  
 
The system was refined by [7] to be a local paradigm 
which showed an improvement in the system's accuracy. 
Instead of training the ANN on the global data set, the 
data was broken into categories. Nominal attributes have 
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    Figure 1: ANN-GA model for missing data imputation 
 

obvious categories, i.e. race has African, White etc. Lin-
ear attributes are broken up into ranges by grouping for 
maximum homogeneity. An instance with missing data 
now falls into multiple categories, for instance if age is 
missing it falls into all the age categories but in one spe-
cific category for each other attribute. An ANN is trained 

using data only from these categories. Further reading on 
this paradigm can be found in [2,3,7] 
 

4. k-Nearest neighbours imputation 

 
kNN is an instance based machine learning classification 
algorithm [12]. Basically, instances are classified by 
considering the class of the k nearest instances, making it 
a local paradigm. In the case of nominal or discrete data, 
the choice is based on the mode. This makes kNN a hot 
deck method as it chooses a value from an existing simi-

lar instance. So while the results might not be perfect 
they are unlikely to be nonsensical. The kNN method is 
mostly used in applications such as microarrays where 
there is a physical difference which decides what is 
meant by nearest. However the algorithm has also shown 
promising results on survey data if an apt distance metric 
is chosen. 
 

kNN fails on nominal data if the Euclidean distance is 
used. It makes no sense to define a distance between 
nominal attributes, such as race, using a spatial metric.  
[16] performed a thorough study concerning different 
distance metrics suitable for heterogeneous data. The 
conclusion for data where all the linear data is discrete, 
such as the HIV set, is to use the Value Difference Metric 
(VDM), explained in section 4.1. 

 

4.1. Value difference metric 

 
VDM provides a proven distance metric for symbolic 
variables. The distance between two points x and y ac-
cording the VDM is given by equation 1. 
 

 𝑉𝐷𝑀𝑎 𝑥, 𝑦 =   
𝑁𝑎,𝑥,𝑐

𝑁𝑎,𝑥
−

𝑁𝑎,𝑦,𝑐

𝑁𝑎,𝑦
 

𝑞𝐶

𝑐=1

 (1) 

Where 
 

 Na,x is the number of instances in the set with 
value x for attribute a. 

 Na,x,c is the number of instances in the set with 

value x for attribute a belonging to output class c. 
Similarly for Na,y and Na,y,c. 

 C is the total number of output classes. Note that 
the assumption is that there is only one output at-
tribute, in this case it is chosen to be HIV status 

meaning there are 2 output classes in total, HIV 
positive and HIV negative. 

 q is a constant usually chosen as 1 or 2 [16]. 

 

VDM can be understood as follows. When considering 
similarity between two nominal attributes, the output 
class is an essential consideration. If the output class is 
type of fruit, and one attribute is colour, for an apple it 
would make sense that green and red are closer than say, 

orange [16]. However if the output class is a mango, then 
green is closer to orange than it is to red. This same 
thought can be applied to discrete attributes such as age. 
HIV status in South Africa in 2001 showed a greater 
prevalence for people in there twenties than it did for 
teenagers or those above forty [13]. Thus ages 16 and 45 
can be considered closer than 16 and 22 even though the 
age gap is far greater. A limitation is that the output class 

cannot be estimated. 
 

5. Assessment 
 
The focus of this paper is not to compare two methods of 

missing data estimation, but to develop a suitable method 
to do so. There has been extensive research in missing 
data imputation using this data set, however no two pa-
pers report their results in the same manner. The ap-
proaches in the literature can be separated into two 
classes, those who use accuracy as an assessment [4,5,7] 
and those who use statistics [2,3]. The statistics approach 
taken is to calculate the correlation coefficient, or a Mean 

Square Error (MSE), between the predicted and the target 
variables. These statistics are practically accuracy meas-
ures as they consider how the values between the target 
and prediction differ. Bearing in mind that the goal of 
missing data imputation should not be on finding the 
exact value every time, but rather on imputing values that 
maintain the integrity of the entire set [1]. It would be 
more useful to measure how the probability distributions 
of the two differ. However to consider quantifying accu-

racy of a data estimator a futile task is rather short 
sighted. In data sets coming from surveys, where the 
action to be taken will involve the entire set at once, ac-
curacy may be unimportant, data sets of scientific meas-
urements such as DNA microarrays or machine monitors 
are more likely to use individual instances to make deci-
sions thus accuracy becomes an essential consideration.  
 

This paper proposes a third class of assessment for miss-
ing data imputations, impact assessment. This method 
considers what the data set itself is used for, simulates 
these experiments, and quantifies the impact that esti-
mated data has compared with real measurements. Re-
sults based on all three assessment classes are presented 
in section 6. The remainder of this section will justify 
how metrics were chosen for each. 

 

5.1. Accuracy 
 
Accuracy is a measure of how closely the estimations 
mimic their goals. The percentage of estimates that lie 
within a specific range away from the target is used to 
quantify this. It is impossible to determine what thresh-
olds will be considered and so this paper measures accu-

racy with 4 such ranges. These are: 
 

 Percentage predicted exactly 

 Percentage predicted to within 1 unit 

 Percentage predicted to within 2 units 

 Percentage predicted to within 5 units 

 

ANN 
Min 

Error 

GA 

Xk 

Xu 
XP 
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5.2. Statistics 

 
The goal of a statistical assessment is to determine how 
alike the properties of the distribution of the target set is 
to the predictions. Correlation coefficients consider how 

alike the values are rather than the global properties of 
the set and this are not suitable as accuracy has already 
been considered. This assessment considers the following 
statistics and measures the percentage difference between 
the targets and the predictions: 
 

 Mean - The mean gives information regarding a 

bias or constant offset. 

 Standard Deviation (SD) - The SD quantifies the 

spread of the data around the mean.  

 Quartiles - The first quartiles is the value which 

25% of the data is below, the second is where 
50% of the data is below (also know as the me-
dian) and the third, 75%. Quartiles can give in-
sight into the skewness of a distribution.  

 Kolmogorov-Smirnov Statistic (KS) - The KS sta-
tistic is defined as the maximum absolute differ-
ence between two cumulative distributions. It is 

essentially a goodness of fit test. The hypothesis 
in this case is that the estimations have the same 
distribution as the targets. The KS statistic quanti-
fies the similarity of the distributions [17]. 

 

5.3. Impact Assessment 
 
A Generalized Linear Model (GLM) is used to calculate 

the probability of an HIV positive status given the other 
7 inputs described in section 2.3. The discrepancy of this 
probability given estimated data is an excellent measure 
of the impact that estimation has. This is for two reason: 
firstly GLM are widely used on this type of data [6], and 
secondly the model is built using a large set of complete 
data thus modelling the global properties of the set yet 
allows for instance based assessment.  
 

The models find the random distribution of a response 
variable (HIV status in this case) by relating the predictor 
variable (all the others) to the expected value of the dis-
tribution, E(Y). This process is described by equation 2. 
Here X represents the predictor variables and Y, the re-
sponse. β is a linear combination of the unknown pa-
rameters typically found by maximum likelihood and g is 
known as the link function. 

 
 𝐸 𝐘 = 𝑔−1 𝐗𝛽  (2) 

 
For a binary distribution such as HIV status, the most 

common link function is the logit function shown in 
equation 3. A GLM with this class of link function ex-
actly describes logistic regression. The advantage of 
GLM over logistic regression is that GLM is generalized 
and thus appropriate for a wider range of applications. It 
should be noted that contrary to what the name may im-
ply, GLMs are used for modelling nonlinear data.  
 

 𝑔 𝑝 = ln  
𝑝

1− 𝑝
  (3) 

 
The impact that estimated variables leave on the GLM is 
quantified via the MSE of the results of passing the target 
data through the GLM and passing the predictions 
through. The GLM is trained on data that was not used to 

simulate missing data, meaning all the target data for this 
test is unseen by the model giving it no advantage. 
 

6. Experiments and Results 
 
This section describes the procedures taken to test the 
missing data estimators and presents these results. An 
interpretation of these results is presented in section 7. 
Two experiments were performed, the first considering 
only a single attribute missing per instance and the sec-

ond considering multiple missing attributes. Both these 
experiments only simulate MCAR and MAR data. 
MNAR data is a far more complex problem to set up and 
analyse the results from. The experiments make no dis-
tinction between MCAR and MAR data as it is very dif-
ficult to make this distinction on a raw data set. The ex-
periments set out to compare the ANN-GA and kNN 
methods as well as to compare the different methods of 

assessment. 
 

6.1. Experiment 1 - single missing attribute 
 
For this experiment, each attribute was simulated as 
missing one at a time. The original data set is cleaned of 
all missing values via case deletion. Outliers are consid-
ered missing values here. The same percentage that is 

missing in the original data set of the attribute in question 
is then deleted randomly from this new complete set. 
This way, the target values for the estimates are known 
which allows the success of the estimator to be quanti-
fied. This procedure is repeated 3 times for each variable, 
so as to get a truer reflection of the system response, and 
the results shown are the mean of these runs. Due to the 
nature of the algorithms, the ANN-GA does not estimate 
province or race and the kNN does not estimate HIV 

status. Tables 2 and 3 present the accuracy findings for 
the ANN-GA and kNN respectively. The bold numbers 
indicate which system gives a higher corresponding ac-
curacy for each specific case. The statistical results for 
each system are presented in tables 4 and 5. Note that 
HIV is expressed as specificity. 
 
Table 6 presents the results from the impact assessment 

test. In addition to testing ANN-GA and kNN, the GLM 
method is benchmarked against a random imputation, i.e. 
a random value within the range of each variable is taken 
as the estimate, and mode substitution. Bold values rep-
resent the method with the least impact for that particular 
attribute.  
 

6.2. Experiment 2 - multiple missing attributes 

 
To assess the system response to more than one missing 
value in an attribute, the same experiments described in 
section 6.1 are repeated but with multiple missing attrib-
utes. The results presented show the effect that having 
age missing in conjunction with the 4 other linear vari-
ables has. Other combinations of two missing variables 
are not reported as they offer little new information and 

require a large amount of space.  
For readability, only one accuracy measure and one sta-
tistic is shown for each attribute. These are chosen to 
reflect the other measures. They are percentage to within 
2 units for accuracy and the KS statistic for statistics. 
Table 9 shows the result of the GLM. Bold values in 
these tables highlight results that differ significantly to 
experiment 1. 
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Both systems perform without a noticeable change in 
accuracy or statistics for up to 4 missing variables. The 
impact of estimation increases slightly with every vari-
able deleted. 

 
 
Table 2: ANN-GA accuracy with single missing attributes 
measured as the percentage measured to within n units of 

the target 

 
n Age Edu Gra Par Fat 

0 10.93 13.98 52.78 77.87 7.41 

1 32.22 38.70 90.46 95.74 25.46 

2 51.76 54.44 97.13 99.07 43.52 

3 82.22 79.17 100 100 78.24 

 

Table 3: kNN accuracy with single missing attributes 
measured as the percentage measured to within n units of 

the target 

 
n Age Edu Gra Par Fat 

0 11.67 30.00 81.30 84.03 9.14 

1 35.34 53.64 93.73 93.24 27.84 

2 54.07 70.71 97.50 96.25 44.14 

3 81.67 91.73 99.66 99.63 73.46 

 
Table 4: Percentage difference for ANN-GA statistics 

with single missing attributes of targets with predictions 

 
Statistic Age Edu Gra Par Fat 

Mean 0.54 6.03 -19.15 -10.28 0.66 

Standard Deviation 71.88 143.07 60.53 47.47 69.02 

KS Statistic 0.037 0.1472 0.1185 0.0389 0.1019 

1
st
 Quartile 

Median 

3
rd

 Quartile 

-9.52 

0 

6.67 

-25.00 

0 

0.25 

-100 

0 

0 

0 

0 

0 

-12.00 

0 

8.57 

 
Table 5: Percentage difference for kNN statistics with 
single missing attributes of targets with predictions 

 
Statistic Age Edu Gra Par Fat 

Mean 2.55 -15.1 12.15 11.88 5.66 
Standard Deviation 72.48 61.63 57.68 65.45 79.30 

KS Statistic 0.0531 0.2664 0.0753 0.0269 0.1210 

1
st
 Quartile 

Median 

3
rd

 Quartile 

-9.67 

0 

9.43 

-31.25 

-10.00 

0 

0 

0 

0 

0 

0 

0 

-8.00 

3.37 

12.28 

 
Table 6: Mean square error of targets vs. predictions 
passed through a generalized linear model for single 

missing attributes 

 
Paradigm Age Edu Gra Par Fat 

ANN-GA 6.64 0.31 1.44 1.69 0.69 

kNN 6.56 0.17 1.12 3.45 1.56 

Mode Substitution 13.99 0.68 2.88 24.76 1.70 

Random Imputation 82.99 0.80 28.29 122.35 11.62 

 
Table 7: Accuracy of both age and each other attribute 

missing measured as the percentage predicted to within 2 
units of the target 

 
 Edu Gra Par Fat 

ANN-GA 60.20 96.97 98.79 20.00 

ANN-GA Age 47.27 38.38 47.88 29.29 

kNN 73.32 97.98 96.97 37.98 

kNN Age 51.92 53.54 51.31 46.06 

 

Table 8: KS Statistic of both age and each other attribute 
missing 

 
 Edu Gra Par Fat 

ANN-GA 0.0869 0.1859 0.0444 0.2384 

ANN-GA Age 0.0303 0.1475 0.0505 0.1697 

kNN 0.02889 0.0505 0.0141 0.0990 

kNN Age 0.0545 0.0646 0.0566 0.0970 

 

Table 9: Mean square error of targets vs. predictions 
passed through a generalized linear model for both age 

and each other attribute missing 

 
 Edu Gra Par Fat 

ANN-GA 0.26 1.35 2.39 4.72 

ANN-GA Age 6.70 13.06 8.86 18.80 

kNN 0.14 0.51 4.43 1.29 

kNN Age 5.20 4.95 4.55 5.79 

 

7 Comparisons and Discussion 

 
Some interesting conclusions can be drawn from both 
experiments. From the first experiment, kNN outper-
forms ANN-GA in terms of accuracy, but ANN-GA 

shows a better statistical response. Whilst the results do 
prove the effectiveness of kNN on survey data, they 
make it very difficult to decide which system exhibits a 
better response. The impact assessment results however, 
show the systems to be very equally matched. Thus it 
appears the GLM test provides a useful and sensible 
summary of the results from both accuracy and statistics.  
 

Furthermore, the tests of mode substitution and random 
imputation show that the GLM method can distinguish 
between imputation methods. The results are as expected, 
with random imputation showing a poor response, and 
mode substitution performing better than random imputa-
tion but worse than the more sophisticated methods.  
 
The GLM test makes a distinction between the impact of 

estimating different attributes. Neither of the other as-
sessment methods show this. The results show that whilst 
the accuracy and statistical predictions of age appear to 
be within the range of the other attributes, the impact that 
estimating age has is far greater than any of the other 
variables. The impact of estimating education level is 
much lower, showing almost no impact even for random 
imputation. This indicates that anyone using this data 
should estimate age with caution, but need not be too 

concerned about missing education fields.  
 
The tests for multiple missing variables reveal that whilst 
both systems perform well, kNN does not suffer from the 
same losses in accuracy that ANN-GA does when two 
correlated variables are missing. This sort of accuracy 
loss is best illustrated by the case of age and father's age 
being missing. Accuracy and statistical success metrics 

indicate multiple missing values have a negligible effect 
on the performance of the systems. This has also been 
reported in [7] and [3]. However, the impact assessment 
reveals that the response does in fact get poorer for each 
variable that is missing. This makes sense as, even 
though the accuracy of each estimate remains unchanged, 
the accuracy is always lower than a true value. 
 

To summarize, using an impact assessment technique, 
such as GLM, provides greater insight than either accu-
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racy or statistical metrics. The GLM method has shown 
that whilst kNN and ANN-GA are equally matched for a 
single missing attribute, kNN tends to perform better on 
multiple missing values. Furthermore it has illustrated 
the how estimating each variable has a different impact, 

with age having the largest and education the lowest. 
Thus it would appear that an impact assessment tech-
nique is preferable as a method to verify an estimation 
model and GLMs are suitable as such for this data set. 
 

8. Conclusions 
 
Whilst there is now a multitude of paradigms to choose 
from to address the problem of missing data, there is no 
standard as to how they are assessed. Thus it is difficult 
to know which method to apply for a given set of data. 
This paper has shown that the two main classes of as-
sessment in the literature, namely accuracy measures and 

statistical measures, have inherent flaws. A novel ap-
proach, impact assessment, is suggested. This approach 
considers how the data is used for decision making. In 
the case of the HIV sero-prevalence data studied in this 
paper, impact assessment is done through a Generalized 
Linear Model (GLM) built to find the probability of be-
ing HIV positive given the other attributes as inputs. A 
neural network approach (ANN-GA) is compared with k-

Nearest Neighbours (kNN). The accuracy and statistical 
measures disagreed as to which was superior. GLM 
showed them to be equally matched. The impact assess-
ment measure was tested against mode substitution and 
random imputation. As expected, random imputation 
showed a very poor response whilst mode substitution 
placed between random and the sophisticated imputation 
methods. Impact assessment has been proved to be a 
more effective measure of the success of data imputation 

than methods used in the past. It can show which attrib-
utes have the greatest effect, provides a truer reflection of 
the losses incurred with multiple missing points, and 
provides a useful summary of accuracy and statistical 
test. The successful imputation of HIV sero-prevalence 
data allows for more accurate models to be built. The 
accuracy of such a model is essential for society, as it is 
what HIV policy is based on. This research has devel-

oped a method to successfully choose the best missing 
data estimation technique for this data set, which can aid 
government policy better control the HIV/AIDS epi-
demic. Both ANN-GA and kNN proved effective as data 
estimator for HIV sero-prevalence data, showing far 
better results than mode substitution or random imputa-
tion. Impact assessment such as GLM has shown to be a 
superior method to assess the success of an imputation 

scheme when compared with past methods. 
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Abstract 

 

In discriminating between objects from different 

classes, the more separable these classes are the less 

computationally expensive and complex a classifier 

can be used. One thus seeks a measure that can quickly 

capture this separability concept between classes 

whilst having an intuitive interpretation on what it is 

quantifying. A previously proposed separability 

measure, the separability index (SI) has been shown to 

intuitively capture the class separability property very 

well. This short note highlights the limitations of this 

measure and proposes a slight variation to it by 

combining it with another form of separability measure 

that captures a quantity not covered by the Separability 

Index.  

Keywords: Classification, separability, margins 

 

1. Introduction 
 

   In object categorization/classification one is given a 

dataset of objects from different classes from which to 

discover a class-distinguishing-pattern so as to predict 

the classification of new, previously unseen objects 

[1,7]. This will only be possible if the main 

justification pillar of induction systems which is based 

on the dictum; “similar objects tend to cluster 

together” is true. This process of discovering a pattern 

in the dataset is further complicated by the fact that the 

dataset often cannot immediately be visualized to 

determine the class distribution. This could be due to 

the datasets’ high dimensionality. Discovering a 

method that can distil such information, without 

running multiple sets of computationally expensive 

classifiers, would be advantageous.  

 

This method should quantify how the classes are 

distributed with respect to each other; are there class 

overlaps, are there multiple modes within the classes 

and are there many outliers etc? We thus seek a simple 

measure that can concisely capture some of these 

aspects of the classes to gauge the complexity of 

classifier to be implemented. The notion of a ‘simpler 

classifier’ relates to the complexity of the 

discrimination function. A simpler function e.g. linear 

is preferred over a more complex polynomial function  

as stated by Occam’s razor. The complexity of a 

classifier is also determined by the number of 

irrelevant features in the dataset. The original dataset 

input space – defined by the number of expertly 

measured attributes - is often not the optimal in terms 

of producing clearly separable/non-overlapping 

classes. A subset of this space can often produce a 

substantially separable set of classes which in turn 

results in a simpler discriminating function. Searching 

for an optimal sub-space can be considered an 

optimization problem whose criterion function is the 

maximization of some predefined separability 

measure. A recent review and comment on this area of 

research is presented in [4 and 6]. One measure, the 

separability index (SI), that intuitively measures the 

class overlap was previously introduced in [3, 8] and 

was shown to be efficient in a number of popular 

machine learning datasets in [3, 5]. 

 

The separability index measure estimates the average 

number of instances in a dataset that have a nearest 

neighbour with the same label. Since this is a fraction 

the index varies between 0-1 or 0-100%. Another 

separability measure, based on the class distance or 

margin is the Hypothesis margin (HM), introduced in 

[2]. It measures the distance between an object’s 

nearest neighbour of the same class (near-hit) and a 

nearest neighbour of the opposing class (near-miss) 

and sums over these. This means the larger the near-

miss distance and smaller the near-hit values, the larger 

the hypothesis margin will be. 

 

This note is only concerned with the above two 

mentioned measures’ limitations. In the next section 

we show with a simple example the behaviour of both 

the SI and HM. We highlight the advantages and 

disadvantages of SI and HM then we propose a hybrid 

of the two measures. The resulting measures’ pseudo 

code and behaviour are presented.  

 

2. Separability 

 

2.1 Behaviour of separability measures 

 

In this section the behaviour of both measures is 

simulated in an example where the separation of two 

Gaussian clusters is incrementally increased. This is 
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taken to simulate the process of searching for an 

optimal feature space in a given high dimensional 

dataset. Figure 1 shows two Gaussian clusters that are 

initially overlapping with a SI of 0.54 or 54%.  

 
Figure 1: Two initially overlapping classes 

 

These clusters are incrementally separated, by varying 

one cluster’s centre distance from the other. Figure 2 

shows the point where the SI measure is 1or 100%; a 

quadratic or cubic discriminator will certainly be 

enough to cleanly partition the clusters whereas a 

linear classifier might not without misclassification.  

Figure 3 shows a state where the two clusters are 

visually more fully separated than in figure 2 and 

certainly a linear function will be an adequate classifier 

for such class separations.  Figure 4 shows the 

variation of the separability index with the increasing 

cluster distance. 

 

 
Figure 2: The Separability index is 100% 

 

When the class separation distance increases beyond 

0.015 units the SI still reports a separability of 1. It is 

clear from this figure that the SI is limited in capturing 

extreme class separability information which could 

result when a feature sub-space with fewer features 

than that at 100% separability is discovered in the 

optimization. 

 

 
Figure 3: Increased class separability 

 

The SI measure is informative about the separability of 

the clusters below full separability (<=1) but is no 

longer informative when the classes separate further 

which can arise in practise. This is to be expected since 

the separability index does not measure class distances 

per se. The hypothesis margin on the other hand, 

shown in figure 5, keeps on measuring with no real 

informative limit on the quantity it is measuring except 

that the class separation distance is increasing. What is 

required is a measure that has the ability to intuitively 

inform on the class separability below 100%, a 

characteristic of the separability index and has the 

ability to continue measuring after 100% class 

separability, a characteristic of the hypothesis margin. 

 
Figure 4: Separability index results on the two 

Gaussian clusters as the centre distance is increased 
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Figure 5: Hypothesis margin results on the two 

Gaussian clusters as the centre distance is increased 

 

3. The Hybrid separability measure 

 

Merging the two measures will consist of two parts; 

the original SI and modified HM parts. The HM is 

modified by only initializing it when the separability 

index measures a separability of 1. While the SI is 

below 1 the HM is set to zero and once the SI is equal 

to 1 the HM is activated. Subsequent hypothesis 

margin distances are then calculated as ratios with 

respect to the HM when the SI was 1.  

 

In this hybrid measure the SI part will capture all the 

sub-spaces, from feature selection, where the class 

separability increases until unity then the modified HM 

part will capture the fact that the clusters are still 

separating further. This way the hybrid separability 

measure captures the overall class separability in terms 

of distance and instance overlap. Figure 5 shows the 

pseudo code for the proposed algorithm: 

 

hm = hypothesis margin; % original hypothesis margin 

si   = separability index;  % separability index 

if si < 1 

     hybrid = 100*Si;   % hybrid measure equal SI when 

                                   % SI is less than 1. 

     hm_ratio =0;         % hypothesis ratio 

     hm = 0;                  % hypothesis margin 

     counter =0;           

elseif si = 1 

     counter =counter  +1; 

       

    if counter =1     % first time SI is 1 capture the 

      ih = hm;       % hypothesis margin distance to be     

                  % the reference for subsequent distances 

     end   

  hm_ratio = hm/ih;           % hypothesis ratio 

  hybrid = 100*hm_ratio;  % hybrid measure 

end 

Figure 5: Pseudo code for hybrid measure 

 

 
Figure 6: Hybrid measure on the two Gaussian clusters 

as the centre distance is increased 

 

Figure 6 shows the behaviour of the hybrid separability 

measure. The SI part is still retained and now the HM 

part is incorporated as a fraction which is converted to 

a percentage so as to integrate with the SI measure. 

The hypothesis margin is now a more informative 

measure of the class separation. Table 1 below presents 

a portion of the above simulation results. After the 

separability index reaches 1 the hypothesis ratio 

information is relayed to the hybrid measure by 

multiplying by 100. The separation distance can still be 

extracted from the hybrid measure. 

 

SI HM 

HM 

RATIO Hybrid 

      (%) 

0.908 1.5431 0 90.8046 

0.9368 1.962 0 93.6782 

0.954 2.4002 0 95.4023 

0.9598 2.8622 0 95.977 

0.9828 3.3595 0 98.2759 

0.9885 3.8828 0 98.8506 

1 4.4158 1 100 

1 4.952 1.1214 112.1431 

1 5.4955 1.2445 124.4502 

1 6.0419 1.3682 136.8238 

1 6.5924 1.4929 149.2898 

1 7.1469 1.6185 161.8487 

1 7.7037 1.7446 174.457 

1 8.2627 1.8712 187.1161 

 

Table 1: A sub-set of the simulation results 
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Intuitive interpretation, in the new measure, is not 

completely lost and can be derived from the last two 

columns of table 1. Once the hybrid measure reports 

separabilities of more than 100% then a different 

perspective on separability can be induced; the 

reported quantity will then be the percentage ratio of 

the class separability distances. A value of 124% can 

be read to mean the classes are one point two four 

times further apart than they were when the SI index 

was 100%.  

 

This retains the intuitive notion of average distance 

between classes (measured by the hypothesis margin 

(HM)) albeit it is measured from a different reference 

point, the point at which the separability index (SI) 

measures 100%. 

  

4. Conclusion 

 

This note highlights the advantages and disadvantages 

of two previously proposed separability measures; the 

separability index and the hypothesis margin. A hybrid 

measure is formed from the two and the good 

properties of the individual measures are retained in 

the new measure which overcomes the limitations of 

the previous measures. A simple simulation example 

exposes the problem of the two measures and 

performance results of the new measure are presented 

on the same example. Some intuitive interpretation can 

still be developed from the new measure. 
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Abstract

For sophisticated robots, it may be best to accept and reason
with noisy sensor data, instead of assuming complete observa-
tion and then dealing with the effects of making the assump-
tion. We shall model uncertainties with a formalism called the
partially observable Markov decision process (POMDP). The
planner developed in this paper will be implemented in Golog;
a theoretically and practically ‘proven’ agent programming lan-
guage. There exists a working implementation of our POMDP-
planner.

1. Introduction
If a robot or agent can perceive every necessary detail of its en-
vironment, its model is said to be fully observable. In many
practical applications this assumption is good enough for the
agent to fulfill its tasks; it is nevertheless unrealistic. A more
accurate model is a partially observable model. The agent takes
into account that its sensors are imperfect, and that it does not
know every detail of the world. That is, the agent can incorpo-
rate the probabilities of errors associated with its sensors, and
other uncertainties inherent in perception in the real world, for
example, obscured objects. If an agent or robot cannot repre-
sent the uncertainties inherent in perception, it has to assume
perfect perception. This assumption either might lead to spu-
rious conclusions or the necessity for additional methods that
keep the agent’s reasoning reasonable. For sophisticated robots
or agents, it may be best to accept and reason with noisy sensor
data.

One model for reasoning under uncertainty with partial ob-
servability is the partially observable Markov decision process
(POMDP). In this paper we present POMDP models based on
the robot programming and planning language Golog [1]. In
particular, we extend DTGolog [2], a Golog dialect. DTGolog
employs a notion of perfect perception; we extent it with a no-
tion of graded belief.

The rest of the paper is organised as follows. In the next
section we briefly introduce the situation calculus and present
the robot programming and planning language DTGolog, be-
fore we formally define POMDPs in Section 3. In Section 4
we present some related work. Section 5 introduces the pred-
icate BestDoPO which defines the semantics of the POMDP
planner in Golog. Section 6 presents a simple example of how
planning under partial observability is conducted. We conclude
with Section 7.

2. The Situation Calculus and DTGolog
The situation calculus is a first order logic dialect for reasoning
about dynamical systems based on agent actions. The outcomes
of a bout of reasoning in the situation calculus are meant to have
effects on the environment outside the agent. When an agent or
robot performs an action, the truth value of certain predicates
may change. Predicates whose value can change due to actions
are called fluents. Fluents have the situation term s as the last
argument.

A special function symbol do is defined in the situation
calculus. do(a, s) is the name of the situation (that the agent
is in) given the agent does action a in situation s. Note that
do(a2, do(a1, s)) is also a situation term, where a2 and a1 are
actions.

To reason in the situation calculus, one needs to define an
initial knowledge base (KB). The only situation term allowed
in the initial KB is the special initial situation S0. S0 is the
situation before any action has been done.

There are two more formulas that need our attention:

1. The precondition axioms are formulas of the form
Poss(a, s), which means action a is possible in situation
s (¬Poss(a, s) means it is not possible). Precondition
axioms need to be defined for each action.

2. Successor-state axioms are formulas that define how flu-
ents’ values change due to actions. There needs to be
a successor-state axiom for each fluent, and each such
successor-state axiom mentions only the actions that
have an effect on the particular fluent.

Please refer to [3] for a detailed explication of the situation cal-
culus, including a description of the famous frame problem and
how the basic action theory is a solution to this problem. Alter-
natively, refer to [4] for a one-chapter coverage of the situation
calculus.

Decision-theoretic Golog (DTGolog) [2] is an extension to
Golog to reason with probabilistic models of uncertain actions.
The formal underlying model is that of fully observable Markov
decision processes (MDPs).

Golog is an agent programming language (APL) developed
by [1]. It is based on the situation calculus. It has most of the
constructs of regular procedural programming languages (iter-
ation, conditionals, etc.). What makes it different from other
programming languages is that it is used to specify and control
actions that are intended to be executed in the real world or a
simulation of the real world. That is, Golog’s main variable type
is the action (not the number).
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Complex actions can be specified by combining atomic ac-
tions. The following are all complex actions (where a sub-
scripted is an atomic action and ϕ is a sentence):

• while ϕ do a1 (iteration of actions);
• ϕ ? : a1 (test action);
• if ϕ then a1 else a2 (conditional actions);
• a1; a2; . . . ; ak (sequence of actions);
• a1 | a2 (nondeterministic choice of actions);
• ℘x.(a1) (nondeterministic finite choice of arguments—

of x in a1);

Do(A, s, s′) holds if and only if the complex action A can ter-
minate legally in s′ when started in situation s.

The DTGolog algorithm is defined with BestDo predi-
cates, taking on the role of Golog’s Do. The DTGolog inter-
preter however, does not simply ‘perform’ the program (com-
plex action) given it, but calculates an optimal policy based
on an optimization theory: the forward search value iteration
algorithm for fully observable MDPs. [1] capture the nonde-
terministic aspect of MDPs with predicates stochastic, and
prob. prob(n, p, s) determines the probability p with which
action n is the outcome in some situation s. (In this sec-
tion we define prob as a function that returns the probability.)
Let choice′(a)

.
= {n1, . . . , nk} (derived from stochastic) be

the k actions that nature could ’choose’ (the actual action per-
formed) for the agent’s intended action a. For stochastic action
a,

BestDo(a; r, s, h, π, v, pr)
.
=

∃π′, v′.BestDoAux(choice′(a), a, rest, s, h, π′, v′, pr)∧
π = a; senseEffect(a), π′ ∧ v = reward(s) + v′.

a; r is the input program, with a the first action in the pro-
gram and r the rest of the program; s is the situation term; the
agent designer needs to set the number of steps (actions) h for
which a policy is sought—the planning horizon; π returns the
policy; v is the expected reward for executing π; pr returns
the probability with which the input program will be executed
as specified, given the policy and given the effects of the en-
vironment. senseEffect(a) is a pseudo-action included in the
formalism to ensure that the formalism stays in the fully observ-
able MDP model. BestDoAux deals with each of the possible
realizations of a stochastic action:

BestDoAux({n1, . . . , nk}, a, r, s, h, π, v, pr)
.
=

¬Poss(n1, s) ∧BestDoAux({n2, . . . , nk}, a, r, s, h, π, v, pr)∨
Poss(n1, s)∧
∃π′, v′, pr′.BestDoAux({n2, . . . , nk}, a, r, s, h, π′, v′, pr′)∧
∃π1, v1, pr1.BestDo(r, do(n1, s), h− 1, π1, v1, pr1)∧
senseCond(n1, ϕ1) ∧ π = if ϕ1 then π1 else π′ endif ∧
v = v′ + v1 · prob(n1, a, s) ∧ pr = pr′ + pr1 · prob(n1, a, s).

For any action n, senseCond(n, ϕ) supplies a sentence ϕ
that is placed in the policy being generated. ϕ holds if and only
if the value returned by the sensor can verify that action n was
performed.

When either of two actions δ1 and δ2 can be performed, the
policy associated with the action that produces the greater value
(current sum of rewards) is preferred and that action is included
in the determination of the final policy π. This formula captures
the idea that is at the heart of the expected value maximization

of decision theory:

BestDo([δ1|δ2]; r, s, h, π, v, pr)
.
=

∃π1, v1, pr1.BestDo(δ1; r, s, h, π1, v1, pr1) ∧
∃π2, v2, pr2.BestDo(δ2; r, s, h, π2, v2, pr2) ∧

((v1, δ1) ≥ (v2, δ2) ∧ π = π1 ∧ v = v1 ∧ pr = pr1) ∨
((v1, δ1) < (v2, δ2) ∧ π = π2 ∧ v = v2 ∧ pr = pr2)).

3. POMDP defined
3.1. The model

In partially observable Markov decision processes (POMDPs)
actions have nondeterministic results and observations are un-
certain. In other words, the effect of some chosen action is
somewhat unpredictable, yet may be predicted with a proba-
bility of occurrence. And the world is not directly observable;
some data are observable, and the agent infers how likely it is
that the state of the world is in some specific state. The agent
thus believes to some degree—for each possible state—that it
is in that state, but it is never certain exactly which state it is
in. Furthermore, a POMDP is a decision process and thus fa-
cilitates making decisions as to which actions to take, given its
previous observations and actions.

Formally, a POMDP is a tuple 〈S,A, T ,R,Ω,O, b0〉 with
the following seven components (see e.g., [5, 6]): (1) S =
{s0, s1, . . . , sn} is a finite set of states of the world; the state at
time t is denoted st; (2) A = {a1, a2, . . . , ak} is a finite set of
actions; (3) T : S×A → Π(S) is the state-transition function,
giving for each world state and agent action, a probability dis-
tribution over world states; (4) R : S × A → R is the reward
function, giving the immediate reward that the agent can gain
for any world state and agent action; (5) Ω = {o0, o1, . . . , om}
is a finite set of observations the agent can experience of its
world; (6)O : S×A → Π(Ω) is the observation function, giv-
ing for each agent action and the resulting world state, a prob-
ability distribution over observations; and (7) b0 is the initial
probability distribution over all world states in S.

An important function is the function that updates the
agent’s belief: [5] call this function the state estimation func-
tion SE(b, a, o). b is a set of pairs (s, p) where each state s is
associated with a probability p, that is, b is a probability distri-
bution over the set S of all states. b can be called a belief state.
SE is defined as

bt(s′) =
O(s′, a, o)

P
s∈S T (s, a, s′)bt−1(s)

Pr(o|a, b) , (1)

where bt(s′) is the probability of the agent being in state s′

at time-step t. (Action and observation subscripts have been ig-
nored.) Equation (1) is derived from the Bayes Rule. Pr(o|a, b)
in the denominator is a normalizer; it is constant with time. SE
returns a new belief distribution for every action-observation
pair. SE captures the Markov assumption: a new state of belief
depends only on the immediately previous observation, action
and state of belief.

3.2. Determining a policy

For any set of sequences of actions, the sequence of actions that
results in the highest expected reward is preferred. The optimal-
ity prescription of utility theory states: Maximize “the expected
sum of rewards that [an agent] gets on the next k steps,” [5].
That is, an agent should maximize E

hPk−1
t=0 rt

i
where rt is

the reward received on time-step t.
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Figure 1: One tier of a POMDP-decision-tree.

When the states an agent can be in are belief states, we
need a reward function over belief states. We derive Rb(a, b)
from the reward function over world states, such that a reward
is proportional to the probability of being in a world state:

Rb(a, b) =
X
s∈S

R(a, s)× b(s). (2)

Now the aim of using POMDP models is to determine rec-
ommendations of ‘good’ actions or decisions. Such recommen-
dations are called a policy. Formally, a policy (π) is a function
from a set B of all belief states the agent can be in, to a set of
actions: π : B → A. That is, actions are conditioned on beliefs.
So given b0, the first action a′ is recommended by π. But what
is the next belief state? This depends on the next observation.
Therefore, for each observation associated with a′, we need to
consider a different belief state. Hence, the next action, a′′,
actually depends on the observations associated with (immedi-
ately after) a′. In this sense, a policy can be represented as a
policy tree, with nodes being actions and branches being obser-
vations. The above function is thus transformed to π : O → A.
Now once we have a policy, it is independent of the agent’s be-
liefs, except its initial belief.

Let Vπ,t(s)—the value function—be the expected sum of
rewards gained from starting in world state s and executing pol-
icy π for t steps. If we define a value function over belief states
as V bπ,t(b) =

P
s∈S Vπ,t(s)×b(s), we can define the optimal

policy π∗ with planning horizon h (set t = h) as
π∗ = argmaxπ(V bπ,h(b0)) (3)

(from the initial belief state)—the policy that will advise the
agent to perform actions (given any defined observation) such
that the agent gains maximum rewards (after h actions).

To implement Equation (3), the authors make use of a deci-
sion tree (there are other methods). DTGolog uses a similar
approach: forward search value iteration. An example sub-
decision-tree (one tier) is shown in Figure 1. This example is
based on an environment and agent model where the agent can
only go left or right and each of its two actions has two possible
realizations in the environment; also, the agent may make two
kinds of observations (O1 and O2) if it chose to go left, and an-
other two kinds of observations (O3 and O4) if it chose to go
right.

Belief states (triangles) in the decision tree are decision
nodes, that is, at these nodes, the agent can choose an action
(make a decision). Circles are chance nodes, that is, certain
events occur, each with a probability (chance) such that any one
event at one chance node will definely happen (probabilities of
branches leaving a chance node, sum to 1).

In Decision Analysis (see e.g., [7]), we roll back a decision
tree to ‘decide’ the action. In any decision tree, for each action-
observation pair, there is a tier of sub-decision-trees. That is,
when considering N actions in a row, a decision tree with N

tiers would be required. There is a unique path from the initial
decision node to each leaf node, and at each belief state encoun-
tered on a path, a reward is added, until (and including) the leaf
belief state. At this point, the agent knows the total reward the
agent would get for reaching that final state of belief. Each of
the belief states is reachable with some probability.

At each decision node, a choice is committed to. We itera-
tively roll back—from last decision nodes to first decision node.
The agent can in this way decide at the first decision node, what
action to take. Each subtree rooted at the end of the branches
representing the agent’s potential action, has an associated ex-
pected reward. The action rooted at the subtree with the highest
expected reward, should be chosen.

As the decision tree is rolled back, the best decision/action
is placed into the policy, conditioned on the most recent pos-
sible observations. Using such a policy tree (generated from a
decision tree), the agent can always choose the appropriate ac-
tion given its last observation. This is the essence of the theory
on which our POMDP planner is based.

4. Related work
In the following, we present some related work dealing with
reasoning under uncertainty. As there exists a large body of
work in this field, we concentrate in particular on approaches for
reasoning under uncertainty in the situation calculus and Golog.

[8]’s idea of representing beliefs is simple yet important.
Intuitively, their aim is to represent an agent’s uncertainty by
having a notion of which configuration of situations are cur-
rently possible; the possible worlds framework. Then further,
each possible world is given a likelihood weight. With these
notions in place, they show how an agent can have a belief (a
probability) about any sentence in any defined situation. Their
work does not, however, cover planning.

Reiter [3] describes how to implement MDPs as well as
POMDPs in the situation calculus. He defines the language
stGolog, which stands for ‘stochastic Golog’. Nevertheless, Re-
iter does not provide a method to automatically generate (opti-
mal) policies, given a domain and optimization theory; he only
provides the tools for the designer to program by hand policies
for partially observable decision domains.

Grosskreutz shows how the Golog framework “can be ex-
tended to allow the projection of high-level plans interacting
with noisy low-level processes, based on a probabilistic charac-
terization of the robot’s beliefs,” [9]. He calls his extension to
Golog pGolog. The belief update of a robot’s epistemic state is
also covered by [9]. (PO)MDPs are not employed in pGolog.
Instead, he does probabilistic projection of specific programs.
He does however make use of expected utility to decide be-
tween which of two or three or so programs to execute (after
simulated scenarios).

In [11], Ferrein and Lakemeyer present the agent pro-
gramming language ReadyLog. Approximately ten years af-
ter Golog’s birth, ReadyLog combines many of the disparate
useful features of the various dialects of Golog into one pack-
age. ReadyLog has been implemented and successfully used in
robotic soccer competitions and a prototype domestic robot.

Whereas DTGolog [2] models MDPs—a useful model in
robotics, as most robots operate in environments where ac-
tions have uncertain outcomes—our new dialect models belief-
MDPs. A belief-MDP is one perspective of POMDPs, where
the states that are being reasoned over are belief states and not
the world states of MDPs. More detail concerning the semantics
of DTGolog is given in Section 2.
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Figure 2: BestDoPO represented as a POMDP-decision-tree.

Very related to our approach is the approach of [10]. Finzi
and Lukasiewicz present a game-theoretic version of DTGolog
to operate in partially observable domains. They call this exten-
sion POGTGolog. As far as we know, this is the only Golog di-
alect that can take partially observable problems as input, that is,
that has some kind of POMDP solver for agent action planning.
POGTGolog deals with multiple agents. Our work is different
from theirs, as we concentrate on the single agent case and our
agent is not restricted to game theory. For developers who prefer
a Golog dialect for agent programming, but desire their robots
or agents to operate with POMDP information, these developers
cannot easily modify POGTGolog to work with single robots.
Our work is not only a simplification of [10]; rather, we extend
DTGolog, and use several elements in POGTGolog—either di-
rectly or for inspiration.

5. Semantics of POMDPs in Golog
In this section we describe our extension to the original for-
ward search value iteration algorithm as proposed in [2]. In
the following, we extend the approach of DTGolog in such a
way that it can also deal with partially observable domains. In
particular, instead of using BestDo, we introduce a predicate
BestDoPO to operate on a belief state rather than on a world
state. BestDoPO(p, b, h, π, v, pr) takes as arguments a Golog
program p, a belief state b and a horizon h, which determines
the solution depths of the algorithm. The policy π as well as
its value v and the success probability pr are returned by the
algorithm.

The relation ofBestDoPO to a POMDP-decision-tree can
be seen in Figure 2. The stochastic outcomes of actions has been
suppressed for ease of presentation.

An example of how BestDoPO may be called initially—
with a program that allows the agent to choose be-
tween three actions a1, a2, a3 (without constraints), with
b0 the initial belief state and with the user or agent
requiring advice for a sequence of seven actions—is
BestDoPO(while true do [a1 | a2 | a3], b0, 7, π, v, pr).

5.1. Basic definitions and concepts

A belief state b contains the elements (s, p); each element/pair
is a possible (situation calculus) situation s together with prob-
ability p (as in [10]).

We use the idea of [10] and assume that an action is possi-
ble in a belief state, when it it possible in the situation which is
part of the belief state, that is, PossAct(a, b) iffPossAct(a, s)
(we rename the traditional Poss to PossAct). We add the

predicate PossObs(o, a, s) to the action theory, which speci-
fies when an observation o is possible (perceivable) in situation
s, and definePossObs(o, a, b) iffPossObs(o, a, s), which de-
fines when the observation is possible in belief state b, given
an action a. The reader should clearly distinguish between
preconditions for observations, PossObs(o, a, s) and for ac-
tions, PossAct(a, s). It is important to note that the b′ in
PossObs(o, a, b′) is the belief state reached after action a was
executed. That is, if a was executed in b and b′ is the new state
reached, then PossObs(o, a, b′) says whether it is possible to
observe o after a has been executed.

Next, we define a function symbol called probNat(n, a, s)
that is similar in meaning to the state transition function T of
a Markov process. Our definition ‘returns’ a probability. It ap-
plies to all of nature’s choices n, where s is the state in which
the agent performs action a. Similarly, we introduce the func-
tion probObs(o, a, s); the probability that o will be observed in
s after a was executed in the previous situation.

Finally, we define belObs, which is the probability that
the agent will observe some specified observation given its
current beliefs and the sensor it activated: belObs(o, a, b) .

=P
(s′,p′)∈b p

′ · probObs(o, a, s′).
In the next section we briefly sketch our solution algorithm

which calculates optimal policies under partial observability.

5.2. The partially observable BestDo

This subsection presents the key formulas in the definition of
BestDoPO.

Considering possible observations after an action, we
branch on all possible observations, given the robot’s intended
action a. choiceObs′(a) ‘returns’ the set of observations that
the robot may perceive: {o|choiceObs(o, a, s) for all s ∈ S}.
The reward function R is defined by (Eq. 2).
Probabilistic observation
BestDoPo(a; rest, b, h, π, v, pr)

.
=

¬PossAct(a, b) ∧ π = Stop ∧ v = 0 ∧ pr = 0 ∨
PossAct(a, b) ∧
∃π′, v′.BestDoObserve(choiceObs′(a),

a, rest, b, h, π′, v′, pr) ∧
π = a;π′ ∧ v = R(b) + v′.

After a certain action a and a certain observation ok, the
next belief state is reached. At the time when the auxiliary pro-
cedure BestDoObserve is called, a specific action, the set of
nature’s choices for that action and a specific observation asso-
ciated with the action are under consideration. These elements
are sufficient and necessary to update the agent’s current beliefs.
Inside BestDoObserve, the belief state (given a certain action
and observation history) is updated via a belief state transition
function (similar in vein to the state estimation function of Sec-
tion 3, and the successor-state axiom for likelihood weights as
given in [8]).
Belief update function

bnew = BU(o, a, b)
.
=

for each (s, p) ∈ b
∃n, s+, p+.(s+, p+) ∈ btemp : s+ = do(n, s)∧
choiceNat(n, a, s) ∧ PossAct(n, s)∧
p+ = p · probObs(o, a, s+) · probNat(n, a, s)

end for each
bnew = normalize(btemp).
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1 2 3 4

Figure 3: Four-state world; four states in a row. Ini-
tially the agent believes it is in each state with probabilities
[0.04|0.95|0.00|0.01] corresponding to state position.

A major difference between the POMDP model as defined
in Section 3 and the POMDP model we define here for the sit-
uation calculus, is that here the belief state is not a probability
distribution over a fixed set of states. If a situation (state) was
part of the belief state to be updated, it is removed from the new
belief state, and situations (states) that are ‘accessible’ from the
removed situation via choiceNat(n, a, s) and are executable
via PossAct(n, s), are added to the new belief state. Because
non-executable actions result in situations being discarded, the
‘probability’ distribution over all the situations in the new be-
lief state may not sum to 1; the distribution thus needs to be
normalized.

senseCond is mentioned in the definition of
BestDoObserve: It is similar to the the definition in
Section 2, only, here it is defined for observations instead of
actions.

BestDoPO is recursively called with the remaining pro-
gram and with the horizon h decremented by 1. Also note that
the recursive BestDoPO will now operate with the updated
belief b′. In the following definition, {ok} is a single (remain-
ing) observation in the set returned by choiceObs′.

Observations possible

BestDoObserve({ok}, a, rest, b, h, π, v, pr)
.
=

¬PossObs(ok, a, b) ∧ π = Stop ∧ v = 0 ∧ pr = 0 ∨
PossObs(ok, a, b) ∧ b′ = BU(ok, a, b)∧
∃π′, v′, pr′.BestDoPo(rest, b′, h− 1, π′, v′, pr′)∧
senseCond(ok, ϕk) ∧ π = ϕk?;π′∧
v = v′ · belObs(ok, a, b) ∧ pr = pr′ · belObs(ok, a, b).

When the set of observations has more than one observa-
tion in it, the formula definition is slightly different, but similar
to the one above: the first branch of possible observations is
processed, and the other branches in the remainder of the set
are processed recursively.

When the planning horizon has reached zero or when all ac-
tions have been ‘performed’ (no remaining actions in the input
program), there will be no further recursive calls.

Conditional statement and test action formulas are similar
to those of Golog, except that the ‘condition’ or ‘test statement’
respectively, are with respect to the agent’s current belief state,
and probabilities involved in these formulas are influenced in
proportion to the agent’s degree of belief [8] in the respective
statements (see [10] for details). Sequential composition and
conditional iteration are defined as one would expect according
to complex actions in Golog.

6. A Simple Example
A very simple example follows to illustrate how BestDoPO
calculates an optimal policy. We use a four-state world as de-
picted in Figure 3. The agent’s initial belief state is b0 =
{(s1, 0.04), (s2, 0.95), (s3, 0.0), (s4, 0.01)}. The only actions
available to the agent are left and right. We define the actions’

stochasticity with ∀n, a, s.choiceNat(n, a, s) ≡ TRUE,
with associated probabilities:

probNat(left, left, s) = probNat(right, right, s) = 0.9

probNat(right, left, s) = probNat(left, right, s) = 0.1

The probability that any of the actions will cause an obser-
vation of nothing (obsnil) is 1: probObs(obsnil, a, s) = p ≡
(a = left∨a = right)∧ p = 1. The corresponding definition
for choice of observations is choiceObs(obsnil, a, s) ≡ (a =
left ∨ a = right).

Let the fluent At(loc(x), s) denote the location of the
agent. It’s successor-state axiom is defined by

At(loc(x), do(a, s)) ≡
a = left ∧ (At(loc(x+ 1), s) ∧ x 6= 1)

∨ (At(loc(x), s) ∧ x = 1)∨
a = right ∧ (At(loc(x− 1), s) ∧ x 6= 4)

∨ (At(loc(x), s) ∧ x = 4)∨
At(loc(x), s) ∧ (a 6= left ∧ a 6= right).

For simplicity, we allow all actions and observations all
of the time, that is, ∀a, s.PossAct(a, s) ≡ TRUE and
∀a, s.PossObs(a, s) ≡ TRUE.

Finally, we specify the sensing condition predi-
cate and the reward function. senseCond(obsnil, ψ)
≡ ψ = OutcomeIs(nil, sensor value)) with
OutcomeIs(obsnil, sensor value) ≡ TRUE and
reward(s) = if At(loc(3), s) then 1 else −1; hence,
the agent’s goal should be location 3.

Assume, the agent is equipped with the following program;
an initial input for BestDoPO:

BestDoPO(while (true do [left | right]),
{(s1, 0.04), (s2, 0.95), (s3, 0.0), (s4, 0.01)}, 1, π, v, pr);

the algorithm must computing a one-step optimal policy.
After the iterative component of the program is processed,

the following call is made, as per the definition of BestDoPO
for the nondeterministic choice of actions:

BestDoPO([left | right]; rest, b0, 1, π, v, pr)
∃π1, v1, pr1.BestDoPO(left; rest, b0, 1, π1, v1, pr1)∧
∃π2, v2, pr2.BestDoPO(right; rest, b0, 1, π2, v2, pr2)∧
((v1, left) ≥ (v2, right) ∧ π = π1 ∧ v = v1 ∧ pr = pr1)∨
(v1, left) < (v2, right) ∧ π = π2 ∧ v = v2 ∧ pr = pr2)),

where rest is while (true do [left | right]). Then the
recursive BestDoPOs make use of the “Probabilistic obser-
vation” definition of the formula. Because–by the action pre-
condition axioms for this example–left and right are always
executable, the following portion (times two) of the formula are
applicable:

∃π′, v′.BestDoObserve(choiceObs′(left), (4)

left, rest, b0, 1, π
′, v′, pr) ∧ (5)

π = left;π′ ∧ v = R(b0) + v′ (6)

and ∃π′, v′.BestDoObserve(choiceObs′(right), (7)

right, rest, b0, 1, π
′, v′, pr) ∧ (8)

π = right;π′ ∧ v = R(b0) + v′. (9)

For Lines (4) and (5) the following portion of the “Obser-
vations possible” definition is applicable:
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b′ = BU(obsnil, left, b0)∧
∃π′, v′, pr′.BestDoPO(rest, b′, 1− 1, π′, v′, pr′)∧
senseCond(obsnil, φ) ∧ π = φ?;π′∧
v = v′ · belObs(obsnil, left, b0)∧
pr = pr′ · belObs(obsnil, left, b0).

In this formula (portion), φ unifies with
OutcomeIs(obsnil,sensor value) and because the re-
cursive call to BestDoPO has a zero horizon, π′ = nil, and
thus π = (OutcomeIs(obsnil,sensor value))?;nil.

The updated belief is an input to a ‘zero horizon’ call and
will therefore be used to determine v′; we calculate the new
belief state b′ = BU(obsnil, left, b0) now (we work out only
the first new element of b′ in detail):

(s+, p+) ∈ btemp : s+ = do(left, s1)∧ p+ = 0.04×1×0.9.

Because all actions are possible, the only effect
that normalization (in the update function) has, is to
remove (do(left, s3), 0.0) and (do(right, s3), 0.0) from
the new belief state, because of their zero probabilities.
BU(obsnil, left, b0) results in

b′ = {(do(left, s1), 0.036), (do(right, s1), 0.004),

(do(left, s2), 0.855), (do(right, s2), 0.095),

(do(left, s4), 0.009), (do(right, s4), 0.001)}.
belObs(obsnil, left, b0) = (0.04)(1)+(0.95)(1)+(0.0)(1)+
(0.01)(1) = 1 and hence v = v′ × 1, and pr =
pr′ × 1. Due to the ‘zero horizon’ call, v′ = R(b′) =
(−1)(.036) + (−1)(.004) + (−1)(.885) + (1)(.095) +
(1)(.009) + (−1)(.001) = −0.822 and pr′ = 1.0. Therefore,
v = −0.822, and pr = 1.0.

Now we can instantiate Line (6) as follows: π =
left;OutcomeIs(obsnil, sensor value))?;nil ∧ v = −1 +
(−0.822). Similarly, we can instantiate Line (9) as π =
right;OutcomeIs(obsnil, sensor value))?;nil∧v = −1+
(0.712).

Then finally, we find that ((−0.822, left) <
(0.712, right) and return the policy π =
right;OutcomeIs(obsnil, sensor value))?;nil, with
total expected reward v = −0.288 and program success
probability pr = 1.

Note that for the sake of clarity, we assumed noise-free per-
ceptions. It should be clear though, that our algorithm can deal
with noisy perceptions as well.

Considering that the agent believed to a relatively high de-
gree that it was initially just left of the ‘high-reward’ location,
and given that its observations are complete and its actions are
not extremely erroneous, we would expect the agent’s first move
to be rightwards, as indeed, the policy recommends.

7. Discussion and Conclusion
In this paper we have given a formal semantics for an action
planner that can generate control policies for agents in partially
observable domains. The language we used for the specifica-
tion is the agent programming language DTGolog. Much of the
semantics is similar to [10]. Their approach is however not for
a single-agent domain.

An example was presented that showed in detail the pro-
cesses involved in generating a policy for an agent with proba-
bilistic beliefs in a partially observable and stochastic domain.

We implemented the POMDP planner in ECLiPSe Pro-
log. The implementation was set up for two toy worlds: a four-
state world where the states are all in a row, and a five-by-five
grid world. In both cases, an agent must find a ‘star’. Prelimi-
nary experiments with the implementation showed the potential
for practical application of the planner presented in this paper:
the results of the experiments showed that the policies generated
are reasonable, and overall, the planner seems to work correctly.
However, benchmarking and comparison to other similar plan-
ners (for problems in similarly stochastic and noisy domains)
still needs to be conducted.
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Abstract

The quality of corpus-based text-to-speech (TTS) systems de-
pends strongly on the consistency of boundary placements dur-
ing phonetic alignments. Expert human transcribers use vi-
sually represented acoustic cues in order to consistently place
boundaries at phonetic transitions according to a set of conven-
tions. We present some features commonly (and informally)
used as aid when performing manual segmentation and inves-
tigate the feasibility of automatically extracting and utilising
these features to identify phonetic transitions. We show that a
number of features can be used to reliably detect various classes
of phonetic transitions.

1. Introduction
Defining exact boundaries between phonetic segments in
speech is difficult, especially in those contexts where co-
articulation between neighbouring phones renders boundary
definition somewhat ambiguous. Nevertheless, for the purposes
of spoken language research and system development, a
pragmatic approach is necessary in order to define such
boundaries as accurately and consistently as possible. Research
into the development of corpus-based text-to-speech systems
has suggested that consistency (in addition to accuracy) of
boundary placements is an important factor when considering
the eventual quality of these systems [1, 2].

Most early development of speech corpora involved manual ef-
fort by language or phonetics experts with a significant amount
of experience in identifying phonetic segments from visualand
auditory information. This reliance on expert human involve-
ment has endured, despite advances in speech recognition and
machine learning techniques applied to automating this task. As
much is evident when one considers that high quality corpora
are still manually checked by such individuals [3].
The expert manual transcription procedure can be viewed as a
two-stage process, where the transcriber initially identifies seg-
ments based on the acoustic properties (aided by visual rep-
resentations thereof) and subsequently refines boundary place-
ments between contiguous segments by considering sets of con-
sistent acoustic cues based on the transition context (defined by
broad phonetic classes).
The application of Hidden Markov Models (HMMs) to pho-
netic segmentation can be likened to the first stage of the expert
procedure described above and in cases where such models are
sufficiently trained, this leads to boundary placements which
for the most part are fairly similar to the “ideal” locations[4].
This is especially true when manually segmented data exists
with which to bootstrap the process involved in training HMMs.

Nevertheless, a large amount of research has been done on fur-
ther reducing the discrepancies between HMM based and manu-
ally obtained boundaries (i.e. “boundary refinement”) [5, 6, 7].
This has been justified by the observation that manually seg-
mented and refined automated methods usually result in better
quality synthesis when compared to baseline methods [8, 9].
The implementation of the boundary refinement stage has
largely involved the application of statistical machine learning
techniques relying on samples of manually segmented data
in order to “learn” the conventions of expert transcribers
without explicitly considering the underlying process or
considerations taken into account. This has proved successful,
with researchers reaching levels of accuracy rivalling what
can be expected when compared to discrepancies between
independently verified alignments by experts [5].

Unfortunately, the feasibility of applying techniques such as
these is limited in the context of developing corpora toward
building systems for languages where resources and expertise
are scarce. This is the case for two primary reasons:

• Corpora are designed minimally in order to minimise ef-
fort in text selection (it is difficult to find reliable elec-
tronic texts for these languages) and expertise required
during recording and annotation. This results in corpora
where some phonetic contexts simply do not have suf-
ficient observations in order to train adequate acoustic
models.

• No manually checked corpora pre-exist in most of the
languages of the developing world, because of a lack of
skilled persons to perform such tasks. Corpora which are
hand checked are small and have mostly been produced
by persons with limited background and training.

For the purposes of developing relevantly annotated corpora
with the goal of building high quality spoken language systems,
it is thus worthwhile investigating the automated extraction and
application of acoustic cues to identify phonetic transitions in
much the same way as a human transcriber would. To this end
we identify important features and the feasibility of extracting
phonetic events from such features. The identification of re-
liable acoustic cues would have the following advantages for
automated corpus development:

• Boundary candidates obtained in this way can serve as
an independent point of reference for judging the qual-
ity of alignments (whether automatically or manually ob-
tained).

• These boundary candidates can be integrated into an au-
tomated procedure in order to refine boundary place-
ments or improve the quality of training acoustic mod-
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els, taking into consideration a specific protocol with the
end goal of the segmented corpus in mind.

In this paper we present an initial analysis of the effectiveness
of various cues for detecting phonetic events in different con-
texts in order to determine the feasibility and potential impact
of applying this information. Section 2 describes the identifica-
tion of potential features, Section 3 describes the experimental
setup including the details of identifying boundary candidates.
Finally, we report on the results obtained (Section 4) and con-
clude with a discussion in Section 5.

2. Acoustic features
In large resource collection efforts the development of anno-
tated corpora has typically been realised by the collaboration
of a large number of trained individuals. The collaborationof
multiple individuals is essential in order to complete the sizable
task of manually verifying the quality of phonetic alignments
within acceptable time-frames, and to have reliable methods of
quality assurance.
Due to the ambiguities which exist at phonetic transitions,it
is common to define protocols for the placement of phonetic
boundaries based on broad phonetic class categories in order to
ensure the consistency of the end result across different individ-
uals [10, 3].
Typical protocols incorporate practical guidelines for the iden-
tification of phonetic boundaries based on acoustic cues exhib-
ited by various features that can be extracted or calculatedand
displayed. This includes the signal energy, estimated funda-
mental frequency, periodicity (voicing), extracted formant con-
tours, spectral characteristics and waveform shape. Instructions
on boundary placement range from complex and highly condi-
tional (e.g. when transcribing approximants, some suggestob-
serving the formants, F3 and F4 for “energy reduction”) to rel-
atively simple and clearly defined (e.g. place a phonetic bound-
ary “just prior to the burst of energy” when transcribing a stop
consonant). Considering this and initial experiments on how re-
liably one can estimate or extract all of these features, we have
concentrated on the following features for the automatic identi-
fication of segmentation cues:

• Signal intensity,

• Fundamental frequency (f0),

• Signal envelope, and

• Cepstral distances.

Due to difficulties in reliably determining the number of for-
mants present as well as the exact contours, we have chosen to
rely on the use of a “cepstral distance” measure (defined in Sec-
tion 3.3.5) which we hope will identify changes in the formants
and general spectral changes with sufficient accuracy.

3. Experimental setup
We employed thePraat [11] andHTK [12] software packages
to aid in extracting features from three sets of manually anno-
tated audio recordings representing typical minimally designed
TTS corpora (see Table 1).

3.1. Broad phonetic classes

The most practical and relevant view of phonetic transitioncon-
texts for this study is based on broad phonetic categories. All
segment labels in the above-mentioned corpora are thus mapped
to one of the following labels in accordance with International

Language Gender Utterances Duration Phones

Afrikaans Male 134 21 mins. 12341
isiZulu Male 150 19 mins. 8559
Setswana Female 332 44 mins. 26010

Table 1: Reference data sets

Phonetic Alphabet (IPA) definitions:affricate, approximant,
click, fricative, nasal, pause, stop, trill andvowel.
Thepauselabel is used both with reference to long pauses (typ-
ically only occurring at the beginning and end of utterances)
and short segments associated with little signal energy such as
glottal stops and closures.

3.2. Generating boundary candidates

In general, boundary candidates are established by firstly calcu-
lating or estimating contours for the particular feature and either
using this contour directly where applicable or deriving a sub-
sequent contour representing the slope by means of numerical
differentiation. After obtaining the appropriate representation,
we employ a simple peak detection algorithm in order to gen-
erate boundary candidates at specific time instants. We briefly
present these methods below.

3.2.1. Numerical differentiation

In order to obtain a relatively smooth contour suitable for sub-
sequent peak detection to be effective, we firstly calculatethe
difference between each sample of the original contourx to ob-
tain a new sequence of differencesxd defined for time instants
in-between the original time instants. An odd numberN of “dif-
ference samples” are framed resulting in a framexdf for each
time instant. From this the gradient is determined by first win-
dowing the frame with a simple exponential window function:

w[n] = 2−|n−
N−1

2
|, (1)

obtaining a frame with weighted differencesxdfw:

xdfw[n] = xdf [n]w[n], (2)

and calculating the slope att (the time instant at the center of
the frame) by averaging the weighted differences in each frame:

x′[t] =
1

N

N
X

n=1

xdfw[n]. (3)

3.2.2. Peak detection

For detecting local extrema that are of interest during candidate
identification, we frame the relevant contour, obtaining anodd
number of samples that constitute each frame and simply flag
the time instant of the central sample within the frame if it is a
global extremum within the frame.

3.3. Acoustic cues

Taking into account the observations in Section 2 we experi-
mented with extracting features and identifying candidates au-
tomatically. We now briefly describe the particular cues inves-
tigated.

3.3.1. Intensity dynamics

It was observed that many phonetic transitions coincide with
changes in the signal intensity and initial experiments indicated
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Figure 1: Detection rates: for each phonetic transition context we obtain detection rates for a range of time thresholds(in milliseconds),
darker areas represent higher detection rates; this figure represents rates when using the intensity gradient minima cue for each of the
languages.

that the slope of the intensity contour peaked near potential
boundaries. We thus determine intensity values at 5ms inter-
vals and subsequently obtain the derivative and flag the local
minima and maxima of the resulting contour (we distinguish
between candidates at minima and maxima).

3.3.2. Waveform envelope

Between neighbouring voiced regions such as vowels and
nasals, “dips” in the waveform can indicate a phonetic transi-
tion. By obtaining the waveform envelope and flagging local
minima, such events can be detected. The use of the intensity
contour directly was considered, but in cases such as just men-
tioned, the envelope provides a more pronounced cue.

3.3.3. Voicing

By means of a pitch analysis in the frequency range 75Hz to
600Hz, one obtains regions that have a strong periodic com-
ponent which can be identified as voiced regions. By distin-
guishing between periodic and aperiodic regions one can place
boundary candidates between neighbouring regions in the hope
of detecting transitions between voiced and unvoiced segments.

3.3.4. Fundamental frequency dynamics

It has been noted that there exists structure within the f0 contour
which can be used to identify phonemic events [9]. We attempt
to detect these events by employing thePraat pitch detection
algorithm [13] in the 75Hz to 600Hz range and analysing the
slope of the resulting contour.

3.3.5. Cepstral distance

As a measure of spectral difference, which is often used directly
via observing the spectrogram or more specifically the changes
in formants in order to identify boundary locations manually,
we calculated 12 mel frequency cepstral coefficients in 20ms
windows with a 2ms time shift. Using this observation sequence
we consider windows ofN observations, calculate the average
of the firstN − 1 observations and simply calculate the euclid-

ian distance between the last observation and the average cal-
culated in order to obtain a contour representing a measure of
difference between each observation and the priorN −1 obser-
vations. This contour exhibits peaks at points where the spectral
properties change radically.

3.4. Evaluation metric

Because boundary candidates will not coincide exactly withref-
erence boundary locations, we consider a reference boundary
location to bedetectedwhen a candidate boundary is located
within a certain time threshold of the reference (followinga
strategy similarly defined in [14]). Subsequently we define an
unambiguous detectionwhere only detections with at most one
candidate within the defined window around the reference are
considered. This discredits detections where false alarmsare
present. For a specific phonetic transition context we can thus
define theunambiguous detection rateas the ratio between the
number of unambiguous detections and the number of occur-
rences for each context.

4. Results

By analysing the detection rates for various cues and phonetic
contexts over a range of time thresholds, it is possible to
obtain a detailed picture of the success of each cue based on
phonetic context (see Figure 1 for an example). To investigate
the detection rates for individual phonetic contexts, we have
to evaluate a range of time thresholds instead of one common
threshold (such as 20ms, which is often used), because of
the relative durations of phones (e.g. stop phones often have
average durations of less than 20ms).

In the subsequent sections we present quantitative resultsob-
tained when applying the techniques described on the corpora
mentioned in Section 3 (see Table 1).
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4.1. Transition detection: coverage

To measure the utility of each cue, the number of detections as a
percentage of the total number of transitions is determined. This
is done by firstly distinguishing contexts which are deemed suc-
cessfully detected in general (it was decided that any transition
context with detection rates in excess of 70% would be con-
sidered), after which detections are summed for these contexts.
The results of this process are presented in Table 2.

Cue Afrikaans isiZulu Setswana

Intensity gradient maxima 39.8% 49.1% 38.1%
Intensity gradient minima 36.4% 28.9% 37.4%
Cepstral difference 32.3% 53.5% 35.2%
Waveform envelope minima 36.9% 33.0% 52.8%
Voicing 4.4% 5.8% 37.5%
F0 gradient extrema 3.6% 10.0% 17.9%

Table 2: Cue significance: the percentages reflect the fraction
of all phonetic transitions which are successfully detected by
each of the listed cues; only transition contexts for which at
least 70% detection is achieved are included in these counts.

By using the same notion of successfully detected context, it is
also interesting to note the combined transition coverage by the
complete set of cues. Figure 2 shows the cumulative coverage
when the total occurrences for successfully detected phonetic
contexts by each cue are added in turn.
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Figure 2: Coverage: the graphs represent the fraction of all
phonetic transitions when the number of occurences of success-
fully detected transition contexts are accumulated for each lan-
guage.

4.2. Problematic contexts

By differencing the set of contexts that are successfully de-
tected with the complete set, the set of contexts which are
least successfully detected is obtained (listed in Table 3). The
sets obtained are not surprising considering most of the con-
texts listed are generally found to be relatively ambiguous(e.g.
approximant-vowel transitions) and difficult to distinguish even
by manual transcribers. Some of the contexts listed here are

also relatively short in duration which suggests that the candi-
date generation methods used might not be well suited to these
conditions.

Afrikaans:
stop-fricative, stop-trill, stop-pause,
vowel-nasal, trill-approximant, fricative-pause,
approximant-vowel, trill-stop, nasal-nasal,
vowel-approximant, fricative-fricative

isiZulu:
pause-affricate, stop-approximant, approximant-pause,
affricate-pause, approximant-vowel, stop-vowel,
vowel-vowel

Setswana:
pause-affricate, stop-approximant, trill-pause,
trill-approximant, approximant-pause, nasal-trill,
trill-trill, stop-stop, affricate-pause,
approximant-vowel, affricate-affricate, stop-vowel,
fricative-nasal, vowel-vowel, pause-trill,
fricative-fricative

Table 3: Problematic transition contexts: the contexts listed
here were not successfully detected by any of the cues inves-
tigated.

5. Conclusion
In this paper we demonstrated the possibility of generatingpho-
netic boundary candidates based on specific acoustic cues that
were extracted for three different languages. We showed that it
is possible to detect actual boundary positions to a large degree
(especially in contexts where the specific cue is relevant from
the perspective of speech production).
Although each cue had specific contexts where it outperformed
others, the most significant cues were based on the intensity
contour and cepstral distance. The fundamental frequency
proved to be less successful than expected (based on [9]), but
this can probably be attributed to the nature of the reference
TTS corpora where the tone is kept more constant than in purely
natural speech. Another interesting observation is that the voic-
ing cue worked reasonably well for the female voice but poorly
for the male voices, based on these results one should proba-
bly carefully consider the exact pitch range of the specific voice
before attempting to use this cue.
The problematic contexts remaining seem to be either acousti-
cally ambiguous (e.g. approximant-vowel boundaries cannot be
easily distinguished by spectral properties or by observing the
waveform) or present cases where our method of candidate gen-
eration fails. Segments with very short durations can causethe
peak detection method or averaging process set up for the aver-
age case to miss detections and particularly the cepstral distance
measure proposed would also be more effective for longer seg-
ments. Future work in detecting the remaining transitions might
involve more sophisticated candidate generation or the applica-
tion of more appropriate features (formant contours might prove
successful).
The identification of boundary candidates presented here will
allow us to improve the quality of the alignment process auto-
matically. This can be done by defining a protocol similar to
protocols designed to allow consistency between multiple hu-
man transcribers and using this directly or integrating candi-
dates into training procedures in order to refine models with
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respect to precise boundary placements. Another useful appli-
cation would be to flag potentially misaligned boundaries dur-
ing quality control of manually or automatically segmentedcor-
pora.
An important observation is that boundary refinement based on
these candidates can be done automatically and with the tar-
get use in mind. This presents opportunity for further research
questions relating to text-to-speech synthesis quality when re-
lying on certain acoustic cues to define boundaries. Important
acoustic properties relating to speech parametrisation used for
speech synthesis should also be explored, e.g. when employ-
ing the Harmonics Plus Noise Model, the maximum voiced fre-
quency contour might prove relevant when performing segmen-
tation.
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Abstract

This paper presents a method to model the photometric proper-
ties of real-world objects from single-view and calibrated multi-
view image sets. Lights are modelled as point sources and re-
flection properties are modelled using the isotropic Ward re-
flectance model. Lighting and reflectance are simultaneously
recovered using known geometry. Measured reflectance data
and model results are presented along with rendered scenes
generated using the photometric models. The rendered images
compare closely to the original images with the colours, posi-
tions of shadows and highlights accurately reproduced.

1. Introduction

In computer graphics, an image of an object is rendered by cal-
culating how light sources interact with objects, given the shape,
the position of the lights, the reflectivity of the objects and the
viewpoint of the observer. Rendering, or more specifically for-
ward rendering, is widely used to create special effects and an-
imation in television shows and films and is perhaps a more
familiar concept than inverse rendering. Forward rendering in-
volves calculating the appearance of an object when geometry,
reflectance properties and lighting are known.

Inverse rendering is the logical opposite of forward rendering.
It is the process of decomposing a scene with unknown geome-
try, reflectivity and lighting into its constituent elements such
that the same scene could be synthetically recreated through
forward rendering. Recovering geometry, reflectance and light-
ing through inverse rendering when all three properties are un-
known is theoretically an ill-posed problem [15], since in order
to recover the lighting distribution for a scene, geometry and
reflectance data for the objects in the scene are required. Simi-
larly, to measure the reflectance data, geometry and the lighting
distribution are required.

In this paper, geometry is known and is represented by a trian-
gular mesh model consisting of vertices defined in world coor-
dinates and a connectivity matrix. Reflectivity is represented
by a bidirectional reflectance distribution function (BRDF)
model [4, p. 61], which describes how the object’s material ab-
sorbs and reflects light as the incoming light angle and view-
point vary. The lighting distribution is modelled by an ambient
light intensity and point light sources defined by a position in
world coordinates and intensity.

The appearance of an object in a scene can be modelled by a
geometric and a photometric model. The geometric model de-
scribes the position of the object in space and the orientations
of the facets that comprise the model. The geometry of objects

is assumed to be known in this paper. Geometry data is ob-
tained using a 3D scanner. The photometric model consists of
two models: a lighting model and a reflection model. The light-
ing model describes the light distribution of the scene in which
the object is imaged and the reflection model describes how the
light interacts with the surface of the object. Given these mod-
els, the object can be rendered from a novel viewpoint and under
novel lighting.

This paper is organised as follows: Section 2 briefly discusses
work related to this paper; Section 3 describes the process of
fitting lighting and reflectance models to the data; Section 4 de-
tails the equipment, methods and calibration involved in the data
acquisition process; Section 5 explains the preprocessing steps
performed on the data, including aligning the 3D data with the
image data, that are necessary to ensure that the different data
are consistent with each other; Section 6 contains results of the
reflectance and lighting measurements for the rock data. Sec-
tions 7 and 8 contain concluding remarks and possible future
work.

2. Related work

A device known as a gonioreflectometer is traditionally used
to measure the reflectance properties of an object. Recent re-
search has led to image-based methods [11, 12, 18] that mea-
sure reflectance properties of an object without the need for
specialised equipment. BRDF measurements are inherently
noisy [19] and a complete estimated BRDF for an object re-
quires many data points. BRDF models are either empirical or
physics based. Model parameters are optimised so that predic-
tions closely match BRDF measurements. BRDF models are
convenient for applications in computer vision and computer
graphics because an entire BRDF data set can be substituted
by a few parameters. Noise is also averaged out when fitting a
restricted model to the data.

Physics based models, such as the Torrance and Sparrow [17]
and He-Torrance [8] models, are preferred in some litera-
ture [5, 16], but implementation is complicated because of de-
pendence on wavelength. Low dimension models, such as the
isotropic Ward model [19], are simpler to implement and pro-
vide adequate accuracy [6, 18]. Other models by Phong [14]
and Lafortune et al. [9] are also widely used [1, 11, 12, 20].

3. Photometric modelling

To model the photometric properties of an object, a model of
the light sources in a scene is required. This model provides

61



information about the intensity of the light and incidence angles
for light that arrives at the object’s surface. Only once a model
for the scene lighting distribution is available can the reflectance
properties of the object be measured.

3.1. Modelling light sources

Most reflection models describe the two fundamental types of
reflection, namely diffuse and specular reflection. A simple as-
sumption to make is that the objects in the scene exhibit only
one type of reflection and not a combination, as is usually the
case. The reflection is hence modelled by a single-parameter
BRDF model which describes the albedo or ratio of incident to
reflected light. This parameter cannot be calculated without a
lighting distribution so it is assumed arbitrarily to be unity, thus
the object is assumed to exhibit either perfect specular or perfect
diffuse reflection.

The reflectance model used as an initial estimate should be cho-
sen based on the typical reflectance properties of the objects to
be modelled. Most objects exhibit Lambertian (or diffuse) re-
flection, with some exhibiting both diffuse and specular reflec-
tion. The exception is highly reflective surfaces such as mirrors,
which are mainly specularly reflective. As such, the Lambertian
assumption is used to infer an initial estimate for the lighting
distribution.

For an object with Lambertian reflection, the intensity of a point
p for a given light distribution is given by

I(p) = L0 +

nX
i=1

Np · (Vi − Pp)Γ(p, i)
1

||Vi − Pp||2
Li, (1)

where L0 is the ambient light term that accounts for ambient
light and inter-reflections, n is the number of point light sources,
Γ(p, i) is a function that is 1 when point p is visible to light
source i and 0 otherwise, Np is the normal vector at point p, Vi

is the position vector for light source i, Pp is the position vector
for the point p, and Li is the intensity for light source i.

The vector from the point p on the surface to the light source
i is Vi − Pp. The 1

||Vi−Pp||2
factor is the falloff in intensity

that occurs as a result of the light energy being distributed over
an increasingly larger area as distance from the light source in-
creases. The falloff is inversely proportional to the square of the
distance from the light source.

Light sources are modelled as points with a position in 3D
space and an intensity for each of the RGB channels. There
is an additional ambient light term that accounts for any back-
ground lighting that is present in the room, as well as any inter-
reflection that might occur. The number of light sources is a
user-defined input. Face orientation is extracted from the ge-
ometric model of the object. Selecting the correct number of
light sources for the model is not critical because light sources
will converge to the same point in space if there are more light
sources in the model than in reality.

The position and intensity for each light source is optimised
using the MATLAB non-linear optimisation routine lsqnon-
lin. The cost function employed is defined as the squared er-
ror between the intensity obtained using the rendering equation
(Equation 1) and the observed intensity from image data. The
point light sources are initially optimised without an ambient
light term. Once good estimates for the point light sources are

available, their positions and intensities are optimised in a sec-
ond step along with the ambient light intensity. This lighting
distribution is used as an initial estimate and is further refined
when reflectance and lighting parameters are simultaneously es-
timated.

3.2. Modelling reflectance

The isotropic Ward model [19], used for modelling reflectivity
in this research, is defined as

β(θi, φi, θo, φo) =
ρd

π
+
ρs exp

`
− tan2(δ)/α2

´
4πα2

, (2)

where ρd is the diffuse reflectance, ρs is the specular re-
flectance, α is the standard deviation of the surface slope, and
δ is the angle between the half vector, ĥ, and the surface nor-
mal, n̂. It offers a good compromise between complexity and
accuracy. The Ward model does not explicitly depend on wave-
length, but diffuse and specular reflectivity parameters can be
calculated for each RGB channel so that colour can be mod-
elled.

Calculating the ρd, ρs and α parameters is done by regression in
an optimisation framework using the MATLAB lsqnonlin non-
linear optimiser. Each pixel in every image of an object pro-
vides a data point that is used to calculate optimal BRDF model
parameters to fit the the observed BRDF data. Angle informa-
tion is deduced from the mesh model of the object, the camera
positions, and the light source positions. The viewing ray is
obtained by backprojecting each pixel onto the 3D model of the
object. The cost used in optimising is the squared error between
the intensity of each observed pixel and the intensity calculated
from the rendering equation

I(p) =
ρd

π
L0+ (3)

nX
i=1

β(θi, φi, θo, φo)Γ(p, i) cos(θi)
1

||Vi − Pp||2
Li,

where ρd is the diffuse reflectance parameter of the Ward model,
L0 is the intensity of the ambient light, n is the number of light
sources, β(θi, φi, θo, φo) is the Ward BRDF model, Γ(·) is a
function that is 1 when point p is visible to light source i and 0
otherwise, Vi is the position vector for light source i, Pp is the
position vector for the point p, and Li is the intensity for light
source i.

Once a BRDF model for an object has been calculated, the light-
ing distribution can be refined using the BRDF model. Vogiatzis
et al. [18] choose to alternately optimise the lighting distribu-
tion and the BRDF model until both converge. In this paper
however, the BRDF model parameters and lighting distribution
are optimised simultaneously, which leads to faster convergence
and has a lower likelihood of converging on a local minimum.

4. Data acquisition

Four data sets are used to generate the results in this paper: two
single-view data sets of marbles and two multi-view data sets
of rocks. The geometry for the marbles is approximated by a
sphere and therefore data does not need to be captured in these
cases. Geometry data is captured for the two rock data sets.
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Image data is needed for all four data sets to make reflectance
measurements. A single distant point light source is used.

4.1. Capturing geometry data

The geometry of an object is represented by a 3D model that
closely approximates its structure. A 3D mesh model of an ob-
ject consists of vertices connected together in a mesh, with each
facet of the model forming a triangle. A mesh model not only
yields shape information but also contains the normal vectors
for each facet. This is important for measuring the angles at
which the light hits the object surface relative to the viewing
angle. Measuring these two angles is fundamental in the mea-
surement of the reflectance of an object.

Geometry data is captured using the NextEngine Desktop 3D
Scanner. It is a multi-stripe laser triangulation 3D scanner that
interfaces with its own proprietary software to produce 3D mod-
els of real world objects. The 3D models it produces are accu-
rate up to 0.125 mm in macro mode and 0.375 mm in wide an-
gle mode [13]. The high level of accuracy of the model means
it can be used as a ground truth or baseline description of the
geometry of the object.

The scanner captures colour information for each view of the
object and then texture maps these images onto the 3D model.
Regions of overlapping colour data are blended. The colour in-
formation captured is adequate for visualisation purposes, but
qualitative experiments have shown that the colour data can
contain significant errors and are not suitable for photometric
modelling.

It is important to have control over the lighting conditions of the
room for reflectance and lighting recovery so that ambient light
and the positions and types of light sources used are well suited
to capturing data for photometric modelling.

4.2. Capturing image data

Colour data is captured using a digital camera because the data
acquired by the 3D scanner is not suitable for photometric mod-
elling. A 1024 × 768 colour Point Grey Flea camera mounted
on a tripod is used to capture frontlit and backlit images of the
objects. The camera’s gamma and gain parameters are fixed at
unity so that the intensity response of the camera is as close to
linear as possible and noise is minimal. The camera aperture
is chosen to be just large enough so that the brightest regions
of the image are almost saturated when the shutter speed is at a
maximum, but small enough to maintain a large depth of field.
A large depth of field ensures that all parts of the sample are in
focus.

The object is positioned on top of a fluorescent lightbox to
simplify silhouette extraction from the backlit images. A pro-
grammable and accurate turntable is used to change the posi-
tion of the object and light source relative to the camera. The
halogen light source mounted on a stand is positioned on the
turntable approximately 50 cm above the object. To minimise
ambient light, the room is darkened so that the halogen light
source is dominant.

The turntable is used to position the object at 20 different ori-
entations, making up a complete 360◦ revolution. Each orien-

tation is rotated 18◦ from the previous one. The frontlit image
is captured with the halogen light source on and the fluorescent
lightbox off. The backlit image is captured with the opposite
configuration. A frontlit and backlit image is captured for each
orientation.

(a) Frontlit image: rock 1 (b) Backlit image: rock 1

(c) Frontlit image: rock 2 (d) Backlit image: rock 2

Figure 1: Frontlit and backlit images of objects. The frontlit im-
age is used to extract colour information and the backlit image
is used to extract the silhouette of the object.

4.3. Calibration

The images in the rock data sets are captured as a turntable se-
quence. A set of calibration images is captured of a checker-
board pattern positioned on the turntable, which is used to cal-
culate the extrinsic camera parameters for each turntable posi-
tion. This calibration step is performed by means of the Camera
Calibration Toolbox for MATLAB [2].

The grid points extracted from the the turntable image sequence
of the checkerboard calibration pattern are coplanar because the
calibration pattern is rotating about a fixed axis. Calibrating in-
trinsic camera parameters requires non-coplanar grid points. As
a result, the intrinsic camera parameters cannot be determined
from these images. A separate set of calibration images is re-
quired with non-coplanar data points spread over the entirety
of the image plane at varying depths. Intrinsic parameters, in-
cluding focal length, distortion and principal point, can be de-
termined from this calibration image sequence.

The Camera Calibration Toolbox gives a good estimate of the
intrinsic and extrinsic camera parameters. However, there is a
chance that the calibration results contain small errors due to
slight variations in the position of the object. These variations
can be brought on by vibrations from the turntable or small er-
rors in turntable position.

A final calibration step similar to a bundle adjustment [7] op-
timises the camera parameters to minimise these errors. The
silhouettes extracted from the backlit images are used to calcu-
late the epipolar tangency (ET) error. ET error is defined as the
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squared perpendicular distance between the tangent point on the
silhouette for a particular epipole and the epipolar line. A bun-
dle adjustment involves optimising the camera parameters for
all cameras such that the ET error is a minimum. This optimi-
sation is performed using the Levenberg-Marquardt non-linear
minimisation method as implemented in the MATLAB lsqnon-
lin function.

5. Data pre-processing

Before reflectance and lighting estimates can be made from in-
put 3D and image data, the raw data resulting from the data cap-
ture stage need to be processed to account for limitations and
inaccuracies in the data capture process. The pre-processing
steps include undistorting image data to remove radial and tan-
gential distortion introduced by the camera lens, and aligning
image and 3D data so that the two forms of data can be pro-
cessed within the same reference frame.

5.1. Undistorting image data

When calibrating the intrinsic properties of the cameras, a 5-
parameter combined radial and tangential distortion model of
the camera lens is calculated. The distortion model produced
by the Camera Calibration Toolbox is non-linear and hence can-
not be modelled by the camera matrix. As a result, the image
data are undistorted directly by generating new images with the
distortion removed. Both frontlit and backlit images are undis-
torted. To reduce the noise in the undistorted silhouette, the sil-
houette is first extracted from the unprocessed image and then
the extracted silhouette coordinates are undistorted. The undis-
tortion is performed using functions from the Camera Calibra-
tion Toolbox.

5.2. Aligning image and 3D data

For measuring reflectance and lighting data from images, the
colour data at points in the images must correspond to the cor-
rect points on the surface of the 3D model. This means that the
coordinate system in which the cameras are specified must be
aligned to the coordinate system in which the 3D model is spec-
ified. This can be achieved by transforming the vertices of the
3D model with a transformation matrix T = [λR t] where λ is a
scaling factor, R is the rotation matrix that aligns the orthogonal
vectors, and t is the translation vector between the origins.

The transformation matrix T is optimised iteratively by min-
imising the ET error between pairs of silhouettes generated
from the transformed 3D model and backlit image data. The vi-
sual hull [10], or volume of intersection of the silhouettes from
each camera, is used as an approximate 3D model that lies in the
same coordinate system as the cameras. A good initialisation is
required for the transformation matrix to ensure convergence,
especially due to the rotational degrees of freedom of the ma-
trix.

The eigenvectors of the vertices of the 3D data form reliable
orthogonal bases that have approximately the same orientation
as the vertex data for both sets of 3D data. The eigenvectors
are used along with the centroids of vertices of the visual hull
and ground truth. The ground truth data is translated so that the

origin coincides with the centroid of the vertices. The vertices
are rotated so that the eigenvectors of the ground truth data are
aligned with the eigenvectors of the visual hull. The vertices
of the ground truth data are then translated so that the centroid
coincides with that of the visual hull. The scaling factor is ini-
tialised to be the average ratio of the caliper diameter measure-
ments [3, p. 12] along the directions defined by the orthogonal
bases of the visual hull and ground truth data.

The cost function that is minimised to find the optimum trans-
formation matrix is defined as

e(C,S,T,V) =

N−1X
i=1

NX
j=i+1

[∆(Ci,Cj , Sj , β(TV,Ci))]
2 (4)

where e(·) is a function that returns the sum of squared dis-
tances between the epipolar lines and tangent points for all
camera pairs, C is the set of cameras, S is the set of silhou-
ette boundary coordinates, N is the number of views, T is the
transformation matrix that is applied to mesh vertices V, ∆(·)
is a function that returns the epipolar tangency error for a pair
of cameras Ci and Cj with boundary points β(TV,Ci) and Sj ,
and β(·) is a function that returns the projection of vertices V
into camera Ci.

Figure 2 shows the initial starting point and also the result of
the optimisation process of aligning the 3D model to the im-
age data. The starting point obtained using the initial guess for
the transformation matrix is close to the optimum solution. Af-
ter the final iteration, the tangent points on the 3D model and
epipolar lines approximately coincide, as is the expected out-
come when minimising Equation 4.

(a) Before optimisation (b) After optimisation

Figure 2: Results of aligning 3D data to image data as seen from
a single viewpoint. Figures 2(a) and 2(b) show the alignment of
the image silhouette (bold red outline) with the 3D model (or-
ange points) before and after of the optimisation process respec-
tively. The initial estimate for alignment can be seen to be a
good starting point, since the silhouette and 3D model are only
slightly misaligned. The image silhouette and 3D model are
well aligned after the final iteration. The epipolar tangent lines
can be seen in blue at the top and bottom of both images. The
tangent points on the 3D model are shown in magenta and can
also be seen at the top and bottom of each image.

64



6. Results

A representation of the positions of the point light sources is
shown in Figure 3 for the rock data sets. Each image shows the
objects as viewed from the positions of the point light sources
in each scene, this indicates the portion of the surface that is
illuminated by each light.

Figure 4 shows a spherical plot of the measured reflectance data
and the model that fits the data. The data come from the first
marble data set. The diffuse reflection (constant radius) and the
specular highlight (radial spike) can be seen in the plot.

Figure 5 shows the results of the lighting and reflectance re-
covery process for four data sets comprising of two single-view
data sets of an opaque glass marble and two multi-view data
sets of different rocks. Figures 5(a), 5(d), 5(g) and 5(j) show
the original image data with background information removed.
Figures 5(b), 5(e), 5(h) and 5(k) show a rendered image of each
object that is generated using only the recovered lighting dis-
tribution and reflectance parameters for each data set. The po-
sitions of the highlights and shadows in the rendered images
correspond to those in the original images. Figures 5(c), 5(f),
5(i) and 5(l) are difference images that show the difference in
intensity of the green colour band between the original image
and the rendered image. The red and blue colour bands exhibit
similar behaviour. The green colour band is used because there
are twice the number of green pixels in the Bayer pattern of the
colour image than red or blue. Fewer interpolation operations
are required on the green data making it more accurate.

The rendered objects can be seen to closely resemble the origi-
nal images. The rendered image of the first rock data set (Fig-
ure 5(h)) does not capture the spatial variation of the material
present in the original image (Figure5(g)) due to the limitation
that the material is assumed to be homogeneous, i.e. the appear-
ance is modelled by one set of reflectance parameters. As a
result, the reflectance parameters model the average appearance
of the objects, which is especially obvious in the grey appear-
ance of the rendered image of the first rock data set.

(a) Rock 1 (b) Rock 2

Figure 3: Each of the rock data sets as seen from each light
source. Each view is from the position of the recovered light
source and indicates which faces are lit by each light source.
The colour represents an RGB encoding of the surface normals.
In these scenes, lighting is represented by a single point light
source and an ambient light source. Ray casting is used to de-
termine which light sources illuminate each face.

7. Conclusion

This paper details the data capture process for measuring the re-
flectance properties of objects from images and highlights con-

Figure 4: BRDF data and model plotted against the azimuthal
and zenith angles of observation. The BRDF data are plotted
as blue points with the Ward model predication plotted as a
green surface. The radial spike corresponds to a specular high-
light and the regions of constant radius correspond to the dif-
fuse colour. The parameters of the Ward model shown here are
ρd = 0.647, ρs = 0.0127 and α = 0.0629.

siderations that need to be taken into account. The geometry
information is captured using a NextEngine Desktop 3D Scan-
ner, which provides more accurate data than image-based meth-
ods. Colour information is captured separately from turntable
sequences and aligned with the geometry information using the
epipolar tangency constraint. Ward reflectance model parame-
ters are estimated through a regression process that matches the
predicted appearance with the original image data.

Qualitative results show promise, with renderings comparing
closely to original images. These results indicate that the re-
flectance and lighting modelling succeeds in modelling the ap-
pearance of the objects, with discrepancies only appearing when
more than one material is present in an image. This and other
limitations are to be addressed in future work.

8. Future work

The following avenues are envisioned as future work: a quanti-
tative analysis of the accuracy of surface normals obtained from
the visual hull as compared to 3D scanner data; an analysis of
the effect on accuracy of reducing the number of triangles in the
geometry model to find a balance between processing speed and
accuracy; an analysis of the effect on accuracy of reducing the
number of data points in the sample for reflectance and lighting
recovery to find a balance between processing speed and ac-
curacy; extending the reflectance model to account for objects
made of more than one material and spatial variation in mate-
rial on the surface of the object in a similar manner to Lensch
et al. [11]; and colour calibration to ensure linearity in colour
measurements;
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(a) Original image (b) Rendered view (c) Difference (d) Original image (e) Rendered view (f) Difference

(g) Original image (h) Rendered view (i) Difference (j) Original image (k) Rendered view (l) Difference

Figure 5: Results of lighting and reflectance recovery. Ground truth images, rendered views and difference images for the two marble
data sets and the two rock data sets. The shadows and highlights in the rendered images can be seen to correspond with those in
the original images. The difference images show the difference in intensity of the green colour band between the original image and
the rendered image. Positive values occur when the original image is greater in intensity than the rendered image and vice versa for
negative values.
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Abstract
We describe ongoing research into the automatic assessment of
listening comprehension and oral language proficiency of South
African L2 English speakers. Proficiency indicators are ex-
tracted from the speech signals by means of an automatic speech
recognition system, and compared with assessments of the same
speech by human experts. By means of carefully designed as-
sessment scales, we are able to achieve high intra-rater correla-
tions for the human scores. We show that, in accordance with
the findings of other authors, rate of speech (ROS) is the most
successful among the automatically derived measures that were
evaluated. We also determine the effect of including context
dependency in the speech recogniser’s acoustic models, and in-
vestigate the effect which reciprocal transformations have on
the correlations with human scores. Our results provide no evi-
dence to support the hypothesis that context independent acous-
tic models yield better proficiency indicators when dealing with
non-native speech. We also find that the use of the reciprocal of
ROS does not lead to consistently better correlations.

1. Introduction
Assessment of a student’s entrance level language skills for the
purpose of placement into appropriate language programmes is
often restricted to reading and writing proficiency tests. Listen-
ing and speaking skills are frequently not assessed because they
either require specialised equipment or labour intensive proce-
dures. In addition, the assessment of oral skills is generally
highly subjective, and efforts that enhance inter-rater reliabil-
ity further increase the labour intensiveness of the assessment
process. The assessment of reading and writing comprehension
skills, on the other hand, can be automated by means of com-
puterised multiple choice tests, which reduce the time and man-
power requirements for their administration. However, research
has shown that good results in written tests are not necessarily
good predictors of corresponding results in an oral test [1].

This study describes progress in an ongoing effort to de-
velop an automated system to assess the listening comprehen-
sion and oral language proficiency of large numbers of students.
The system will operate within the specific context of the Ed-
ucation Faculty at Stellenbosch University, where new students
are required to obtain a language endorsement on their teaching
qualification. For English, this means that students must enrol
for a language module appropriate to their level of proficiency,
and that their progress must be monitored regularly thereafter.
With a current ratio of between 100 and 200 students per uni-
versity staff member, this is only feasible when placing a major
emphasis on computerised multiple-choice reading and writing
tests. However, students regard oral proficiency as an important

component of their teaching abilities. Consequently, they object
to an exclusive focus on writing and reading skills, and regard
the infrequency with which their oral skills are assessed with
much suspicion. A technological solution may not only lighten
the heavy workload of staff, but also provide a more transparent
and objective metric with greater acceptance among students.

A factor which sets this study apart from others is that the
L2 proficiency of the test population is always high and varies
from intermediate to advanced. In contrast, the proficiency of
the subjects in other studies varies to a much greater degree [2,
3, 4, 5]. Our research therefore focuses on students who speak
English as a second language rather than a foreign language.

2. Computerised test development
The goal of the computerised test was to assess listening and
speaking skills limited to the specific context of secondary
school education. The test was therefore designed to evaluate
language behaviour that is specifically relevant to this domain.
There was no attempt to mimic natural human dialogue except
in the sense that the test content relates specifically to teaching
and learning in a school environment.

A telephone-based test was implemented because it re-
quires a minimum of specialised equipment and allows flexi-
bility in terms of the location from which the test may be taken.
Past experience at the Faculty of Education has indicated that
on-line telephone assessments using human judges give a fair
indication of oral and aural proficiency.

2.1. Test design

The test was designed to include instructions and tasks that re-
quire comprehension of spoken English and elicit spoken re-
sponses from students. In this paper we will focus on two of the
seven tasks that comprise the test, namely the reading and the
repeating tasks. For a detailed description of the complete test,
the reader is referred to [6].

• Reading task: Students are provided with a list of 12
sentences on a printed test sheet. The system randomly
chooses six of these sentences, and instructs students to
read each one in turn. For example, “School governing
boards struggle to make ends meet.”

• Repeating task: Students are asked to listen to sen-
tences uttered by the system and to repeat the same sen-
tence. For example, “Student teachers do not get enough
exposure to teaching practise.”

The first task is a familiar one to students since reading
aloud is a task they had to complete successfully for their fi-
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nal school examinations. Moreover, the students could rely on
the printed test sheet, which helped nervous candidates to relax.

The construction of the repeating task is based on the hy-
pothesis that phonological working memory capacity influences
oral production in first language users [7, 8] and even more so
in second language learners [9, 10]. In terms of this hypothe-
sis, second language learners will struggle to produce the target
language in face-to-face communication because of time pres-
sure in conjunction with limited access to vocabulary and the
L2 sound system.

The sentences in the repeat task were designed with the con-
text of students’ experiences as teacher trainees in mind, and
ranged from fairly simple (e.g. It is boring to sit and watch
teachers all day.) to longer and more complex sentences where
the subject is a separate clause (e.g. How parents’ interests and
hopes are accommodated is crucial to the success of a school.).
In the case of advanced learners, it was assumed that their work-
ing memory capacity in the second language would make it pos-
sible for them to repeat the sentences accurately.

2.2. Test implementation

A spoken dialogue system (SDS) was developed to guide stu-
dents through the test and to capture their answers. To make the
test easy to follow, the system’s spoken prompts were recorded
using different voices for test guidelines, for instructions and
for examples of appropriate responses. The SDS plays the test
instructions, records the students’ answers, and controls the in-
terface between the computer and the telephone line. In a fully
operational system, the SDS would also control the flow of data
to and from the ASR system, but in our set-up the students’
answers were simply recorded for later, off-line processing.

2.3. Test administration

A number of students volunteered to test the SDS in a pilot ex-
periment. 120 students subsequently took the test as part of
their oral proficiency assessment. The majority of the students
speak Afrikaans as a first language and their proficiency in En-
glish varies from intermediate to advanced. Calls to the SDS
were made from a telephone located in a private office reserved
for this purpose. Oral instructions were given to the students
before the test. In addition to the instructions given by the SDS,
a printed copy of the test instructions was provided. No staff
were present while the students were taking the test.

3. Human assessments
Teachers of English as a second or foreign language were asked
to rate speech samples from the read and repeat tasks in the test.
The raters were not personally acquainted with the students they
rated.

A subset of 90 students was selected from the group of 120
who took the test. Students were chosen to represent male and
female as well as Afrikaans and English mother tongue speakers
in accordance with the composition of the student population
at the Faculty of Education. Students were chosen to ensure
a balanced test population with regard to mother tongue and
gender. Given the large number of students, it was not feasible
to have each utterance of every student rated. Three examples of
each student’s read and repeat responses were randomly chosen
to be judged by the raters.

Six raters each assessed 45 students and each student was
assessed by three human raters. In order to measure intra-rater
consistency, five students were presented twice to each rater.

Each rater therefore performed 50 ratings: 45 unique and 5 re-
peats.

Before judging the students, the raters attended a training
session on the use of the rating scales. Example utterances and
their respective ratings were also presented.

For the reading task, each sentence was assessed on three
separate scales in terms of degree of hesitation, pronunciation
(including accent) and intonation, as shown in Figure 1. The
scales were conceptualised as a continuum on which certain
points are described, with the possibility to mark points between
two descriptions.

Some words/sounds
mispronounced, 
distracting to listener.

Mispronunciation
affects
comprehension.

meaningful.
always
Pauses not

7

accent barely 
Educated SAE,

discernable.

Accent clear but
comprehensible.

123456

Intonation follows sentence
meaning, pauses at commas
phrasing so that meaning clear.

ignores punctuation and
meaningful sentence units.

"Wooden" reading style,

6 5 4 37 2 1

Hesitation at start
or during sentence.

No hesitation,
smoothly read. much mumbling.

No start and/or 

7 6 5 4 123

(b)

(c)

(a)

Figure 1: Scales used to assess (a) degree of hesitation (b) pro-
nunciation and (c) intonation in the reading test.

The numbers above the scales are meant to guide the even-
tual mark allocation, providing numerical information that can
be used to grade students. Scores below three on the scale would
indicate students who need additional language support. How-
ever, numerical scores were not included on the scales supplied
to the raters in order to avoid pre-conceptions about student
grades.

For the repeating task, a different set of scales was designed
in order to measure the success with which a repetition was for-
mulated and the accuracy of the repetition, as shown in Figure 2.
In this case the scales contained precise descriptions for all the
categories.

No start
or attempt
to repeat.

No start
or attempt
to repeat.

Starts and
then aborts
attempt.

A few words
and then
peters out.trouble.

Starts but then 
gets into

Some hesitation
but then
completes.

6

Partially correct
repetition of
phrases.

some words but
no coherence.

Repetition ofCorrect
repetition.

Partially correct
repetition or
interpretation.

Starts and
completes
repetition.

5 4 3 12

2 13456

(a)

(b)

Correct
interpretation.

Figure 2: Scales used to assess (a) degree of success and (b)
accuracy in the repeating test.

During the pilot test it had become clear that students did
not necessarily repeat each sentence accurately, but were nev-
ertheless able to comprehend it and could repeat a rendition
that reflected the meaning of the original sentence. Since the
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test was also intended to measure listening comprehension, it
seemed fair to distinguish correct repetitions from correct in-
terpretations, since the latter would indicate that the students
responded by interpreting what they heard. This kind of be-
haviour offers a glimpse into a speaker’s working memory,
which seems to reduce information into meaningful chunks in
order to make sense of an incoming message.

3.1. Results: Human assessments

Table 1 shows the intra-rater correlations1 that were obtained
using these scales. These values are much higher than those ob-
tained in our previous study based on global assessments [6].
This seems to indicate that the more detailed assessment guide-
lines introduced in this study assist the human raters in allocat-
ing marks more consistently.

Rater Intra-rater correlation

1 0.83
2 0.94
3 0.81
4 0.96
5 0.67
6 0.91

Table 1: Intra-rater correlations for human raters.

Figures 3(a) and 3(b) illustrate the inter-rater agreement for
the read and repeat tasks, respectively.
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Figure 3: Inter-rater agreement for the read (a) and repeat (b)
tasks.

1The correlations are two-way random, intra-class correlation coef-
ficients and were calculated using Statistica [11].

The three bars in Figure 3(a) indicate the values for the three
scales shown in Figure 1, and the two bars in Figure 3(b) the
values for the scales in Figure 2. By comparing Figures 3(a)
and 3(b) we see that the inter-rater agreement was higher for
the repeat than for the read task. The raters clearly disagree in
their assessment strategies for the pronunciation and intonation
aspects of the reading task.

The values shown in Figure 3(a) for the read speech are
lower than those reported in [3] and [4], but are similar to those
reported in [5]. The fact that our test population is fairly ho-
mogeneous in terms of proficiency could explain this observa-
tion. The raters appear to be less consistent in their assessments
when there is little variation in proficiency. In studies where
higher inter-rater agreement was measured, the speaker popu-
lations were more diverse in terms of L2 proficiency. Further-
more, in our experiments the human judges also rated fewer
utterances per speaker, i.e. two or three as opposed to 10 in [3]
and 30 in [4].

The average score (percentages calculated across all raters)
for the read and repeat tasks are shown in Figures 4(a) and 4(b).
The standard deviation around the mean values is indicated by
the vertical lines in the figures. Figure 4 shows that students per-
formed better in the reading task than in the repeating task and
that, on average, they were given good marks. In previous stud-
ies we observed that only the top part of the assessment scales
were used by the judges, especially for the reading task [6].
Despite our efforts to ‘broaden’ the assessment scales in this
experiment, the lower extremes of the scales were again rarely
chosen.
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Figure 4: Average scores for the read (a) and repeat (b) tasks.
The standard deviation around the mean is indicated by the ver-
tical line in each bar.
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4. ASR-based assessment
Numerous studies on the role of ASR in language learn-
ing applications have been published in the last decade e.g.
[2, 3, 4, 12]. However, the investigations reported on in the
literature differ in terms of several aspects of experimental de-
sign. As a result, it is difficult to make direct comparisons be-
tween studies. Nevertheless, a common aim of most studies in
this field is the identification of parameters that can be auto-
matically derived from speech data and that correlate well with
human judgements of oral proficiency.

4.1. ASR system

ASR is a relatively new research field in South Africa and
the resources that are required to develop applications are lim-
ited. During the African Speech Technology project, tele-
phone speech databases were compiled for South African En-
glish, isiZulu, isiXhosa, Sesotho and Afrikaans [13]. Prototype
speech recognisers were subsequently developed for each lan-
guage, and this study makes use of the standard South African
English ASR system.

A training set consisting of approximately six hours of
phonetically-annotated telephone speech data was parametrised
as Mel-frequency cepstral coefficients (MFCCs) and their first
and second differentials. Cepstral mean normalisation (CMN)
was applied on a per-utterance basis.

A set of 52 speaker-independent monophone hidden
Markov models (HMMs) with three states per model and 64
mixtures per state was trained on this data by embedded Baum-
Welsh re-estimation using the HTK tools [14]. A set of speaker-
independent cross-word triphone HMMs was then obtained us-
ing decision-tree state clustering, resulting in a total of 4797
clustered states. Each triphone model employed eight Gaussian
mixtures per state and diagonal covariance matrices. The phone
recognition accuracies of the monophone and the triphone mod-
els on a separate test set and using a bigram language model are
shown in Table 2.

Model Phone Recognition Accuracy (%)

Monophone 58.4
Triphone 73.0

Table 2: Phone recognition accuracies measured for the mono-
phone and triphone acoustic models.

The students’ responses to the test were transcribed ortho-
graphically by human annotators. The data that was assessed
by the human raters was used as an independent test set (90
speakers). The remainder of the data (30 speakers) was used as
a development test set.

For each sentence in the the reading task, a finite-state
grammar was constructed allowing two options: the target ut-
terance and “I don’t know”. Students were instructed to say
“I don’t know” if they were unsure about how to respond to a
test item. Filled pauses, silences and speaker noises were per-
mitted between words by the grammar. The recogniser’s word
insertion penalty was chosen to ensure optimal correlation be-
tween the ROS values derived from the manual and automatic
transcriptions of the development test set.

For the repeat task, a unigram language model with equal
probabilities for all words was derived from the manual tran-
scriptions of the development test set. A separate language
model was constructed for each sentence of the repeat task. The

recogniser’s word insertion penalty and language model factor
were chosen to maximise the correlation between recognition
accuracy as well as the ROS values derived from the manual
and automatic transcriptions of the development test set.

4.2. Automatically derived proficiency indicators

Many indicators of oral proficiency that can be automatically
derived from speech data have been proposed in the literature.
We have chosen three that have been reported to perform best
by several authors, namely rate of speech, goodness of pronun-
ciation, and transcription accuracy.

4.2.1. Rate of speech

Previous studies have found that, for read speech, rate of speech
(ROS) is one of the best indicators of fluency [3, 12]. In our
experiments ROS was calculated according to Equation (1), as
proposed in [15].

ROS =
Np

Tsp

(1)

The quantity Np denotes the number of speech phones in the
utterance, while Tsp is the total duration of speech in the utter-
ance, including pauses.

The correlation between the ROS values derived from the
manual and automatic transcriptions of the test data were 0.98
and 0.94 for the read and repeat data, respectively. These val-
ues indicate that the automatic system’s ability to segment the
speech into phones compares very well with its human counter-
part.

4.2.2. Goodness of pronunciation

As an example of the general class of posterior HMM likeli-
hood scores [4, 12], we used the “goodness of pronunciation”
(GOP) proposed in [2]. The GOP score of phone qi is defined
as the frame-normalised logarithm of the posterior probability
P (qi|O), where O refers to the acoustic segment uttered by the
speaker.

GOP (qi) =
|log(P (qi|O))|

NF (O)
(2)

In equation 2, NF (O) corresponds to the number of frames in
acoustic segment O. A GOP score was determined for each
phone in an utterance and utterance level scores were subse-
quently obtained by taking the average of all the phone scores
in the utterance.

Some authors claim that less detailed native models, like
monophone HMMs, perform better for non-native speakers than
detailed native models like triphone HMMs [16, 17]. Others re-
port very small differences between the results obtained with
monophone and triphone models for non-native speakers [18].
In this study we investigate the influence of model complex-
ity on automatically derived proficiency indicators by deriving
GOP scores from monophone (GOPmono) as well as cross-
word triphone (GOPxword) HMMs.

4.2.3. Transcription accuracy

Because highly restrictive finite-state grammars were used for
the reading task, the recognition accuracy obtained for the read
responses was in all cases very high and therefore not used as a
proficiency indicator. Repeat accuracy, on the other hand, was
considered as a proficiency indicator, as is also proposed in [12].
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This accuracy was determined by comparing the ASR output
for the repeated utterances to the orthographic transcriptions of
the sentences students were prompted to repeat during the test.
Accuracy was subsequently calculated according to Equation 3,
as proposed in [14]:

Accuracy =
H − I

N
× 100% (3)

In Equation 3, H is the number of correctly recognised words,
I is the number of insertion errors and N is the total number of
words in an utterance.

4.2.4. Nonlinear transformations

Research has shown that it is possible to improve the correlation
between automatically derived indicators and human ratings
by using a non-linear combination of several machine scores.
However, it was found that these improvements are often due
mainly to the non-linear transformation of a single indicator that
already correlates well with human ratings [19]. One such non-
linear transformation is the reciprocal, and experiments have
suggested that using 1

ROS instead of ROS leads to a slightly
higher correlation with human ratings [12]. We will establish
whether this is true for our experimental conditions in the fol-
lowing section.

4.3. Results: ASR-based assessment

The ASR system judged the same material previously evaluated
by the human raters. The average ROS, accuracy and GOP val-
ues that were measured for the read and repeat tasks are shown
in Table 3.

ROS Accuracy GOP
Read 11.94 - 3.88
Repeat 9.81 50.16 4.05

Table 3: Average ROS, accuracy and GOP scores for the test
data.

The observation that average ROS is higher for the read-
ing task than for the repeat task is in agreement with what one
would intuitively expect, given the level of difficulty of the
tasks. The correlations measured between the ROS, accuracy
and GOP scores are listed in Table 4.

Task Score pair Correlation

Read ROS & GOP 0.01
Repeat ROS & Accuracy 0.75
Repeat ROS & GOP -0.44
Repeat Accuracy & GOP -0.40

Table 4: Correlation between ROS, accuracy and GOP scores
for the read and repeat tasks.

Table 4 shows that repeat accuracy correlates strongly with
ROS and to a lesser extent with the GOP scores. In contrast,
there is no correlation between ROS and the GOP scores for
the read data and only a weak correlation for the repeat data.
This observation seems to indicate that ROS is not related to
the acoustic properties of the data. ROS and GOP scores could
therefore be used to evaluate different aspects of speech.

5. Correlation between human and
ASR-based assessment

Table 5 gives the correlation2 between the scores given by the
human raters and the automatically derived proficiency indica-
tors for the reading task. The highest correlation in Table 5 is
observed between degree of hesitation and ROS. To the extent
that degree of hesitation is an indicator of fluency, this result is
consistent with what has been reported in the literature [15].

Indicator Hesitation Pronunciation Intonation
ROS 0.53 0.46 0.49
1/ROS 0.55 0.45 0.51
GOPmono 0.03 0.18 0.01
GOPmono/ROS 0.37 0.19 0.39
GOPxword 0.11 0.13 0.05
GOPxword/ROS 0.43 0.19 0.36

Table 5: Correlation between human and automatic scores for
the reading task.

The GOP scores show almost no correlation with the hu-
man judgements of the read material. This result is similar to
the observation made in [3], where the weakest correlation be-
tween human and automatic scores was measured for likelihood
ratios. This trend seems to indicate that posterior scores derived
at the utterance level do not provide meaningful information on
pronunciation. Discriminating between GOP scores for vow-
els and consonants or deriving phone-specific GOP scores for a
number of “problematic” phones may improve the GOP scores’
correlation with the human data.

Table 6 shows the correlation between the scores the human
raters assigned for the repeat task and those derived automati-
cally using the ASR system.

Indicator Success Accuracy
Accuracy 0.68 0.69
ROS 0.71 0.68
1/ROS 0.71 0.66
GOPmono 0.31 0.32
GOPmono/ROS 0.60 0.57
GOPxword 0.40 0.40
GOPxword/ROS 0.67 0.63

Table 6: Correlation between human and automatic scores for
the repeat task.

ROS as well as accuracy correlate well with the human
scores. However, it should be kept in mind that these variables
are also strongly correlated with each other for the repeat task
(Table 4). The GOP scores are only poorly correlated to the
human ratings of the repeat data, but the correlations are con-
sistently higher than those in Table 5.

The results in Tables 5 and 6 show that there is no consistent
improvement in correlation when using the reciprocal of ROS
as a proficiency indicator. This is in contrast to the results re-
ported in [12], where small improvements were observed. The
two tables also show that the assertion made in [16, 17] that
monophone acoustic models are more appropriate than triphone
models when dealing with non-native speech is not borne out
by our experiments. The small improvement observed for using

2Spearman rank correlation coefficients were derived (using Statis-
tica [11]) because the data in question is ordinal.
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context sensitive models (Table 6) is consistent with the results
reported in [18].

6. Discussion and conclusion
We have described progress made in our effort to develop an au-
tomated system to assess the listening comprehension and oral
language proficiency of South African L2 English speakers. De-
spite our revised and more specific rating scales, we found that
the scores allocated by the human raters for the reading task
still fall within a narrow range of high marks. We believe that
this narrow range led to the associated relatively poor inter-rater
agreement, and possibly also the low correlations with the au-
tomatically derived indicators. To improve this, we will attempt
to increase the difficulty of the read sentences in future imple-
mentations of the test, in order to achieve a greater spread of
human scores. For the repeat task, the spread of the scores was
considerably greater as were their correlation between the auto-
matically derived indicators, especially ROS.

Using the reciprocal of ROS instead of ROS as an indica-
tor showed no consistent improvement in the correlation with
the human scores, in contrast with other published research.
This probably indicates that the relationship between the scores’
distributions in our study is different to the relationships ob-
served in other studies. Other non-linear transformations, such
as neural networks and distribution estimation, have also been
reported to improve the correlation with human ratings to a
greater degree [20]. The effect of these alternative and more
flexible transformations on our data will be investigated in fu-
ture research.

When comparing the effectiveness of context independent
(monophone) and context dependent (triphone) acoustic mod-
els, we found that the triphones performed slightly better in
the repeat task, and there was no consistent difference for the
read task. Thus, the finding that context independent mod-
els show superior performance for the automatic assessment of
non-native speech does not hold for our experimental situation.
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Abstract
Quality assurance and reverse engineering have become an al-
most inseparable part of the mass production industry. Non-
contact measurement methods are playing an ever more impor-
tant role. This study implements a rapid measurement system
using two digital video cameras. Three different methods, using
either laser tracking or structured light patterns, were developed
and employed to solve the coordinate extraction and correspon-
dence matching problems. The system achieves calibration in
less than a minute and accumulates point correspondences at
12 frames per second. Accuracies of better than 0.4 mm are
achieved using a single pair of images with 640 x 480 pixel res-
olution each.

1. Introduction
Optical measurement techniques have traditionally been bound
to specific applications requiring expensive and specialised
equipment. With the rapidly developing digital technologies
in the market, computers and off-the-shelf digital cameras are
continually improving in both speed and capability while also
becoming less expensive.

Using digital cameras and video cameras as the main data
receiver component, the literature reports quite a few techniques
that lend themselves to accurate vision metrology [2] [6] [11].

This study shows what can be achieved with the effective
combination of simple techniques, readily available software
and hardware. The ultimate goal is to build a working vision
metrology system capable of rapid measurements, however cur-
rently the accuracy is not yet sufficient for this purpose. It is
shown that measurement accuracies better than 0.4 mm (for a
235 x 190 x 95 mm volume) can be reached. It also shows
that data-sets of thousands of measurements can be made within
minutes using the automated and semi-automated processes of
calibration, coordinate extraction and stereo-matching devel-
oped for the system. Three different methods of correspondence
matching are explored and results on measurement precision
presented.

2. System Design
As covered in sections 3 and 4, the parameters that mathemati-
cally describe the camera model will, to a certain degree, influ-
ence the precision of the measurement system. There are how-
ever also other factors influencing the precision of calibration
and measurement that are mostly independent of the camera
model. With the practical implications in mind, some impor-
tant factors influencing precision, speed and cost are considered
here.

2.1. Sub-pixel Target Extraction

In general, the greater the precision with which a feature is ex-
tracted, the greater the precision of the calibration.

Before the location of a feature can be determined, the other
important consideration is the initial recognition of the features
in an image. From an image processing point of view, the sim-
plest way in which to aid automatic detection is by using high
contrast features [8]. Examples of this are markers made of re-
flective material [6] or high contrasted black and white patterns.
Using simple geometric shapes for the features, such as circles,
rectangles and checkerboard patterns, can then further aid in the
recognition phase.

For each of these shapes a different image processing
method is used to extract precise target locations. For the rect-
angles or checkerboard patterns, corners can be initially de-
tected using, for instance, Harris corner-detection. Sub-pixel
refinement of the corner locations can then be made using in-
terpolation between pixels [4]. Another method of refining the
corner coordinates in these two cases is by using edge informa-
tion to calculate line intersections [5] [10]. For circular features
a number of locating methods are discussed and evaluated by
[8].

The precision with which the coordinates of each of these
shapes can be extracted using their corresponding methods is
influenced differently by lens distortion and perspective effects
of an optical system. Mallon and Whelan [5] found that circular
patterns yield the least precise target location, being influenced
by the lens distortion as well as the perspective effects. The best
results were found for the line-intersection method which is in-
variant under perspective transformation, but is still influenced
by lens distortion.

2.2. Angles of Convergence

With an increase in angles between rays formed by the same
point, the precision of the calibration network will also increase.
The practical implication is that the “base-to-depth”ratio should
be as large as possible, up to 1:1, i.e. when the angle of conver-
gence is 90 degrees. The base refers to the distance between
camera centres and the depth refers to the perpendicular dis-
tance from the base-line to the point being measured. This ef-
fect of the converging angles is mentioned throughout the liter-
ature [7] [3], but no results were found to indicate the increase
of calibration or measurement precision with an increased con-
vergence angle.

2.3. Projective Coupling

Projective coupling refers to the correlation between the inter-
nal and external camera parameters. An example given by [9] is
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the typical coupling between the principal point location, decen-
tring distortion and the tip or tilt of the camera. Small changes
in any of these parameters will still yield the same overall cal-
ibration result. For the case where there is a strong projective
coupling, [7] as well as [10] makes a similar observation: there
is a negligible difference in the final 3D precision if the princi-
pal point offset parameters are given different values (within a
reasonable range). Remondino and Fraser [7] note this is also
true for the decentring distortion terms.

3. Camera Model
The mathematical description has been well established
throughout the literature. For this reason a brief description of
the final camera model will be given here and the reader is re-
ferred to [4] or [3] for further information. In this paper the
pinhole camera model is used [3] with a distortion model.

3.1. Linear Camera Parameters

In order to calculate the 3D coordinate of a corresponding point
in a stereo-pair of images, the camera matrix, P, is needed. This
3x4 matrix describes the projection (or mapping) of a 3D coor-
dinate onto the image plane of the camera for which P was de-
termined using only the linear description of the camera. Equa-
tion 1 is the compact notation for this mapping from the world
coordinates X, to the image coordinates x.

x=KR[I|-C]X (1)

Starting from the left in Equation 1, the 3x3 matrix K
describes the camera’s internal parameters in terms of pixels.
These parameters describe the focal length, the image centre as
well as the width to height ratio of the pixels. The following
3x3 matrix, R, describes the rotation of the camera and the 3x4
matrix [I|-C] is constructed using the position of the camera
centre. The final camera matrix containing all these elements is
given in Equation 2 and the final mapping using P is given in
Equation 3.

P=KR[I|-C] (2)

x=PX (3)

In practice, P will be determined directly from the calibra-
tion process and the separated internal and external parameter
components will not be needed. In this application, P is used
directly for triangulation (along with the added non-linear pa-
rameters), which takes care of the projective coupling problem
mentioned in section 2.3.

3.2. Distortion Model

Different mathematical models can be used for radial distor-
tion, but they are most commonly described in the form of some
polynomial expansion as a function of the distance from the ra-
dial centre, r. The radial distortion model used here was taken
from [4] and its vector form is shown in Equation 4.

xu = c + f(r)(xd − c) (4)

The undistorted image coordinate, xu, is computed by
adding the coordinates of the centre of radial distortion, c, to the
coordinates of the corrected x- and y-distances. These corrected
distances are calculated by multiplying the x- and y-distances
from c to the distorted point, xd, by the correction function,
f(r) in Equation 5.

f(r) = 1 + k1r + k2r
3 (5)

4. Calibration
A very simple two-step method has been developed and imple-
mented here. In the first step, the camera parameters are ap-
proximated using a linear method which ignores non-linear ef-
fects such as lens distortion. For this method, a 3D calibration
object with known feature coordinates was designed and manu-
factured (Figure 1). The coordinates of the grid corners were de-
termined on a Coordinate Measurement Machine (CMM). The
repeatability of the CMM measurements of the grid was deter-
mined to be well below 0.1mm (within 95% confidence). The
second step introduces non-linear effects of lens distortion with
the model described in section 3.2. These parameters are de-
termined through an optimisation function which minimises the
back-projection error of the known 3D coordinates using the
initial values from the first step.

4.1. Initialisation of Camera Parameters

If non-linear effects can be ignored, the camera matrix, P, can
be determined using a simple linear method if the image coor-
dinates and their corresponding world coordinates are known.
Used here is the direct linear transform (DLT) method as de-
scribed by [3], but without the minimisation of geometric error.

For practical implementation of the solution, the linear sys-
tem is first properly pre-conditioned. This is done by scaling
and shifting both the image and world coordinates [3]. After
normalisation the DLT algorithm calculates a normalised cam-
era matrix. This matrix is de-normalised to retrieve the final
camera matrix.

4.2. Refinement of the Camera Parameters

The values of the camera matrix from the DLT algorithm are
now used as initial values for a robust and quickly converging
minimisation function. This function must introduce the non-
linear lens distortion into the thus far linear camera model.

With the camera matrix and a set of known world-
coordinates available, there is an almost intuitive error to min-
imise: the difference between the calibration-feature coordi-
nates initially extracted from the image and the back-projection
of the world-coordinates onto the image plane.

There are different ways in which this error-set can be used
to calculate an output for minimisation. Here it has been de-
cided that the mean and standard deviation (SD) of the error-set
will be added together and used as the value to be minimised.
This has been established through trial and error as the best
combination of values. Using the sum of these values gives a
low mean value with a higher certainty in the error distribution.
Using only the mean usually causes the standard deviation to be
slightly higher and vice versa if only the standard deviation is
used.

5. Image Processing
A number of image processing techniques are used and com-
bined for the different stages of the process in order to speed
it up. The first step is to automate the calibration phase and
secondly the measurement phase in terms of automatic target
extraction and correspondence matching between image pairs.
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Figure 1: Calibration Object.

Figure 2: Square Finding on Calibration Object.

5.1. Automated Detection of the Calibration Grid

Figure 1 shows the calibration object used in the processing.
Two well contrasted views are taken through a number of image
processing techniques in order to detect each block on the object
and find the matching blocks in the two views.

Figure 2 shows the initial image of the grid from one view.
After a number of processing steps each block is detected, its
approximate centre found and then fitted with an approximate
square.

The final operation for each square is to precisely deter-
mine the corner positions as shown in Figure 3. To achieve
this, a segment of each edge of a block is extracted using the
positions of the approximated squares. Each edge-segment is
then processed to detect the position of each edge pixel with
high precision using the intensity peaks of the edge segment’s
derivative image. The derivative image is in turn calculated by
convolving the edge segment with a 1D derivative kernel. The
edge positions are then used to apply a least-squares line-fitting
to that edge. The corners are calculated as the intersection of
the lines.

5.2. Rapid Correspondence Matching

Once the calibration stage is complete, the camera matrix and
distortion coefficients can be used to determine the 3D coor-
dinates of any two corresponding image coordinates. In order
to solve the correspondence matching problem during the mea-
surement stage, both a Digital Light Processing (DLP) projector
and a moving laser dot is used to scan objects for measurement.
Three methods are proposed for the correspondence matching.
Only the first, using a moving laser dot, can be used for practical
measurements on non-planar objects. The other two are only for

Figure 3: Block with sub-pixel corners detected.

testing and comparing the achievable measurement precision.
These last two methods use the DLP projector to project known
patterns onto an object, currently only a planar surface.

5.2.1. Tracking a Moving Laser Dot

For tracking the laser, it is assumed that it is the highest intensity
moving object in the image. Two consecutive images from the
video stream are subtracted from one another. The position of
values that are above a given threshold in the difference image
is taken as the approximate position of the laser. A small region
of interest (ROI) in one of the original images is taken around
the approximate position determined from the difference image.
Using a binary threshold on the ROI, the centroid of the black-
and-white image is calculated.

5.2.2. Corner Detection Using Square Projections

This method is semi-automated and requires some user-input.
Three squares in a single column are projected onto a flat sur-
face using the highest possible intensity of the projector. This
is done to get the best contrast between the white squares and
the darker surroundings. The algorithm then finds the corners
of each square and calculates the correspondences accordingly.

5.2.3. Projected Line-Crossings

This method uses horizontally and vertically projected strips of
light. It is also only functional for a flat surface. The deriva-
tive images of the vertical and horizontal projections are added
together. This last image gives the higher intensity areas where
the vertical and horizontal lines cross. A small ROI is now ex-
tracted around each of the high intensity spots and the greyscale
centroid is calculated. In order to find a corresponding coor-
dinate in the stereo pair, the epipolar geometry of the cameras
are used [3]. With only two images, this is an unstable way
of searching for correspondences, with many erroneous corre-
spondences being found, especially if there is a large number of
crossing points positioned close together.

6. Experiments
6.1. System Description

The system was developed with the Python programming lan-
guage using OpenCV (www.intel.com/technology/computing/
opencv) for many of the image processing functions. Two Fire-
fly MV IEEE 1394 cameras distributed by Point Grey Research
are used for image capture. Each camera has a 640x480 res-
olution, with a frame-rate of 40 frames per second. One cam-
era is greyscale, the other is colour, using a BGR Beyer-pattern
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and a edge-sensing colour processing method to create a three-
channel colour image.

6.2. Definition of Errors

There are three errors that will be used as outputs for evalua-
tion during the calibration and measurement experiments: back-
projection and triangulation error for the calibration stage and
deviation from a fitted plane for the measurement stage.

The back-projection error is the same error defined in sec-
tion 4.2. The triangulation-error is calculated in much the same
way as the back-projection error. The distances between the tri-
angulated coordinates of the calibration grid corners and their
known coordinates are also accumulated in an error set. Note
that these errors can only be computed during the calibration
stage because of the known world coordinates. It is one of the
main reasons for the use of this type of calibration method: the
achievable metric precision for the system can be established
directly from calibration.

For the measurement phase, a flat surface will be scanned
using all three methods: laser dot, projected squares and pro-
jected line-crossings. To evaluate the error, the triangulated sur-
face coordinates will be fitted with a plane using a least-squares
method. Each perpendicular distance from the plane (planar de-
viation) to a triangulated coordinate is accumulated in an error
set and evaluated statistically using the standard deviation and
visually using the histogram. The mean value is not used, be-
cause it is usually very close to zero due to the way the plane
is fitted to the triangulated coordinates. Both [1] and [12] use
the deviation from a flat surface as an estimate of the noise in
the measurement system. The principle is that if a flat surface
is reconstructed, any planar deviation indicates the basic mea-
surement error that can be expected in the system.

6.3. Experimental Variables

The variables that will be used as inputs for the calibration ex-
periments are the camera model complexity and the base-to-
depth ratio. From the literature it is known that the optimum
results should be achieved using a base-to-depth ratio of one
and the most complex camera model. In this case it is a model
containing two radial distortion coefficients and a drifting cen-
tre coordinate. Even though the optimum case is predictable,
it will be tested in order to verify results already presented in
the literature as well as evaluate the effect on precision for this
unique system.

Because all code was custom-developed for this study, the
camera model can be adjusted to contain different coefficients
for distortion, allowing for the complexity to be increased sys-
tematically by adding more of the distortion model coefficients.

It is assumed that the effect of the two variable parameters
are independent of one-another. An experimental design testing
the interdependence of the variables, such as a full-factorial ex-
perimental design, is therefore not used. For each variable, the
other parameters are held fixed at their optimum values as given
above.

6.4. Results

6.4.1. Model Complexity

The first test uses the DLT method directly with no distortion
parameters. The first radial distortion coefficient, k1, is then
introduced, followed by the second, k2, and finally the drifting
radial centre, c, is also added. Table 1 and Table 2 give the back-
projection and triangulation results of calibration respectively.

The very small difference in the triangulation error between
the last two columns of Table 2 indicates that the tangential dis-
tortion has a much smaller effect on precision than the radial
distortion. To clarify: when adding the drifting centre to the
distortion model, the improvement in precision is two orders
of magnitude smaller than the improvement gained for adding
radial distortion.

When using only one distortion coefficient, the precision is
still comparably close to the cases of greater precision. Using
only the linear model, however, yields significantly less precise
results, even with the iterative improvement that gets rid of sta-
tistical outliers.

Table 1: Back-projection error for different camera model com-
plexities.

Camera model Pinhole model k1 k1, k2 k1, k2, c

Colour Camera
Mean (pixels) 0.353 0.223 0.216 0.206
SD (pixels) 0.191 0.122 0.116 0.114

Mono Camera
Mean (pixels) 0.431 0.248 0.235 0.231
SD (pixels) 0.237 0.142 0.133 0.129

Table 2: Triangulation error for different camera model com-
plexities.

Camera model Pinhole model k1 k1, k2 k1, k2, c

Mean (mm) 0.266 0.163 0.156 0.153
SD (mm) 0.122 0.079 0.073 0.073

Precision, 95% conf 0.632 0.400 0.375 0.371

6.4.2. Base-to-depth Ratio

For the different test runs, the calibration object remains in the
same position while the cameras are moved further from or
nearer to one another across the baseline (the line along which
the base distance is measured). Table 3 shows the results of the
back-projection error for the two approximate base-to-depth ra-
tios, while Table 4 shows the triangulation results.

Even though the 0.5 ratio yields better back-projection re-
sults for the colour camera (Table 3), this does not mean it will
give better triangulation results. As expected, after five consec-
utive runs to get the average values presented in the tables, it
is clear that for a greater base-to-depth ratio the triangulation is
more precise.

Table 3: Back-projection errors for varying base-to-depth ra-
tios.

Base/depth ratio 1 0.5
Colour Camera
Mean (pixels) 0.219 0.214
SD (pixels) 0.116 0.114

Mono Camera
Mean (pixels) 0.225 0.272
SD (pixels) 0.123 0.138
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Table 4: Triangulation error for varying base-to-depth ratios.

Base/depth ratio 1 0.5
Mean (mm) 0.157 0.214
SD (mm) 0.077 0.118

Precision, 95% conf (mm) 0.388 0.569

6.4.3. Planar Deviation

The results for the laser tracking method, the square corner
matching and the projected line crossings are all presented in
Table 5. Four times standard deviation (4 SD) of the error is
used as the final output value to evaluate these measurements.

Table 5: Comparison of matching method precision.

Matching method Square corners Laser Line crossings
SD (mm) 0.105 0.235 0.263

4 SD (mm) 0.419 0.940 1.052

The best results by far are given by the square corner
method. This is understandable, because it extracts the match-
ing coordinates much more precisely than the laser or line-
crossing method. The laser-dot’s form is not very stable from
frame to frame, making the calculation of its centre quite un-
predictable. Lastly, the line-crossing method performs worst.
Different methods than the weighted centroid calculation might
have to be used to achieve greater precision with the line-
crossing method.

Figure 4 compares the histograms of the error-sets for each
of the methods using the same x-axis scale for comparison.
Note that for every method an area of about 210 x 240 mm is
used. The spread of the histograms illustrate how the precision
differs from method to method.

6.4.4. A Practical Measurement

The laser tracking method is used here to scan the profile of the
bottle seen in Figure 5(a), along with different presentations of
the 3D data. Even though not the most precise, this matching
method is currently the only one capable of measuring more
complex surfaces. This measurement is used for a qualitative
evaluation only.

The point-cloud of the scanned profile consists of 15790
coordinates accumulated at about 12 fps. Points can of course
only be constructed if the laser is visible in both images, which
explains the loss of data around sharp bends. Note that the base-
to-depth ratio used here is approximately 0.5 in order to increase
the field of view common to both cameras.

7. Conclusions
A rapid optical measurement system has been developed and
implemented for this project. It is capable of accumulating
feature correspondences at 12 points per second with sub-
millimetre precision. The precision achieved by calibration is
better than 0.4 mm (in the case of the square corner method
or better then 1 mm for the laser tracking method) for a 235 x
190 x 95 mm volume, using only one image pair and an image
resolution of 640 x 480 pixels.

Most of the processes usually requiring time intensive user
interaction in such a system has been automated using differ-
ent image processing techniques in combination with the right

hardware components. This includes the calibration phase as
well as three different semi-automatic methods for solving the
problem of rapid and precise correspondence matching.
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(a) Square corner method.

(b) Laser tracking method.

(c) Line crossing method.

Figure 4: Error histograms for matching methods.

(a) Image of original bottle profile.

(b) 3D visualisation with a 2D Delaunay filter for surface
approximation.

Figure 5: 3D Visualisation of a scanned bottle profile.
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Abstract
Topic models are unsupervised techniques that extract likely
topics from text corpora, by creating probabilistic word-topic
and topic-document associations. Evaluation of topic models
is a challenge because (a) topic models are often employed on
unlabelled data, so that a ground truth does not exist and (b)
“soft” (probabilistic) document clusters are created by state-
of-the-art topic models, which complicates comparisons even
when ground truth labels are available. Perplexity has often
been used as a performance measure, but can only be used for
fixed vocabularies and feature sets. We turn to an alternative
performance measure for topic models – topic stability – and
compare its behaviour with perplexity when the vocabulary size
is varied. We then evaluate two topic models, LDA and GaP,
using topic stability. We also use labelled data to test topic sta-
bility on these two models, and show that topic stability has
significant potential to evaluate topic models on both labelled
and unlabelled corpora.

1. Introduction
The vast amount of electronic text available has stimulated the
development of novel processing techniques in order to extract,
summarise and understand the information contained therein.
Topic modelling is a technique for extracting topics from a
text collection by creating probabilistic word-topic and topic-
document associations [1]. The most successful topic models
are generative models,using the assumption that documents are
generated from a mixture of latent topics. A variety of topic
models with different generative assumptions about how the
documents are generated have been proposed. The documents
do not need labels, implying that topic modelling is an unsuper-
vised technique [2]. Unsupervised techniques do not allow for
comparison of predicted outcomes with ground truth outcomes;
therefore, traditional classification performance metrics cannot
be used. Hence, indirect measures of generalization, such as
perplexity, are commonly employed as performance measures
for topic models. However, current measures suffer from a
number of shortcomings. Perplexity, for example, depends on
the size of the vocabulary modelled – it can therefore not be
used to compare models which use different input feature sets
or across different languages. In this paper, we investigate an
alternative, namely topic stability, which overcomes some of
these deficiencies.
The objective of this study is threefold. First, we compare the
behaviour of perplexity and topic stability as two alternative
performance metrics for topic models. Secondly, we compare
the performance of two topic models, namely Latent Dirichlet
Allocation (LDA) and Gamma-Poisson (GaP), using topic sta-
bility. Finally, we investigate the relationship between stability
and classification accuracy when labels are available. The rest

of the paper is outlined as follows. First we put our work in
context with the literature. Two topic models, LDA and GaP
are described in section 3. Then, we give an overview of per-
plexity as well as the process to derive topic stability in sections
4 and 5. Two text corpora that we use in experimentation and
data preprocessing are described in section 6. The experimental
setup and results follow in section 6.1

2. Related Work
In this study we focus on evaluation techniques for unsuper-
vised methods, specifically topic models. In the field of topic
modelling, the majority of studies use perplexity as an evalua-
tion method [1, 3, 4]. Rigouste further suggests [1] a document
co-occurrence score that is not dependent on feature dimension-
ality reduction in the way that perplexity is. The document
co-occurrence method demands an equal number of topics in
two independent sets. The use of this method to evaluate unsu-
pervised algorithms is described in detail in [5]. Information-
based measures, such as relative information gain are also used
to evaluate topic models, but are difficult to interpret [1, 6].

The concept of topic stability was introduced by Steyvers
and Griffiths [2], where stability between aligned topics for two
independent topic solutions is measured using the symmetrized
Kullback Leibler (KL) distance between the two topic distri-
butions. Classification of documents is another way to test the
performance of topic models [3, 7]: thedocument× topic ma-
trix is used as the feature matrix to classify the documents of a
labelled corpus using a classifier such as a support vector ma-
chine. The topic model is thus measured in terms of the quality
of features that it produces.

We focus on comparing perplexity and topic stability as
evaluation methods for topic models. Our approach to mea-
suring topic stability is a hybrid between the document co-
occurrence of Rigouste and the topic stability of Steyvers and
Griffiths. Instead of using the Kullback Leibler divergence be-
tween two topic distributions over words (Steyvers and Grif-
fiths), or the document co-occurrence score (Rigouste), we cal-
culate the document correlation between two aligned topics.
This allows us to compute a stability measure which is some-
what insensitive to the specific words chosen to describe each
topic.

3. Topic Models
For the purpose of topic modelling, a large matrix is constructed
from a text corpus (consisting of a number of distinct docu-
ments), with rows representing the documents and columns rep-
resenting the word frequencies (for words in the corpus vocab-
ulary – see figure 1).

In this view, a document is represented as a high-
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Figure 1: Document× Word Matrix

dimensional vector, containing the counts of each word in the
document. This representation of a text corpus is widely used
by a number of clustering techniques, where documents are as-
sociated based on their semantic or ‘thematic’ similarity [1].
‘Thematic’ similarity or meaning is extracted by applying sta-
tistical computations on the largedocument× word matrix [8].
Many approaches to text clustering exist [1, 3, 7, 9], using dif-
ferent sets of assumptions on how the documents in a text cor-
pus are generated. We focus on probabilistic approaches that
result in probabilistic topic-document associations [1] by as-
suming a probabilistic generative process for documents. This
section describes two popular topic models with different gen-
erative assumptions, namely Latent Dirichlet Allocation (LDA)
and Gamma-Poisson (GaP).

3.1. Terminology and notation

We define the following terms and their associated notation:

• A corpusis a collection ofM documents denoted byC =
{ w1, w2 , . . . , wM}. The first dimension of thedocu-
ment× word matrix in figure 1 is of sizeM.

• A word w is the basic unit of discrete data.

• A documentis a sequence or passage ofN words denoted
by wd = { w1, w2 , . . . ,wN}.

• A vocabularyis subset of unique words (denoted bywl)
in the text corpus and indexed by{1, . . . ,V}. The second
dimension of thedocument× word matrix is of sizeV.

• We defineT latent semantic components ortopicsto ap-
proximate thedocument× word matrix with T ¿ V.

• The bag-of-wordsrepresentation of a document is the
matrix representation illustrated in Fig.1; it neglects
word order and only stores the word counts in each doc-
ument. The quantityCwid is the word count of wordwi

in documentd.

When relating this terminology to machine learning theory, a
word is a feature, a bag is a data vector and a document is a
sample [7].

3.2. Latent Dirichlet Allocation (LDA)

The basic idea of LDA is that a document is represented as a
random mixture over latent topics and a topic is a distribution
over words in the vocabulary. LDA assumes that the mixture of
topics for a document originates from a Dirichlet distribution
and assigns a Dirichlet prior to the mixture of topics for
a document. The Dirichlet prior is chosen because of its
conjugacy to the multinomial distribution, a property which is

crucial in simplifying the statistical inference problem [1, 3].
LDA assumes the following generative process for documents
in a corpusC [3]:

For each documentw = 1, . . . ,M

1. Chooseθ ∼ Dirichlet(α), θ andα are of dimensionT.

2. For each wordwi in the document,

(a) Choose a topiczi ∼ Multinomial(θ).

(b) Choose a wordwi ∼ Multinomial(βzi ). β is aV
× T matrix.

Figure 2: LDA graphical model

Topic models can be described graphically using directed
graphs. In such a graphical model, variables are represented by
nodes, dependencies between variables byedgesand replica-
tions byplates [3]. Plates can be nested within one another.
Observable nodes are shaded whereas latent variables are un-
shaded. In figure 2 the plate surroundingθ indicates thatθ is a
document level variable (withM replications) and the plate sur-
roundingz andw indicates that they are word-level variables
(with N replications). The plate surroundingβ indicates that
one topic must be chosen fromT topics. The parameterβ indi-
cates which words are important for which topic andθ indicates
which topics are important for a particular document [2].

3.3. Gamma-Poisson (GaP)

In [4], Canny introduces the Gamma-Poisson model (GaP),
which uses a combination of Gamma and Poisson distributions
to infer latent topics. It presents an approximate factorisation
of the document× word matrix with matricesβ and X (see
figure 3). The word× topic matrix β represents the global
topic information of the corpusC and each columnβk can
be thought of as a probability distribution over the corpus
vocabulary for a specific themek. Each columnxd in the
topic × document matrixX represents the topic weights for
the documentd. The Gamma distribution generates the topic
weights vectorxd in each document independently. The
Poisson distribution generates the vector of observed word
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countsn from expected countsy. The relation betweenxd and
y is a linear matrixy = βxd. The topic weightsxd represent
the topic content for each document and encodes the total
length of passages about topick in the document. GaP differs
from LDA in this regard: LDA chooses topics independently
per word in a document, according to the Dirichlet distri-
bution [3], whereas GaP chooses words according to this
topic weighting. GaP assumes the following generative process:

For each documentwd = 1, . . . ,M

1. Choosexd ∼ Gamma(a,b)

2. For each wordwi = 1, . . . ,N

(a) Generatenwi ∼ Poisson(βxd)

Figure 3: Matrix factorisation ofGaP

Figure 4: GaP graphical model

The Gamma distribution has two parameters: The first pa-
rametera is called the shape parameter and the second param-
eterb is called the scale parameter. The mean value ofxk is
ck = akbk [4]. The plates in figure 4 further illustrate topics
as passages of text in a document, as thexd parameter does not
reside in theN-plate.

4. Perplexity
Perplexity is a standard performance measure used to evaluate
models of text data. It measures a model’s ability to generalise
and predict new documents: the perplexity is an indication of
the number of equally likely words that can occur at an arbitrary
position in a document. A lower perplexity therefore indicates
better generalisation. We calculate perplexity on the test corpus
C∗ containingM∗ documents as follows:

p(C∗) = exp

{
−

∑M∗
d=1 log p(wd)∑M∗

d=1 Nd

}
(1)

Perplexity is therefore the exponent of the mean log-likelihood
of words in the test corpus. Consequently, it exhibits similar be-
haviour to log-likelihood: a reduction in feature dimensionality

(in our case, vocabulary) reduces the perplexity, regardless of
whether an improved fit to the data has been achieved [1]. This
argument will be extended below.

5. Topic Stability

One of the key attributes of a useful topic model is that it should
model corpus contents in a stable fashion. That is, useful top-
ics are those that persist despite changes in input representation,
model parametrization, etc. We therefore propose topic stability
under such perturbations as an alternative performance indica-
tor.

For probabilitstic models such as LDA and GaP, a natural
perturbation method presents itself: since these models rely on
the iterative optimization of a likelihood function from a ran-
dom initial condition, they invariably converge to different local
solutions from different starting points. We therefore measure
stability as the document correlation between two topics that
were generated in two independent algorithmic runs from dif-
ferent initial conditions.

In unsupervised learning, there is no way to order or lable
topics prior to model estimation [2]. Thus, topics will in general
be assigned to unrelated lables in separate runs. When the num-
bers of topics in the two algorithmic runs are the same, the Hun-
garian method (also known as Kuhn’s method [10], [11]) can
be used to align the topics. The Hungarian method is an algo-
rithm for determining a complete weighted bipartite matching
that minimises the distance between the two sets in the graph
[11], [12]. First, a weight matrix must be set up to indicate the
similarities of all pairs resulting from different runs; the algo-
rithm then calculates the optimal overall matching between the
two runs.
Two algorithm runs of a topic model can be represented in a bi-
partite graph (figure 5), where each set represents a run. Once
a weight matrix is calculated for the graph, the best matched
pairs can be calculated using the Hungarian method. Greedy
matching is an alternative method that does not guarantee opti-
mal matching [12].

Figure 5: Bipartite graph

The topic stability score is defined as the mean document
correlation over all topics, after topics have been aligned with
the Hungarian method. The process of obtaining the topic sta-
bility scores is described in more detail in the following subsec-
tions.
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5.1. Weighting

The first step in matching the bipartite graph is to obtain a
weighting matrix that represents the weighting of all possible
edges between topics in the two runs. Topic models result in
two outputs, namely atopic× documentmatrix and aword×
topic matrix. We use thetopic× documentmatrix to calculate
the weightingl.
Given two algorithmic runs, represented as setsA andB in a bi-
partite graph with an equal number of topicsk in both sets, the
weighting between two topics in the respective sets is calculated
as follows:

lab =

M∑

d=1

P (τa|wd)P (Γb|wd), (2)

whereM is the number of documents in the corpus,wd repre-
sents documentd, andτa andΓb are the topic distributions from
the respective setsA andB, over documentd. In order to find the
best matched pairs betweenA andB, the quantity

∑T
i=1 laibi is

maximised.
Alternatively, the Kullback-Leibler divergence can be used as a
weighting scheme [13].

5.2. Topic Alignment

The Hungarian method searches for the match with maximum
weight, i.e., the set of edges that touches each topic in the two
sets exactly once, so that

∑T
i=1 laibi is maximised [13].

Let G = (A,B;E) be a bipartite graph, with setsA andB as in
figure 5.The algorithm starts with an empty matched setM.
Given the current matchingM, DM is a directed graph where
each edgee inM is oriented fromB to A with lengthλe = we.
Each edgeenot inM is oriented fromA to B, with lengthλe =
−we. Let AM andBM be the set of topics inA andB, missed
byM. If there is an alternating path fromAM to BM, find the
shortest oneP, and replaceM with the set difference ofM and
the edges ofP. We iterate this process until no alternating path
from AM to BM can be found.

5.3. Document Correlation

Once the topic alignment is completed, the correlation of doc-
uments between matching topics in the respective sets gives a
good indication of the model stability. The document corre-
lation is calculated using thetopic× documentmatrix where
each row represent the topic assignment to documents. Figures
7 and 8 are graphical representations of the document correla-
tion between the topics from the first run and matching topics
from the second run, for two different topic models. The dark
diagonal line in figure 7 indicates a strong correlation between
documents in matching topics.

6. Data Description and Experimental
Setup

We used two text collections for the purpose of this research:

• The Cranfield collection [14] of aerodynamic abstracts
has 1397 documents. The Cranfield (CRAN) collection
is not labelled.

• The 20 Newsgroup(NEWS) corpus, a large collection
of approximately 20,000 newsgroup documents from
20 different newsgroups, collected by Kevin Lang [15].
Each document in this corpus is labelled according to its

newsgroup. Cross-posts (duplicates) were removed from
the corpus. Some of the newsgroups are closely related,
whereas others cover completely unrelated domains.

As part of the data pre-processing step, all non-alphabetic
characters were removed as well as words containing only con-
sonants, or words with a sequence of three and more of the same
alphabetic character. All words occurring only once were re-
moved, and lastly, documents containing fewer than five words
were also removed. From the NEWS corpus, email headings
and group information were also removed. After the prepro-
cessing step, the NEWS corpus contained 18705 documents
with 52416 unique words and the CRAN corpus 1397 docu-
ments with a vocabulary of size 4437.
Both datasets were split into a 80% - 20% training and test set
and words occurring only in the test set were ignored.

6.1. Experiments

6.1.1. Perplexity vs Document Correlation

As mentioned in section 4, perplexity as a performance metric
is influenced by the feature dimensionality: it invariably im-
proves with a reduction in input dimensionality, regardless of
the quality of the fit obtained. To demonstrate this behaviour,
we compare perplexity and document correlation against fea-
ture dimensionality. Using the CRAN corpus, we gradually re-
duce the vocabulary by randomly removing columns from the
word× topic matrix. Thus, the number of vocabulary words is
systematically reduced from 100% to 30%, keeping the number
of documents the same. The document correlation was calcu-
lated on both the training and test set and perplexity was calcu-
lated on the test set.

Figure 6 displays the results. The lower graph represents
the perplexity scores on the y-axis against the vocabulary di-
mension on the x-axis. The perplexity scores decrease (i.e.
improve) every time dimensionality is reduced, even though
there is no reason to believe that the random deletion of words
will improve the topic model. The document correlation (upper
graph) on the training and test set changes less dramatically, and
the correlation on the test set becomes somewhat worse (lower)
when words are removed, as would be expected.
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Figure 6: Perplexity vs Document Correlation
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6.1.2. LDA vs GaP

In this set of experiments, we compare the performance of the
two topic models, LDA and GaP, using document correlation.
In the first experiment, we conduct the straightforward docu-
ment correlation method as described in section 5 on LDA and
GaP, using the full CRAN and NEWS corpora. The resulting
document correlation is displayed in table 1. It is clear from the
results that LDA has a somewhat more stable topic assignment
(indicated by the document correlation) than GaP. Figures 7 and
8 are graphical representations of the topic stability of the two
respective models. The dark diagonal line in figure 7 indicates
that the aligned topics generally have high document correla-
tion. On the other hand, figure 8 has a less pronounced diagonal
line, indicating more instability in topic assignment for the GaP
model.

Table 1:Document correlation for two topic solutions

CRAN NEWS
LDA 0.591 0.757
GAP 0.488 0.527

In the second experiment, instead of performing two in-
dependent executions of the algorithm, we run each algorithm
once on the labelled NEWS data. We then use the document
labels to populate the second set in the bipartite graph. Table
2 displays the results. Although neither LDA nor GaP result
in a very good correlation between inferred topics and docu-
ment labels, LDA has a slightly better correlation than GaP. The
relatively low correlation values are not surprising, given that
these algorithms make continuous-valued “soft” assignments
between documents and topics, whereas the NEWS lables con-
sist of binary assignments. It is encouraging to see that the sta-
bility and correlation results nevertheless agree in their prefer-
ence for the LDA algorithm in this instance.

Table 2:Document correlation for a topic solution and labelled
data

NEWS
LDA 0.246
GAP 0.197

7. Conclusions
The two biggest challenges when measuring the performance
of a topic model, are the unsupervised nature of the data and
the creation of probabilistic ‘soft’ document clusters, rather
than ‘hard’ clusters. The most common measure used to eval-
uate topic models, perplexity, solves these problems by using a
word-predictability criterion. However, perplexity values com-
puted with different feature sets are not comparable. We have
shown that a modified version of topic stability is a useful al-
ternative performance measure for topic models. At the core
of topic stability is the ability to align topics from two indepen-
dent topic assignments. For this purpose, the Hungarian method
guarantees an optimal one-on-one alignment of topics.
We present a topic stability method that uses the average docu-
ment correlation between topics as the performance metric. Our
method does not suffer from the vocabulary dependency of per-
plexity. We also tested two topic models, LDA and GaP us-
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ing this method and found that LDA performs better than GaP
in terms of topic stability; this agrees with the assessment that
arises from the use of document lables when those are available.
In future work, we would like to confirm that stability is a use-
ful comparative measure, by studying other forms of perturba-
tion, other corpora, and additional modelling algorithms. We
also plan to perform a systematic comparison of our document
correlation technique for topic stability with other techniques,
such as the document co-occurrence scores used by Rigousteet
al. [1]. Furthermore, we used the topic× document matrix to
align the topics and indicate the topic stability. This is in con-
trast with Steyvers and Griffiths [2], who used the topic× word
matrix for the same tasks. More work is needed to understand
the respective properties of these two matrices in evaluating the
performance of the topic model. (Our preliminary results sug-
gest that word correlation is less reliable than document corre-
lation, since closely related words may take on widely varying
weights without affecting document classification.) Finally, we
are in the process of implementing a suite of evaluation meth-
ods that address different aspects of topic models in order to
describe the properties of these models more comprehensively.
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Abstract

This article briefly discusses some of our ongoing work
on the problem of human action recognition. We eval-
uate a simple and intuitive technique, based on the
changes in human pose, against publicly available be-
haviour datasets. We achieve results comparable to many
other state of the art techniques, while also being much
simpler and potentially faster.

1. Introduction

1.1. Problem Statement

Action recognition has interesting applications such as
detecting falls [1] and indexing movies [2], and has re-
ceived increased attention in recent years.

Our goal is to create a system capable of classifying ac-
tions in a live video stream, using lightweight techniques.
We evaluate a simple and intuitive technique, based on
the changes in human pose, against publicly available be-
havior datasets. We achieve results comparable to many
other state of the art techniques, while also being much
simpler and potentially faster.

We find that the average of pose changes are surpris-
ingly discriminative for these datasets and conclude that
this simple approach is sufficient for action types that
have stereotypical poses, at least while the library of
poses remain small.

1.2. Related Work

State of the art approaches to action recognition can
roughly be grouped into three: Pose transition models,
collections of quantized space-time interest points (“bag
of features”) and template images. Also of interest is
the motion of key points, which is often used in gesture
recognition applications.

1.2.1. Pose transitions

In this approach actions are regarded as transitions over a
sequence of observations of body pose. Individual poses
are usually represented as a location in a feature space
and a model constructed of the motion through this space.

Actions are then classified based on how well they fit the
learnt model.

Pose observations have been encoded in terms of their
contours [3, 4], optical flow [5, 6], geometric moments
[7], and various others. These transitions are then repre-
sented in graphical models such as hidden Markov mod-
els [6] and Monte Carlo random walks through graphs
[4].

It should be noted that separation of the pose from the
background is often not ideal, and therefore may intro-
duce significant noise in the pose encodings.

1.2.2. Bag of features

This approach is inspired by recent advances made in
recognising generic objects and textual understanding.
Actions are seen as collections of specific space-time in-
terest points or cubelets. These techniques involve ex-
tracting interesting features from the space-time volume
[8, 9, 10]. These discrete feature points are usually
summarized in the form of multidimensional histograms.
Segments of videos are then compared via a comparison
of their histograms [8, 9].

For example, Laptevet al. [11] represent interesting
points, found with a Harris corner detector, by a His-
togram of Gradients descriptor. These features are quan-
tized into words using k-means clustering. Video seg-
ments are then classified based on their histogram of
words using support vector machines.

Others also consider the space-time volume, but in-
stead try to characterize its properties by using, for ex-
ample, the solution to the Poisson equation [2].

1.2.3. Motion of points

Langeet al. [12] have investigated the human ability to
recognise a moving human figure from no more than a
few key points. They found a high correlation between
their simulation results and psychophysical data. This
news might be promising to those that believe the path
of various body parts such as hand, head and feet, may be
a major component in interpreting human behaviour.

Much work has been done on hand-gesture recogni-
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Figure 1: Average of poses (AME) for Weizmann dataset
(source: [16])

tion in this regard. Bobick and Wilson [13] represent the
trajectory of a hand as a sequence of fuzzy states in a
configuration space to capture the repeatability and time-
scale variability of a gesture. Nam and Wohn [14] de-
scribed a hidden Markov based method for recognising
the space-time hand movement pattern of various basic
gestures by first projecting 3D motion data onto a 2D
plane. They then employ a chain encoding scheme and
construct a HMM network from simpler left-to-right dis-
crete HMMs.

Songet al. [15] have addressed the problem of detect-
ing humans from their motion pattern. They model the
joint position and velocity probability density function of
triplets of moving features.

1.2.4. Template based

Techniques such as Average Motion Estimates (AMEs,
[16] ) represent the average of a subject’s poses as a sin-
gle image. Although this is much simpler than the above
methods, Luet al. [16] reported surprisingly high perfor-
mance on the Weizmann dataset. AMEs have, however,
only been tested on this relatively simple dataset, partly
because poses need to be made translation invariant first.

AMEs emphasize body parts that do not vary (see Fig-
ure 1). Indeed, although AMEs represent the motion with
regard to the image background, it does not represent the
changes in the pose itself.

Davis and Bobick [17] have examined motion-energy
images (MEI) and motion-history images (MHI). MEIs
are binary images which represent where motion has oc-
curred spatially and MHIs are grayscale images where
intensity indicates recent motion. Examples are shown
in Figures 2 and 3. MEIs and MHIs are made scale and
translation invariant by comparing their Hu moments [18]
when classifying actions.

An attractive property of template techniques is that
motion can be represented by a single intuitive image.
They do, however, also rely on tracking and segmentation
of a subject from its background.

1.3. Practical considerations

There are two important factors that have to be taken into
account when designing a system capable of perform-
ing action recognition on live video streams: amount of
processing resources and type of background information

Figure 2: Examples of MEIs for aerobic exercises
(source: [17])

Figure 3: Examples of MHIs for waving and crouching
(source: [17])

available.
If realtime performance is required, a lightweight strat-

egy has to be used, especially when multiple cameras are
involved. Lightweight algorithms allow one to process
input from multiple cameras with a single server or push
the action recognition algorithm onto smart cameras that
typically employ weaker processors.

There are, however, few reports that provide the com-
putational costs involved with existing techniques that
would make them applicable to realtime action classifi-
cation. Those that do report their costs are, in the best
cases, in the order of a frame per second for low resolu-
tions on modern consumer hardware [2, 5, 6]. We assume
that those that do not report on their efficiency are much
slower.

A sophisticated background model is also not always
available, depending on the application. It might be good
enough to separate subjects, but not to provide error-free
body silhouettes. We assume some degree of segmenta-
tion of a subject from its background and sufficient inter-
subject separation can be obtained.

2. Our Approach

We have investigated various background models, but
have decided to use a naive technique to demonstrate our
action classifier. Because the datasets (discussed later)
contain only one subject we do not require a tracker or
inter-subject separation that may be needed in real world
applications such as surveillance.

By assuming any motion within the video is primarily
of the subject we can use a simple technique to determine
thechanges in the subject’s pose, i.e. consecutive frames
are subtracted and the difference thresholded:

∆′

pose(n) = |I(n + 1) − I(n)| > k (1)
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Figure 4: Average of pose changes for Weizmann dataset.

Figure 5: Average of pose changes for KTH dataset.

whereI(n) is a specific frame in the sequence andk =
20/255 in pixel intensity. We also apply median filtering
to remove minor noise.

To obtain a translation and scale invariant representa-
tion of the change in pose, we shift and scale the contents
of ∆′

pose(n) so its immediate bounding box is centered
and encompasses the entire image. We call this new im-
age∆pose(n).

By taking the average ofchanges in pose in a video,
i.e.

Tvideo =
1

N

N−1∑

n=0

∆pose(n), (2)

we can obtain Average Pose Changes as shown in Figures
4 and 5.

For classification we determine a template for each
video in the testing set. We represent each template as
a vector by concatenating its rows. We then estimate a
query video’s associated action through either a k-nearest
neighbour lookup or using a Support Vector Machine
(SVM).

Our approach is related to AMEs that represent the av-
erage pose (and indirectly including some motion infor-
mation) and MEIs that are a binary indication of motion.
However it is our opinion that it pays to emphasize ex-
actly those body parts that vary and how often they vary.

Note the difference between Figures 1 and 4. In our
technique changing body parts are emphasised instead of
the static body. We believe that this is an important dis-
tinction for two reasons:

• the posechange is obtained through simple subtrac-
tion and thresholding between frames and is thus,
unlike the pose itself, readily available,

• the AME cannot adequately address actions where
the average pose may be the same, but the amount
of activity of body parts are important.

bend
jack

jump
pjump

run side
skip walk

wave1
wave2

bend 100 0 0 0 0 0 0 0 0 0
jack 0 100 0 0 0 0 0 0 0 0
jump 0 0 89 0 0 0 11 0 0 0
pjump 0 0 0 100 0 0 0 0 0 0
run 0 0 0 0 90 0 10 0 0 0
side 0 0 0 0 0 100 0 0 0 0
skip 0 0 0 0 10 0 90 0 0 0
walk 0 0 0 0 0 0 0 100 0 0
wave1 0 0 0 0 0 0 0 0 100 0
wave2 0 0 0 0 0 0 0 0 0 100

96.9% class average

Table 1: Confusion matrix for Weizmann dataset using
pose change templates and nearest neighbour for classifi-
cation. Provided silhouettes used as pose images.

3. Evaluation

3.1. Datasets

We test the average pose change templates against the
Weizmann and KTH datasets.

The Weizmann dataset [2] contains examples of 10
actions performed by 9 subjects giving a total of just
more than 90 videos. Segmented translation invariant sil-
houettes are provided with this dataset. As many have
achieved near perfect results on this dataset, we only use
it as a demonstration of acceptable results, rather than a
measure of relative accuracy.

The KTH dataset [19] contains examples of 6 actions
performed by 25 subjects, totaling 593 videos. These
videos where designed to contain significant camera mo-
tion and zooming effects. Since the backgrounds are rel-
atively uniform, it is easy to isolate the subject from the
background.

We used similar cross-validation techniques as used
in other studies: leave-one-person-out cross validation
(LOOCV) for the Weizmann dataset and three-way cross
validation for the KTH videos.

3.2. Discussion

We used the differences in provided foreground as pose
changes in one test (Table 1), and immediate frame sub-
traction in another (Table 2). The near perfect results that
were achieved on the Weizmann dataset, are similar to
those of the AMEs [16]. Table 2 shows that even with-
out a sophisticated background model, significant per-
formance can still be achieved with an immediate fore-
ground detection scheme.

Tables 3 and 4 show the performance against the KTH
dataset using a nearest neighbour classifier and linear
SVM. Actions with similar poses (jogging and walking,
jogging and running) account for most of the loss in per-
formance. It should be reiterated that no foreground mask
was provided with the KTH dataset and hence is to be
compared to Table 2 and not 1.

The results of some related studies are reported in Ta-
ble 5. Note that many of these use different cross vali-
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bend
jack

jump
pjump

run side
skip walk

wave1
wave2

bend 89 0 0 0 0 0 0 0 11 0
jack 0 100 0 0 0 0 0 0 0 0
jump 0 0 78 0 0 0 22 0 0 0
pjump 0 0 0 89 0 0 0 0 11 0
run 0 0 0 0 90 0 10 0 0 0
side 0 0 0 0 0 89 11 0 0 0
skip 0 0 10 0 30 10 50 0 0 0
walk 0 0 0 0 0 10 0 90 0 0
wave1 11 0 0 0 0 0 0 11 78 0
wave2 0 0 0 0 0 0 0 0 0 100

85.2% class average

Table 2: Confusion matrix for Weizmann dataset using
pose change templates and nearest neighbour for classifi-
cation. Pose changes extracted from videos.

boxing
handclapping

handwaving

jogging
running

walking

boxing 85 8 1 2 1 4
handclapping 6 90 4 0 0 0
handwaving 0 4 95 0 0 1
jogging 0 0 0 77 13 9
running 1 0 0 20 78 1
walking 0 0 0 6 2 91

86.0% class average

Table 3: Confusion matrix for KTH dataset using pose
change templates and nearest neighbour for classifica-
tion.

dation techniques and are strictly not comparable. E.g.
LOOCV allows one to use approximately three times
more videos for training than 3-way split. Still, we can
say with reasonable confidence that the accuracy of our
approach is comparable to many state-of-the-art algo-
rithms.

A few remarks are in order:

• These datasets, specifically, contain actions mostly
differentiable through pose analysis alone. i.e. these
actions have stereotypical poses. This is in line with
the recent analysis by Weinland and Boyer [23] of
the Weizmann dataset.

• Some interesting real world actions are distinguish-
able through pose analysis alone.

• The datasets do not adequately represent interest-
ing actions that are different primarily due to the
speed at which they are executed. Jogging vs run-
ning, falling down vs sitting/bending, handing over
an item vs punching another person in the stomach,
are actions that contain similar poses, but should be
treated as different actions due to their speed. This
is especially important for applications such as fall
detection, as with higher speeds comes higher risk
of injury.

3.3. Efficiency

Relatively little attention has been given by others to
make existing algorithms work on live video streams. Be-

boxing
handclapping

handwaving

jogging
running

walking

boxing 88 8 1 0 0 2
handclapping 2 94 4 0 0 0
handwaving 0 9 91 0 0 0
jogging 1 0 0 76 10 13
running 2 0 0 15 79 4
walking 1 1 0 1 0 97

87.3% class average

Table 4: Confusion matrix for KTH dataset using pose
change templates and SVM for classification.

method accuracy
Our method 87.3%
Laptevet al. [11] 91.8%
Rodriguezet al. [5] 88.7%
Ahmed and Lee [6] 88.3%
Wong [20] 86.6%
Dollar et al. [21] 85.9%
Niebles [10] 81.5%
Schuldt [19] 71.7%
Ke et al. [22] 63.0%

Table 5: Reported accuracies of related studies on the
KTH dataset. Note that many of these use different cross
validation techniques and, strictly speaking, are not com-
parable.

cause we compare the templates directly without extract-
ing any features or moments, we gain a significant ad-
vantage in runtime speed. Ahmad and Lee [6], for ex-
ample require calculating Zernike moments on 160x120
images, which take 0.69-0.82 seconds a frame (approxi-
mately 1.4fps) on their 1.7GHz machine.

Our implementation of pose change templates (using
a SVM for classification), can currently run at approxi-
mately 16fps for a 400x400 video stream on a 3GHz pro-
cessor.

The effects of tracking and framerate also need to be
analysed. Higher frame rates will improve the detection
of small motions, but will adversely affect our bounding
box model. We therefore plan on using a more complex
background model to determine the bounding box.

4. Conclusion

We have investigated a simple method of classifying hu-
man actions from a sequence of images.

Even though we have used a very simple approach, our
performance is comparable to other existing techniques.
At the same time, our approach holds the promise for ac-
tion recognition requiring few computer resources. Sev-
eral improvements can still be made to pose change tem-
plates, such as a temporal multiscale to detect actions that
differ due to their speeds (e.g. running and jogging).
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Abstract
A technique for tracking the orientation and position of a near-
planar surface in real-time is presented. It uses the principle of
structured light to determine 3D surface shape, by the projec-
tion of a dense pattern of uniform (uncoded) stripes. In order to
estimate pose a weighted least-squares plane is fitted to the 3D
data. As an example the technique is applied in a gaming en-
vironment where the user moves and rotates his/her open hand
in the field of view of the structured light system to control the
yaw, pitch and speed of a model aircraft in real-time.

1. Introduction
High-speed 3D shape measurement and tracking has immense
potential in a wide variety of application fields [1], ranging from
medical imaging and industrial testing to mobile robot navi-
gation and the gaming industry. Such a system may involve
two steps: (1) reconstructing or estimating the shape of some
dynamic target surface, and (2) approximating and tracking its
orientation and position over time.

The first step is usually regarded as a computer vision prob-
lem, and addressed through the utilization of a 3D imaging
method such as stereo vision [1, 2] or structured light [3, 4].
The latter has the advantage over the former that its output res-
olution and accuracy can be controlled to a far greater extent.
On the other hand, unlike stereo systems that require only two
cameras, structured light is an active vision system that has to
project a pattern onto a target surface, that has to be opaque and
non-specular, in order to measure it. If the specific application
permits, however, structured light is ideal for high-speed, low-
cost and high-quality 3D surface acquisition.

A structured light system consists typically of a projector
(for casting some pattern onto the target surface) and a camera
(for capturing the reflecting pattern). The pattern is found in
the image and its deformation reveals the shape of the target.
The concept evolved from single laser-spot projection, requir-
ing several hours to complete a scan, to the projection of com-
plex patterns that can measure large surface areas in a few mil-
liseconds. For real-time systems it is imperative that sufficient
information for full surface reconstruction is gathered within
the timebase of a single video frame. A dense pattern of par-
allel stripes is often chosen as a projection pattern because it
can cover a large surface area in a single shot and can produce
high-quality 3D models.

The problem associated with multiple stripe patterns, here
called theindexing problem, amounts to establishing correct
correspondences between the projected stripes and those ob-
served in the recorded image. Various different approaches have
been proposed, including coding stripes by colour [5], width
[6] and time-dependent sequences [4]. These have limitations
however: colour cannot be applied consistently to surfaces with
weak or ambiguous reflectance, for width coding the resolu-

tion is less than for uniform narrow stripes, and time-coded
sequences require multiple images over time and are thus not
suitable for real-time applications. In light of this we are biased
to the use ofuncoded(i.e. homogeneous) stripes. The indexing
problem becomes more involved but can still be solved with a
high degree of accuracy [7].

Once a 3D model is constructed the target surface can be
tracked over time as it moves, rotates and deforms. We ac-
complish this by fitting a weighted least-squares plane to the
data and tracking its orientation and position in 3D space. As
an example for application the technique is implemented in a
human-computer interaction (HCI) system where a user con-
trols the yaw, pitch and speed of a model aircraft in real-time,
by moving and turning his/her open hand in the field of view of
the structured light system.

The remainder of the paper is structured as follows. Sec-
tion 2 discusses the structured light system we use for 3D re-
construction, a calibration technique and how a surface model
can be built. Section 3 explains the method for pose estimation,
provides some simplifications in order to speed up the system
for real-time applications, and describes the HCI system devel-
oped for controlling a model aircraft. The paper is concluded in
section 4.

2. Structured light
A schematic diagram of a typical structured light system is
shown in Fig. 1. A light stripe is projected onto some target
surface, and captured by a camera. The stripe is extracted from
the image and, together with the spatial relationship between
the projector and camera, reveals the 3D shape of the surface
along that stripe. This system uses a single stripe to measure
one “slice” at a time, and the target object can now be moved
or rotated repeatedly in order to measure other parts that can
finally be stitched together into a surface model.

projector camera

image plane

object

projected
stripe

Figure 1:Schematic diagram of a structured light system where
a light source projects a stripe onto a target object’s surface
and a camera captures the scene.
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The above procedure can be very effective in generating ac-
curate and high-resolution surface models of stationary objects.
It is slow however, and does not lend itself to real-time applica-
tions where complete surface information has to be acquired at
frame rate (i.e. within a few milliseconds).

The current availability of controlled light sources, such
as DLP projectors, allows for more complex patterns that in-
crease the surface area measurable per single scan. A dense
pattern of parallel stripes is a popular choice [8], but its recon-
struction accuracy depends upon establishing correct correspon-
dence between projected and recorded stripes (so that, as shown
in Fig. 1, surface points can be determined as intersections with
the correct stripe planes). Different methods have been devised
to discriminate between captured stripes by, for example, vary-
ing colour or width. However we are interested in patterns of
homogeneous stripes as they can be applied consistently on sur-
faces with weak or ambiguous reflection and produce maximal
resolution [7].

2.1. Calibration

Calibration of the structured light system is necessary in order
to extract accurate metric information. Without calibration a
surface can be reconstructed only up to some projective trans-
formation [9] which does not preserve distance.

The calibration procedure should produce the intrinsic pa-
rameters (such as the focal lengths, principal points and distor-
tion coefficients) of the camera and projector, as well as the rel-
ative pose between the camera and projector (often referred to
as the extrinsic parameters). The parameters can be determined
once prior to surface acquisition under the assumption that they
remain fixed throughout operation.

Figure 2 depicts the layout of the structured light system
and our defined coordinate system. The camera is located at the
system origin and the projector at pointp. The camera ray asso-
ciated with pixel(r, c) in the image will be denoted byr(r, c),
and the projected plane that produces stripen will have normal
vectort(n).

X

Y

Z

camera

projector

p

t(n)

r(r, c)

x

S2
S1

S1 = stripe planen

S2 = stripe plane(n−1)

Figure 2:We let the system coordinate frame(X, Y, Z) coincide
with the camera’s. The projector is located at pointp and stripe
planen has normalt(n). The camera ray associated with pixel
(r, c) is denoted byr(r, c).

The camera’s intrinsic parameters can be found through
Zhang’s method [10] (for example). A printed grid pattern is
attached to a planar surface and captured under different orien-
tations. Figure 3a shows one such image. The grid is extracted
from the images by a corner detector (e.g. [11]) and the cam-
era’s parameters are then estimated using a closed-form solu-
tion. The parameters can be refined further through the mini-

mization of a non-linear functional. We let the camera’s prin-
cipal point coincide with the system origin. After calibration
any pixel(r, c), i.e. at rowr and columnc, in a captured image
can be associated with a rayr(r, c) ∈ R3. The surface pointx
captured at(r, c) is then located atλ r(r, c), as can be seen in
Fig. 2, for some unknownλ > 0.

The projector may be calibrated as follows. A grid pattern
is projected onto a planar surface within the camera’s field of
view and an image is recorded. Such an image is shown in
Fig. 3b. The location and orientation, in system coordinates,
of the planar surface is determined by means of physical mark-
ers at known distances apart (the four outer corner markers in
Fig. 3b). The locations of the projected grid points are found by
computing intersections of this plane with the camera rays cor-
responding to their pixel coordinates. Repeating the process for
different orientations of the plane yields a collection of points
in space that can be used to trace back the positionp of the pro-
jector. A row (or column) of the projected grid can then be used
to determine the relative orientation of the projector. Here it is
assumed that the projector counters the effects of radial distor-
tion internally, which is true for most DLP projectors and can
be verified easily by observing that the projection of any straight
line onto a planar surface remains straight.

The stripe pattern is typically an image consisting of alter-
nating black and white bands of pixel rows, displayed at full-
screen resolution. A single stripe can be associated with some
indexn, directly related to a row (or column) in the pattern, and
the calibration parameters can be used to determine a normal
vectort(n) of the plane containing that stripe (see Fig. 2).

(a) (b)

Figure 3: Examples of captured images for calibrating (a) the
camera and (b) the projector. In (b) the four outer corners are
physically printed on the plane, and the inner grid is projected
by the projector.

2.2. Indexing uncoded stripes

Before 3D surface points can be determined (as Fig. 2 illus-
trates, by intersections of camera rays with projection planes)
the stripes in the recorded image need to be (1) located and (2)
indexed. The latter refers to the assignment of indices to lo-
cated stripe pixels, which correspond to the individual projected
stripes. For example, we may choose to assign an index 0 to the
centre stripe and increase (decrease) the index as the row in the
projection pattern increases (decreases). An indexn can then
be mapped to its corresponding stripe plane.

To locate the stripes in the image a simple and quick linear
search for local maxima in luminance values across every col-
umn can be sufficient, where additional local thresholding can
be applied to reduce the effects of noise.

The method we developed for indexing dense patterns of
uncoded stripes is described in detail in [7] and a brief summary
is given here. The method relies on some geometric constraints
derived from the epipolar geometry [12] of the system. Located
stripe pixels are grouped according to “left–right” adjacencies
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(meant here in an 8-connected sense). Certain smoothness as-
sumptions on the surface are made which then permit the as-
signment of a single index to all pixels in a connected group.
“Up–down” adjacencies between the groups are evaluated in
order to build a weighted directed graph. Here edge weights
favour clear (and likely to be correct) index transitions between
groups. A traversal of a maximum spanning tree of the graph
yields an indexing of all the groups relative to an arbitrary start-
ing point. These relative indices differ from their true values by
some constantK found, in our implementation, through locat-
ing a single reference stripe (noticeable in the image as being
slightly darker than the rest) with known index.

The abovementioned smoothness assumption regards ele-
ments of an apparently continuous stripe in the image as the
same projected stripe. Discontinuities in surface depth of a cer-
tain critical size can nullify this assumption, introduce index-
ing errors and necessitate stripe coding [7]. But we aim to re-
construct near-planar surfaces that should not contain such dis-
continuities and, because the indexing method seeks a solution
that agrees with stripe connections and transitions correctly on
a global scale, errors tend to be small, localized and have little
influence on the pose of the reconstructed model.

Figure 4 shows an example image of a statue’s head, and
a close-up in which the dense stripe pattern can be seen. The
located stripe pixels are shown on the right, coloured according
to assigned indices (note that the colour sequence repeats).

close-up indexed stripes

Figure 4:A captured image and a close-up, in which the dense
stripe pattern can be seen. The stripes need to be located and
indexed, as shown on the right, for reconstruction.

2.3. 3D reconstruction

The above procedure yields a collection of indexed stripe pix-
els, each having pixel coordinates(ri, ci) and an indexni. We
determine each one’s associated surface pointxi as the inter-
section of the camera rayr(ri, ci) with stripe planeni having
normalt(ni). Hence

xi =

(
t(ni) · p

t(ni) · r(ri, ci)

)
r(ri, ci), (1)

wherep indicates the position of the projector (see Fig. 2).
3D points can be calculated for all indexed stripe pixels and

a piecewise linear surface can then be constructed in the fol-
lowing way. Suppose the recorded image hasN columns, letP
indicate the total number of indexed stripes andnmin the small-
est index found. Letx(i, j) indicate the surface point on stripe
ni = i + nmin − 1 captured on image columnj (we know
from the epipolar constraints that an index can exist at most
once in each image column). If such a point does not exist,
i.e. if stripeni is not present in columnj, x(i, j) is flagged as
“missing”. S is then defined to be the quadrilateral mesh con-
sisting of all 4-sided polygons with verticesx(i, j), x(i, j +1),

x(i + 1, j + 1) andx(i + 1, j), with i = 1, . . . , P − 1 and
j = 1, . . . , N − 1. Quadrilaterals containing missing points as
vertices are removed fromS.

An example of a 3D surface reconstructed by this method
is shown in Fig. 5, from the source image shown on the left.
The model is shown from different viewpoints and consists of
roughly 100,000 vertices.

Figure 5: The surface reconstructed from the single image on
the left, shown here from 4 different viewpoints.

Note that the resolution (or smallest measurable interval) of
the system depends on the resolution of the image, as stripes are
found only to pixel accuracy. A so-called sub-pixel estimator
can be applied [13] which has been shown to greatly improve
the resolution. Further surface processing such as hole-filling,
smoothing, subdivision, etc., can also be performed to enhance
the visual appearance of the 3D model.

3. Real-time surface tracking
The aim of this work is to track the position and orientation,
which we collectively refer to aspose, of a near-planar surface
such as an open hand. Figure 6 shows an image captured of a
hand on the left and its reconstruction on the right.

3.1. Pose estimation

We opt to approximate the pose of the hand by a weighted least-
squares plane. The palm should influence the orientation of
such a plane more than the fingertips, hence weights are as-
signed according to the distance from the mean of the collection
of points (assumed to be close to the centre of the palm). Sup-
posexi = (xi, yi, zi), i = 1, . . . , n are the 3D surface points,
and letm denote their mean. The Euclidean distance between
xi andm is denoted bydi. We scale these distances to the
interval(0, 1) and subtract from 1 to arrive at weights

wi = 1− di − dmin

maxj{dj − dmin}
, with dmin = minj{dj}. (2)

The equation of a plane isax + by + cz + d = 0 which,
assuming thatc 6= 0, may be rewritten asαx + βy + γ = z.
The unknownsα, β andγ can be found through a least-squares
solution of the overdetermined system

W

 x1 y1 1
...

...
...

xn yn 1


 α

β
γ

 = W

 z1

...
zn

 , (3)

with W then× n diagonal matrix containingwi, i = 1, . . . , n
on the diagonal. Note that the contribution of each point is actu-
ally weighed byw2

i in the sum minimized by the least-squares
solution to the above system.
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The plane can now be defined completely by its normal vec-
tor n and a pointq on it, where

n =

 α
β

−1

 and q =

 mx

my

αmx + βmy + γ

. (4)

Heremx andmy indicate thex- andy-coordinates ofm re-
spectively and, as it stands,n is not normalized. Note that the
assumption that thez-component ofn will never be zero is valid
because the structured light system cannot reconstruct surfaces
parallel to theZ-axis. An example of a weighted least-squares
plane is shown in Fig. 6 (right).

source image 3D reconstruction

Figure 6:The pose of the hand is approximated by a plane in a
weighted least-squares sense.

The plane estimates one translational and two rotational de-
grees of freedom (DOF) of the pose of the hand. We aim to ex-
tract this information and apply it to some computerized model
in real-time. The structured light system used for the exam-
ples in Fig. 5 and Fig. 6 utilizes a colour camera with resolution
1024× 768, and projects roughly 120 stripes across the surface
of the hand (depending, of course, on the hand’s distance from
the projector). It yields a 3D model consisting on average of
about50, 000 points. The time required for the entire process
by our implementation in C, executed on a Pentium 1.79 GHz
dual-core processor with 2GB RAM, is given in Table 1 (the
process of capturing an image involves sending a request to the
camera, waiting and receiving camera output).

process time (s) Hz
capture image 0.018 56
locate stripes 0.053 19
index stripes 0.087 11
calculate 3D points 0.028 36
determine pose 0.019 53

TOTAL 0.205 5

Table 1:The execution times required by the various processes
in estimating the pose of an open hand.

3.2. Simplifying the system for real-time

Although fast, particularly when considering the size of the gen-
erated models, 5 frames per second (fps) is hardly real-time.
Since we are chiefly interested in the pose of the hand, and in
an effort to speed up the process, the number of points in the
output data can be reduced drastically. A simple test shows
that a reduced version of the 3D model in Fig. 6, consisting

of only about 2,500 points instead of 50,000, produces a least-
squares plane very close to the one fitted to the original data.
The normals differ by only about 0.01 degrees and the points
determined through (4) are only 0.3mmapart.

Our simplified system captures640× 480 images, projects
roughly 35 stripes across the surface of the hand and generates
about2, 500 points. Each image now contains almost 0.4 times
as many pixels and the number of stripes that need to be lo-
cated and indexed is about a third of the number in the original
system. All the algorithms can be implemented in linear time
complexity, except for solving (3) which is quadratic inn. The
execution times achieved by the simplified system are given in
Table 2.

process time (s) Hz
capture image 0.011 91
locate stripes 0.012 83
index stripes 0.016 63
calculate 3D points 0.006 167
determine pose 0.004 250

TOTAL 0.049 20

Table 2:The execution times required for the simplified system
to estimate the pose of an open hand. Experimental tests show
that the result is insignificantly different from that of the original
system.

This technique for estimating the 3D pose of a hand runs
at about 20 fps which can be sufficient for real-time systems.
To demonstrate a possible application we applied the resulting
poses to a model aircraft in a gaming environment; see Fig. 7.
The camera and projector are positioned next to the computer
screen and face towards the user. Note therefore that the hand in
the images captured (and shown in the figure) are the left hand
of the user, and the pictures of the model aircraft are shown as
the user would view them on the screen.

A reference plane is defined for the aircraft which is parallel
to theX–Y plane in system coordinates when the aircraft faces
forward (away from the user, e.g. Fig. 7a). The differences in
rotation and translation from the previous frame are determined,
the plane is transformed at the current frame to coincide with
the estimated pose of the hand, and the aircraft is rotated and
moved accordingly. In this manner two rotational DOF can be
controlled (Fig. 7b and c), and one translation DOF that may be
used to control the forward speed (Fig. 7d).

The three DOF mentioned can be sufficient for this appli-
cation, and provide the user with a immersive sense of control.
The movements of the aircraft appear continuous and smooth,
due to the system operating at approximately 20 fps (the time
required to apply the calculated pose to the aircraft and render
the result is short relative to those listed in Table 2).

The two remaining translational DOF (those that allow two-
dimensional movement within the plane) could be incorporated
as well by simply tracking the bounding box of the hand in the
image. These could then be used to move the aircraft left, right,
up and down. The remaining rotational DOF (allowing in-plane
rotation) is slightly more difficult and would require, for exam-
ple, some analysis of the actual 2D shape of the hand and how
it rotates about the normal of the least-squares plane from one
frame to the next.

Note that in the current system we do not attempt to first
segment the hand from background regions of the image be-
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(a) initial orientation (b) yaw

(c) pitch (d) speed

Figure 7: The position and orientation of a hand is tracked in
real-time and shown here to control the yaw, pitch and speed of
a model aircraft. Note that the images of the hand are shown
from the camera’s point of view and those of the model aircraft
from the user’s.

cause (it is assumed that) the background is far away. Stripes
projected on background objects should therefore be out of fo-
cus so that they are not detected in the image and hence will not
appear in the reconstructed model.

Also, stripes are currently located and indexed in every im-
age frame completely independently. A further speed-up may
be possibly if some temporal consistency constraint is incorpo-
rated, e.g. one that in some way bounds the spatial displacement
of a particular stripe from one frame to the next.

4. Conclusions
We presented a system for the 3D reconstruction and pose track-
ing of a near-planar surface in real-time (around 20 frames per
second). The system incorporates a simple structured light ap-
proach with a pattern of uncoded stripes to acquire 3D surface
data, and fits a weighted least-squares plane in order to estimate
position and orientation. A possible use was demonstrated in
the form of an HCI system where the user controls 3 degrees
of freedom of a model aircraft by moving and rotating an open
hand in front of the structured light device.

The technique can be applied to various other problems
such as the real-time capturing of non-rigid surfaces for defor-

mation analysis or animation purposes, or the data generation
and analysis for dynamic scene understanding.
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Abstract
This paper presents a fiducial-based approach to monitoring the
movement of breakwater armour units in a model hall environ-
ment. Target symbols with known dimensions are attached to
the physical models, allowing the recovery of three-dimensional
positional information using only a single camera. The before-
change and after-change fiducial positions are matched opti-
mally, allowing the recovery of three-dimensional movement
vectors representing the shifts in the positions of the physical
models. Experimental results show that sub-millimeter accu-
racies are possible using 6-megapixel images of an A4-scale
scene.

1. Introduction
Most harbours are occasionally subjected to storms powerful
enough to damage infrastructure and ships, unless some pre-
ventative measures are taken. To protect the harbour infrastruc-
ture, arrays of armour units are used to absorb wave energy and
reduce overtopping. The armour unit arrays must dissipate as
much energy as possible, without deforming or suffering dam-
age to the armour units themselves. This can be achieved by
using armour units with an interlocking structure, such as the
dolos, invented in East London in the 1963 [1].

Currently, the most effective method of validating the de-
sign of armoured breakwater structures is by building and eval-
uating physical scale models. A scale model of an entire har-
bour is constructed, complete with a sea floor modelled from
bathymetry data. Wave generators are used to simulate wave
conditions corresponding to 1000-, 100-, and 50-year storms.
A successful armoured breakwater design will suffer little or no
damage, measured in the model hall by assessing the magnitude
of shifts in the positions of the scale model armour units. The
CSIR’s model hall facility, located in Stellenbosch, routinely
conducts tests of this nature. Owing to the time-consuming na-
ture of the physical modelling process, efforts are under way
to develop computer simulations to assist with the validation of
harbour designs [2].

Although physical models are considered to be an effective
method of determining the stability of an armoured breakwa-
ter structure, the method used to evaluate the impact of simu-
lated storm conditions is often subjective. Current methods of
assessing damage to a breakwater include a visual comparison
of a pair of before-simulation and after-simulation images. By
displaying the before and after images in rapid succession, the
changed regions of the scene appear to flicker — this technique
is often referred to as flicker animation [3]. An operator will
manually draw lines, representing movement vectors, on top of

the flicker animation. A final assessment of the degree of dam-
age that a breakwater structure has suffered during a simulation
can then be estimated from the number and magnitude of the
displacement vectors.

In addition to the subjective nature of the flicker technique
measurements, they are inherently restricted to two dimensions.
One potential method of improving the accuracy of the mea-
surement of the movement of armour unit models is to attach
accelerometers to the physical models. This, however, may
restrict the movement of the models, and could become pro-
hibitively expensive for larger tests involving many hundreds of
armour units.

This paper proposes a different, cost effective method of
measuring the movement of armour units using monocular ma-
chine vision techniques. Printed fiducial patterns are attached
to the physical scale models, enabling an automated system to
track the three-dimensional displacement of the models with
millimeter accuracy.

Section 2 briefly discusses some recent applications of fidu-
cials, followed by a description of the proposed system in Sec-
tion 3. An empirical analysis of the positional accuracy of the
system is presented in Section 4. Section 5 discusses how the
fiducial method has been applied to compute the displacement
of armour unit models, followed by some suggestions for future
research in Section 6.

2. Background
2.1. Fiducial patterns

Fiducials are special geometric patterns that are used as refer-
ence points in machine vision systems. They have long been
used in applications such as printed circuit board alignment,
but have recently gained popularity in augmented reality ap-
plications. In these applications, the fiducials are used to define
navigation reference points in a three-dimensional space; for
example, Naimark and Foxlin demonstrated the use of fiducial
patterns to mark up entire buildings [4].

The intended application of a fiducial has a significant im-
pact on its design: some fiducials patterns are optimised to have
a very large number of codes, while others are designed to pro-
vide very high positional accuracy. Some of the earlier applica-
tions in circuit alignment relied on very simple fiducial patterns
such as squares, diamonds or circles. Owing to their simplic-
ity, these fiducials could not encode a large number of different
codes, but they were simple to detect. Amongst these early fidu-
cials, Bose and Amir showed that circular fiducials produced
significantly smaller positional errors compared to squares or
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diamonds [5].
Owen et al. proposed a square fiducial based on Discrete

Cosine Transform (DCT) basis images [6]. The fiducial is iden-
tified by a square black border surrounding the DCT-coded in-
terior. The interior of the fiducial is represented as a 16 × 16
block, meaning that under ideal conditions, the fiducial can still
be identified when the sampled image of the fiducial is only
around 16 × 16 pixels in size. The advantage of the DCT-
coded interior is that it provides a medium-sized coding space of
around 200 codes, while maintaining robustness to noise. An-
other augmented reality fiducial system built around square pat-
terns was proposed by Rekimoto and Ayatsuka [7]. Their Cy-
berCode fiducial pattern more closely resembles a 2D barcode,
and can encode 24 bits of information, after error correction.
Unfortunately, Rekimoto and Ayatsuka do not elaborate on the
minimum image size required or maximum viewing angle al-
lowed for successful identification.

Despite the success of such square-based fiducial patterns,
the circular patterns remain popular. Recent examples include
the code proposed by Naimark and Foxlin, which can encode
215 = 32768 different codes [4]. The minimum image size re-
quired for successful fiducial identification reported by Naimark
and Foxlin was 16× 16 pixels; no figures were reported on the
maximum allowed viewing angle. Another circular fiducial was
proposed by López de Ipiña et al. for use in their TRIP location
system [8]. The TRIP code consists of a “bull’s eye” pattern
in the centre, which is used to identify potential fiducials in the
image. Two concentric tracks surround the central bull’s eye, in
which a sector-based scheme with three discrete sector sizes is
used to encode the code value of a fiducial. This design allows
for up to 39− 1 = 19682 different code values. López de Ipiña
et al. report that the fiducials can be successfully identified pro-
vided that the pattern is at least 35 × 35 pixels in size, and the
angle between the viewing direction and the surface normal is
less than 70◦.

2.2. Correspondence problem

The correspondence problem can be defined as the problem of
finding the optimal association between two sets of features, al-
lowing for the possibility that either set may contain elements
that have no corresponding element in the other set. To calcu-
late the movement vectors of fiducial patterns from a before-
and after-simulation image pair, a similar correspondence prob-
lem arises: Given a fiducial pattern in the before-simulation im-
age, find the most likely matching fiducial pattern in the after-
simulation image.

In the simplest case, where only a single fiducial code pat-
tern is attached to all the armour unit models, this would reduce
to the problem of finding the closest point Pj (corresponding to
the centroid of a fiducial pattern) in the after image correspond-
ing to the point Pi in the before image. If more than one fiducial
code is used, then this problem is constrained so that points may
only be matched if their codes agree.

A simple algorithm that could be used to solve this type
of correspondence problem is the Iterated Closest Point (ICP)
method [9]. This algorithm computes the distances between all
points, keeping only distances below a specified threshold. Af-
ter rejecting outliers, a rigid motion transform is then computed
on the remaining points. The algorithm iterates these steps un-
til convergence. After the two sets have been aligned with the
transform, the closest point pairs could be used as the corre-
spondence map.

A more robust method was introduced by Maciel and

(a) (b)

Figure 1: Sample fiducial patterns.

Figure 2: Sample image of two dolos models with various fidu-
cial patterns attached.

Costeira [10]. Consider that the mapping of points in set X
onto the points in set Y can be represented as a partial permu-
tation matrix P. This matrix resembles an identity matrix, with
some of its rows exchanged, and potentially with some of the
rows or columns set to zero. Finding the best mapping between
X and Y can then be expressed as

P∗ = arg min
P

J(X,Y,P)

s.t. P ∈ Pp(p1, p2).

where J represents a metric that compares elements from X
and Y, and Pp(p1, p2) represents the space of all partial per-
mutation matrices, i.e., matrices containing at most one “1” in
each row or column.

Solving this integer optimisation problem is hard; Maciel
and Costeira proposed a method that maps the integer optimisa-
tion problem to a dual problem on a continuous domain, where
is can be solved efficiently using concave programming meth-
ods. If the metric J is linear, then this approach is guaranteed
to find the globally optimal solution P∗.

3. System overview
Based on the literature presented in Section 2.1, a simplified
circular fiducial pattern, roughly similar to the one proposed
by López de Ipiña et al. [8] was selected. Figure 1 presents
some examples of this fiducial pattern. This particular fiducial
has a fairly large white ring between the central dot and the
outer coding track to reduce aliasing problems when viewing
the fiducial from a direction with an angle of more than 70◦

with respect to the surface normal.
These fiducials were scaled so that the diameter of the outer

track was 7.1 mm in size to match the scale of the physical
models, printed at 600 DPI using a standard laser printer, and
fixed to the physical models as illustrated in Figure 2.
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Figure 3: System overview

A system overview diagram is presented in Figure 3. The
following algorithms were used to perform each of the steps:

1. The black regions in the image are identified by perform-
ing adaptive thresholding using the method of Bradley
and Roth [11].

2. The pixel boundaries of objects are extracted using the
component-labeling algorithm of Chang et al. [12]. Ob-
jects with very short boundaries (fewer than 10 pixels) or
very long boundaries are discarded. This step produces
all the boundaries of potential ellipses, corresponding to
the central circle in the fiducial pattern.

3. Ellipse extraction is performed using the method of
Ouellet and Hebert [13]. Note that the object bound-
aries extracted in step 2 are only used to seed the el-
lipse extraction algorithm; the algorithm derives ellipse
parameters directly from the image gradient, producing
significantly more accurate estimates of ellipse parame-
ters compared to conventional algorithms. Objects that
are unlikely to be ellipses are discarded by testing against
conservative thresholds on various ellipse properties.

4. The fiducial code pattern is extracted by sampling the
thresholded image along an elliptical path around the
central dot of the candidate fiducial. The extracted sig-
nature is compared (using the Hamming distance met-
ric) to a template library of known fiducial codes. Once
a fiducial pattern is successfully identified, its fiducial
code identifier and 3D coordinates are recorded. The 3D
coordinates are determined directly from the ellipse pa-
rameters using the method proposed for the TRIP system
[8].

5. The before-simulation (t1) and after-simulation (t2) im-
ages are processed with steps 1–5 to obtain the coordi-
nates and identifiers of the fiducials in both images. The
algorithm of Maciel and Costeira [10] is used to find the
optimal association between fiducials from image t1 and
image t2, producing as output the correspondence map-
ping.

6. Using the 3D coordinates of the fiducial patterns and the
correspondence mapping, the displacement vectors of
each of the matched fiducials is computed. For the pur-
poses of this paper, the displacement vectors are merely
visualised, but subsequent processing of the displace-
ment vectors may be used to estimate the degree of dam-
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degraded synthetic images (blur σ = 0.5, noise σ = 1%).
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age to a breakwater armour unit array following a wave
simulation.

4. Performance evaluation of fiducials
The projection of a circle in world space onto the image plane is
an ellipse, provided that a distortion-free pinhole camera model
is assumed. A real lens will introduce some distortion, but be-
cause the lens distortion function typically varies slowly relative
to the size of a fiducial, one can assume that the projection of a
circle can be approximated with an ellipse.

A direct relationship exists between the imaged size of a
fiducial, such as the one shown in Figure 1, and the accuracy
with which its 3D position can be determined. The approximate
ellipse formed by the boundary between the central black dot
and the surrounding white ring is used to estimate the pose of
the projected circle that it represents. Three factors directly in-
fluence the quality of this boundary ellipse: quantisation noise,

(a) 70◦ (b) 75◦ (c) 80◦

Figure 6: Synthetic images, corresponding to the 35× 35 pixel
size experiment, magnified 500%. At this size, only (a) and (b)
were successfully detected by the system.
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Table 1: Maximum standard deviation (in mm), computed per
slant angle, over slant angles < 70◦, derived from degraded
synthetic images.

Degradation (σ) Fiducial size (pixels)

Blur Noise 120×120 60×60 45×45 35×35

0.5 1% 0.101 0.497 1.487 9.051
0.5 2% 0.203 0.989 2.059 5.991

0.7 1% 0.122 0.623 1.565 4.292
0.7 2% 0.245 1.238 2.378 7.907

Table 2: Maximum z-coordinate error (in mm) over slant angles
< 70◦, computed from degraded synthetic images.

Degradation (σ) Fiducial size (pixels)

Blur Noise 120×120 60×60 45×45 35×35

0.5 1% 1.338 3.986 10.11 41.99
0.5 2% 1.534 5.042 11.42 46.08

0.7 1% 0.797 7.587 16.46 47.02
0.7 2% 1.037 8.902 18.42 52.55

sensor noise, and defocus blur.
Quantisation noise is effectively reduced by increasing the

size of the ellipse, since more pixels now participate in its def-
inition. Additive sensor noise is also effectively reduced by in-
creasing the size of the ellipse, since the expected mean value
of additive noise tends to zero as the number of pixels along the
boundary of the ellipse increases. Defocus blur tends to spread
the boundary over a larger area, ultimately leading to degrada-
tion owing to quantisation errors introduced by the limited bit
depth of each pixel.

A monocular 3D pose approach is particularly sensitive to
defocus blur, because this (together with quantisation) affects
the apparent size of the ellipse, which in turn affects its esti-
mated distance from the camera centre. The effect of the slant
angle, that is, the angle between the surface normal of the fidu-
cial and the viewing direction, should also be considered. In-
tuitively, as a circle turns away from the viewing direction, the
eccentricity of its projection as an ellipse also increases, which
effectively reduces the length of the boundary used to estimate
the ellipse parameters, leading to larger errors in position es-
timates. In order to track displacements in the sub-millimeter
range, the calculated position estimates must be repeatable, i.e.,
their standard deviation over repeated measurements must be
less than one millimeter.

4.1. Experiments using synthetic images

To evaluate the effect of these degradations on the proposed sys-
tem, a number of experiments involving synthetic images were
performed. For each viewing distance, a total of 90 base images
are created using the POVRay ray tracer1. These base images
correspond to fiducial patterns with slant angles from 0 to 90 de-
grees, in 1-degree increments. Each image was degraded first by
blurring with a Gaussian kernel to simulate defocus, followed
by the addition of zero-mean Gaussian noise to simulate sensor
noise. For each viewing angle, distance and blur combination,
a total of 30 additive noise images were instantiated. This pro-

1http://www.povray.org

cess was repeated for several fiducial sizes, representing images
captured at various distances from the target. Figure 6 illustrates
some fiducial patterns viewed at large slant angles.

In a monocular 3D tracking system, it is expected that the
extraction of the z-coordinate will be less reliable than the x-
and y-coordinates. It is therefore important to measure the ro-
bustness of z-coordinate estimates on degraded images. Fig-
ure 4 illustrates the effects of slant angle and fiducial size on
such degraded synthetic images. Observe how the z-coordinate
standard deviation of the largest fiducial remains very small
for slant angles less than 80◦, whereas the smallest fiducial, at
35×35 pixels, produces significantly larger standard deviations,
and degrades rapidly at slant angles greater than 55◦. Table 1
lists the maximum standard deviation for a given target size at
slant angles below 70◦ for various noise and blur combinations.

Similarly, Figure 5 and Table 2 illustrate the effective error
in the z-coordinate under different slant angle and degradation
combinations. The TRIP system [8] was reported to produce a
z-coordinate error of 60mm at a slant angle of 60◦ at a distance
of 1900mm, resulting in an error of 3.15% at the equivalent of
a 35 × 35 pixel fiducial size. On the same size fiducial, our
system achieves a maximum error of 14.7mm on slant angles
below 60◦ at a distance of 1320mm, or 1.11% using degraded
synthetic images2 — see Figure 5. This indicates that the posi-
tional accuracy of the proposed system is comparable to that of
the TRIP system.

The physical dolos models shown in Figure 2 measure
around 38mm in length. From Table 2 one can see that the
60×60-pixel fiducial produces z-coordinate errors on the order
of 10% of the size of the model at large slant angles. Fortu-
nately, the x- and y-coordinate estimates are much more robust
than the z-coordinate estimates. For comparison, the maximum
Euclidean error (after discarding the z-coordinate) over all slant
angles is only 0.0659mm for the values corresponding to row
one of Table 2. This would suggest that a weighted Euclidean
distance should be used when computing tracking the move-
ment of a fiducial over time.

4.2. Experiments using captured images

In order to relate the synthetic results to real images captured
with a digital camera, an experiment was set up to compare rela-
tive distances in both the real and synthetic images. Real images
were captured using a 6-megapixel Nikon D40 camera at a focal
length of 45mm. The images were captured in raw mode, and
all the standard processing steps (such as sharpening) were dis-
abled. The images were not corrected for lens distortion, since
these effects are negligible in the central area of the lens used
in these tests. The fiducials were imaged at distances ranging
from 600mm to 900mm in 100mm increments. The diameter of
the printed fiducials 7.1mm, to match the scale of the physical
dolos models.

Figure 7 shows an image captured under the conditions
used to evaluate the accuracy of distance measurements be-
tween fiducials. The combination of sensor noise, paper grain,
and toner unevenness results in an estimated additive noise
component of between 0.5% and 1% of the dynamic range.
The same configuration was also modeled and rendered using
POVRay. Table 3 lists mean distances measured between the
fiducials, computed from a sample of 10 images at each camera-
to-target distance. From the table one can see that the captured

2Our fiducial central dot is smaller, relative to the outer track, than
the one used in TRIP. This accounts for the fact that the same size image,
35 × 35 pixels, results in different distances from the camera.
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Figure 7: Fiducial test configuration image: the fiducial on the
left (~v3) is 25mm further from the camera than the two coplanar
fiducials (~v1, ~v2) on the right.

Table 3: Mean relative distance measures (and standard devia-
tion) obtained from real and synthetic images. The matrix P de-
notes a projection onto the z-axis, and ~v1, ~v2 and ~v3 denote the
3D centre coordinates of three different fiducials. The expected
values for the measures are 25mm and 10mm, respectively.

Camera ‖P~v1 −P~v3‖ (mm) ‖~v1 − ~v2‖ (mm)

distance (mm) Real Synth. Real Synth.

600 27.700 24.956 9.964 10.090
(0.219) (0.309) (0.0187) (0.0483)

700 24.272 23.633 10.043 10.043
(0.441) (0.328) (0.0676) (0.0057)

800 22.067 23.241 10.146 10.200
(0.470) (0.387) (0.0790) (0.0427)

900 21.474 23.992 10.464 10.107
(0.965) (0.549) (0.1632) (0.0301)

images (“Real”) exhibit a slight trend, so that the z-distance be-
tween the fiducials appears to decrease as the camera moves fur-
ther away from the fiducials. This effect can be partly attributed
to the difficulty of obtaining the exact same focus quality at mul-
tiple camera-to-target distances — Table 2 clearly shows that
increased blur, corresponding to poorer focus, leads to larger
z-coordinate errors. The degraded synthetic images (produced
with a blur σ of 0.5, and a noise σ of 1%) did not appear to
suffer from this effect, as could be expected.

It is encouraging, to see that the standard deviation of z-
distances captured at a distance of 800mm is less than 0.5mm.
Distances measured between coplanar fiducials at the same dis-
tance from the camera appear to be much more robust, yielding
an error of less than 0.2mm at a distance of 800mm, with a stan-
dard deviation of less than 0.08mm. From Table 3, it appears
that a distance of 700mm offers sufficient accuracy to measure
displacements on the order of 0.5mm with the camera specified
above. Since these measurements were performed at a slant an-
gle of 0◦, it will still be necessary to filter fiducials with large
slant angles, or to apply a weighted Euclidean metric to com-
pensate for the large z-coordinate measurement errors that oc-
cur at large slant angles.

5. Application
The system described in Section 3 was used to track the move-
ment of fiducials attached to physical breakwater armour unit
models. For this experiment, the “dolos” type armour unit was
selected, and four different fiducial patterns were attached to the
four end-points of the dolos models. Note that the same four

(a) Before movement, 50% cropped image

(b) Before movement, 5% cropped image

(c) After movement, 5% cropped image

Figure 8: Displacement vectors, calculated automatically by
computing the movement of the fiducials between the two
frames.

fiducial patterns were attached to all the dolosse, hence is it is
not possible to uniquely identify a given dolos only by the code
associated with its fiducial patterns. This method is at one ex-
treme, where there are many objects with identical fiducials —
it is possible to use more fiducial codes, but it may not be pos-
sible to assign unique fiducials to all the models in large simu-
lations involving hundreds of dolosse. This experiment thus re-
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lies heavily on correspondence matching to correctly track the
movement of fiducials, and is therefore considered to be a more
stringent test of the system.

An array of dolosse were arranged as shown in Figure 8(a).
A number of dolosse were manipulated by hand to approximate
the (hypothetical) movement induced by a wave-tank simula-
tion. A second image was captured after the induced movement
— a close-up of a region containing significant movement is
shown in Figures 8(b) and (c). The green and red cylinders
represent 3-dimensional displacement vectors. They were ren-
dered using POVRay, and superimposed on top of the original
images. Green cylinders represent a displacement of a matched
pair of fiducials, i.e., the exact same fiducial pattern occurred
in the before and after images. Red cylinders indicate that the
fiducial pattern types did not match, but that these are still likely
candidates for a match, based on their physical proximity. For
example, the two red cylinders visible in the upper left corner
of Figure 8(a) are the result of the upper left-most dolos being
displaced and overturned. This implied that the fiducials visi-
ble in the before image were facing away from the camera in
the after image, but the correspondence algorithm still matched
them with the fiducials on the reverse side of the model since
they were still considered to be the most likely candidates.

Allowing matches between fiducials with different patterns
can help to identify large displacements, but these matches are
inherently less reliable than matches with identical patterns,
and are only allowed here to illustrate the advantage of using
a global correspondence matching algorithm.

If a large number of fiducial codes is used, then each indi-
vidual dolos may receive its own code, unique within a certain
radius in the original packing. This will reduce the possibility
of incorrect matches to zero for most simulations.

6. Conclusions
This paper demonstrated that fiducials can used to track the
movement of physical breakwater armour unit models to a sub-
millimetre scale. The sensitivity and robustness of the system
was investigated using both synthetic and captured images. Es-
timating the z-coordinate of a circular target using a monocular
3D system is feasible, but the accuracy and robustness of this
estimate is heavily influenced by the size of the target, and the
slant angle. On captured images, the absolute error in extracted
x- and y-coordinates can be kept below 0.2mm; the absolute z-
coordinate errors are on the order of 2–3mm, but with a standard
deviation of less than 0.5mm.

The fiducial pattern used in our experiments depends on
the central dot for the position calculations. In retrospect, this
seems to have been a poor choice, since a different design, like
that of Naimark and Foxlin [4], allows one to use the outer
perimeter of the fiducial as circular reference. This would im-
ply that the effective diameter of the circle would increase by a
factor three, without increasing the physical size of the pattern.
Even a more modest increase by a factor of two could reduce
the position errors by a factor of three, as shown in Section 4.
Future work will focus on repeating the experiments with an
alternative fiducial design that maximises the size of the circle
used to perform pose estimation.
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ABSTRACT

A  speech  processing  system  is  often  required  to 
perform in a different  environment than the  one for 
which it was initially developed. In such a case, data 
from the  new  environment  may be more  limited  in 
quantity  and  of  poorer  quality  than  the  carefully 
selected  training  data  used  to  construct  the  system 
initially.  We  investigate  the  process  of  porting  a 
Spoken Language Identification (S-LID) system to a 
new environment and describe methods to prepare it 
for  more effective  use. Specifically  we  demonstrate 
that  retraining  only  the  classifier  component  of the 
system  provides  a  significant  improvement  over  an 
initial  system  developed  using  acoustic  models 
channel-normalized to the new environment. We also 
find  that   the  most  accurate  system  requires 
retraining of both the  acoustic  models  and the  final 
classifier.

Index Terms — Spoken Language Identification, 
S-LID.

 1. INTRODUCTION

Spoken  Language  Identification  (S-LID)  is  the 
process  whereby  a sample  of audio speech from an 
unknown  source  is  classified  as  one  of  several 
possible languages [1]. This can be done in a number 
of ways, including sampling the prosodic information 
or  processing  information  extracted  from  specified 
tokens,  where  such  tokens  may  be  phonological  or 
syntax  related  [2].  In  the  latter  case,  spoken  LID 
differs  significantly  from textual  LID  because  text 
already  consists  of  properly  defined  and  accurate 
tokens  (such  as  alphabetical  letters)  while  these 
tokens  (such  as  phonemes)  must  first  be  extracted 
from audio speech, and may not  be accurate.

In addition,  more accurate  S-LID systems  usually 
are more complex and require a larger amount of data 
to  create  systems  with  sufficient  performance  [3]. 
The popular Parallel Phone Recognition and Language 
Model  (PPR-LM)  approach  [1]  provides  reasonably 
high  system  accuracy  with  acceptable  data 
requirements,  and is the approach experimented with 
in this paper. 

In  a  PPR-LM system,  separate  phone recognizers 
are  used  to  tokenize  an  incoming  audio  signal 
individually,  and  a  classifier  trained  to  identify  the 
language spoken based on the  token strings  received 
in  parallel  from  the  various  phone  recognizers. 
Initially based on language modeling scores,   various 
classifiers  have  since  been  used  in  literature,  with 
Support  Vector  Machines  (SVMs)  achieving  high 
accuracy [4].

Once  developed  for  a  specific  environment,  it  is 
often required that a S-LID system be ported to a new 
environment. Data from such a new environment may 
be more limited in quantity and of poorer quality than 
the  carefully  selected  training data  used to construct 
the system initially. 

We  investigate  the  process  of  porting  a  PPR-LM 
based  S-LID  system  to  a  new  environment  and 
describe methods to prepare it for more effective use. 
Specifically  we compare  the  effect  of re-training the 
classifier  component with that  of re-training both the 
acoustic modeling and classifier component and report 
on results.

The paper is structured as follows: In section 2 we 
describe the design of our baseline system. In section 
3  we  describe  the  porting  process  step  by  step, 
specifically  focusing  on  data  preparation,  initial 
system  adaptation,  classifier  adaptation,  acoustic 
model  adaptation  and  final  analysis. Section  4 
contains some concluding remarks. 
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 2. BASELINE SYSTEM DESIGN

We  develop  an  initial  S-LID  system  able  to 
identify  three  languages:  English,  French  and 
Portuguese.  English  data  is  obtained  from the  Wall 
Street  Journal  corpus,  and  French  and  Portuguese 
data  from the  GlobalPhone  corpus  [6].  (These  two 
corpora have similar acoustic characteristics.) 

Using  a  PPR-LM  approach,  we  develop  three 
Automatic  Speech  Recognition  (ASR)  systems 
capable of performing phone recognition, each in one 
of the languages English, French or Portugues. These 
ASR systems utilize Hidden Markov Models (HMM) 
which have been trained to recognize bi-phones from 
Mel Frequencies Cepstral Coe cients (MFCC). Theffi  
training of the HMMs as well as the extraction of the 
MFCCs  from the  audio  signal  are  performed  using 
the  HMM  Tool  Kit  (HTK)    [7].  These  phone 
recognition  systems  run  in  parallel  with  one  other, 
each  yielding  a  phoneme  string  for  a  given  speech 
sample. 

We use the 'Bag-of-Sounds' principle to model the 
frequencies  of  phonemes  as  a  vector,  with  the 
frequency  of  each  phoneme  within  the  sample  of 
speech representing an element of this vector. These 
vectors  are  then  used  to  train  a  Support  Vector 
Machine (SVM) using the LIBSVM [5] toolkit. In all 
experiments,  a  radial  basis  function  kernel  is  used 
and  the  kernel  width  and  misclassification  cost  are 
optimized  using  a  grid  search.  Multiple  classes  are 
handled using a 1 against n-1 scheme.

Using a flat phone grammar with approximately 40 
phones  per  language,  we  achieve  phone recognition 
accuracies of 48% to 66% for the three ASR systems 
on  an  independent  test  set.  While  these  accuracies 
seem fairly  low, they  are  sufficient  to obtain highly 
accurate  S-LID results,  as  displayed  in  Table  1. S-
LID results  are  obtained using the  same test  set  as 
used to report  on ASR  accuracies,  and durations  of 
the speech samples range from 10 to 60 seconds each.

Language Word recognition 
accuracy

S-LID accuracy

English 52.8% 98.9%

French 66.2% 94.9%

Portuguese 48.1% 97.7%

Table 1: Accuracies achieved by baseline system

 3. PORTING THE S-LID SYSTEM

In this  section we first  discuss  the new environment 
investigated  and  the  data  available  from  this 
environment,  before  providing  detail  with  regard  to 
the different aspects of our approach to porting the S-
LID  system,  specifically  consisting  of  (1)  data 
preparation, (2) initial system adaptation, (3) classifier 
adaptation, (4) acoustic model adaptation and (5) final 
analysis. 

 3.1 Data description

In order to investigate porting of the S-LID system to 
a new environment,  we utilize a telephone corpus of 
African  variants  of  the  three  languages  of  interest 
(referred to from here onwards as the African corpus). 
The  African  corpus  consists  of  approximately  45 
hours  of  speech  separated  into  English,  French  and 
Portuguese variants  spoken on the African continent. 
The speech is untranscribed and no additional speaker 
information is  available.  Single  calls  are  assumed to 
be from a single speaker and most calls  are assumed 
to be from different  speakers.  The amount of data, in 
hours, is displayed in Table 2. 

The initial  S-LID system is  therefore  required  to 
perform  in  a  new  environment  with  significantly 
different  channel  conditions  and  speech  dialects.  In 
addition, the new data contain non-speech signals  as 
well as competing background noises. 

Data from the three different languages in the new 
corpus are identified according to language. The new 
corpus is separated into a training and test  corpus as 
indicated below, with the same test set used to report 
on  results.  Care  is  taken  to  ensure  that  the  same 
speaker  is  not  included in both the  training and test 
set.
Language GlobalPhone African Corpus

train test train test

English Hours 20.2 4.85 16.77 4.3

Speakers 83 19 250 25

French Hours 21.6 5.3 8.25 2.07

Speakers 80 21 109 26

Portugue
se

Hours 14.4 3.6 11.18 2.84

Speakers 77 25 108 28

Table 2: Training and testing data statistics.
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 3.2 Data Preparation

Our first task is to pre-process the new data. We use 
diarization  techniques  to separate  the  different 
speakers  and to remove any non-speech signals. We 
also remove long sections of silence from the audio, 
perform  amplitude  normalization  and  segment  the 
new  audio  files  into  sections  of no larger  than  one 
minute each.

 3.3 Initial  System Adaptation

Once  the  new  data  has  been  preprocessed  (as 
above)  it  can  be  used  to  estimate  the  channel 
conditions of the new environment. The GlobalPhone 
corpus  can  now  be  downsampled  (to  8KHz,  the 
sampling frequency of the African corpus), amplitude 
normalized and channel normalized in order to better 
match the new environment [8]. 

In order to verify the new system, ASR and S-LID 
accuracies  are calculated using the same test  corpus 
as  before.  While  ASR  accuracies  decrease  with 
between  7%  and  14%  absolute,  overall  S-LID 
accuracy  increases from 97.18% to 98.26%. 

It  should be noted that  these  results  still  refer  to 
data  from the  previous  (GlobalPhone)  environment. 
Once this system is tested using the new data, an S-
LID accuracy of only 47.02% is obtained.

 3.4 Classifier Adaptation

We now adapt the classifier to the new environment: 
we  tokenize  the  new  training  data  using  the 
normalised  GlobalPhone  recognizers  and  use  these 
phone  stings  to  re-train  the  SVM.  S-LID  accuracy 
improves  dramatically,  from the  previous  47.02% to 
62.57%.  The differences  in performance between an 
optimal  system  (GPhone  train&test),  an  unported 
system (GPhone train & African test)  and the ported 
system with only the SVM adapted (African train  & 
test) are depicted in Figure 1.

 3.5 Acoustic Model Adaptation

In order to further improve the performance of the 
system  with  the  African corpus,  we  train  new 
acoustic  models  for  the  tokenizers.  We  use  the 
normalised  GlobalPhone  recognisers  to  bootstrap 
transcriptions  for  the  new  data (since  the  African 
corpus is not transcribed), and use these transcriptions 
to train new acoustic  models. [9] Once new acoustic 
models are trained,  these  are  used to re-tokenize  the 
new audio data and re-train the classifier. 

Initially  results  are  disappointing  as  S-LID 
accuracy  falls  to  60.58%.   However,  when 
transcriptions  are filtered to exclude the training and 
test  utterances  that  were  clearly  hard  to  recognize 
(transcriptions that contain fewer than one and a half 
phones  per  second)  S-LID  accuracy  increases  to 
68.88%. This is  the highest  accuracy obtained using 
the  full  test  set.  The  effect  of  using  different  ASR 
systems on S-LID accuracy is depicted in Figure 2.

Figure 1: S-LID Accuracy  when the GlobalPhone 
ASR system is used, but the SVM  is trained on 

different  corpora.
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 3.6 Final Analysis

While  an  improvement  from  47.02% to  68.88% is 
significant,  these  results  are  still  lower  than 
anticipated   and  further  analysis  of  the  data  set  is 
required.  When  subsets  of  the  new  data  set  are 
systematically  listened  to  by  human  verifiers  it  is 
noted  that  the  new  corpus  contains  data  of  highly 
variable quality.

While  initial  random  testing  of  the  corpus 
provided some indication of the quality of the data, a 
systematic analysis  by human verifiers indicates that 
significant  portions  of  the  corpus   contain  the 
following problematic subsets:

• Data incorrectly labeled or unusable, meaning 
that  the  language  spoken is  neither  English, 
French or Portuguese (‘Unusable’).

• Data  correctly  labeled,  but  spoken  with  a 
strong accent (‘Accented’).

• Data correctly  labeled but  consisting mostly 
of noise  with similar  spectral  characteristics 
as  speech,  which  the  diarization  system did 
remove (also included as ‘Unusable’). 

Data  correctly  labeled  and  identifiable  as  either 
English,  French  or  Portuguese  are  indicated  as 
‘Correct’  by  the  human  verifiers.  The  number  of 
samples evaluated that falls within each category for 
each of the languages is listed in Table 3. (Note that 
only a subset of the full corpus was evaluated.) 

Language Unusable Accented Correct

English 109 72 118

French 110 4 159

Portuguese 35 1 109

Table 3: Number of samples per category as verified by 
human verifiers

This table provides a new perspective on the results 
obtained (in Section 3.5). As a large percentage of the 
samples  are  in fact  unusable,  an S-LID accuracy  of 
68.88%  is  indeed  highly  encouraging.  Further 
analysis and optimisation can now be done using the 
smaller  “correct”  subsets  in order to obtain a better 
indication of system performance.

 4. CONCLUSION

In this  paper we describe the process  of adapting an 
existing  S-LID  system  to  a  new  environment.  We 
describe  the  different  stages  in  such  a  process  and 
provided  results  for  each  stage.  We  highlight  the 
importance  of verifying the  quality  of the  data  from 
the  new environment  systematically  as  an important 
step  during  system  porting.  We  show  that 
bootstrapping  transcriptions  from  existing  ASR 
systems,  and  re-training  the  classifier  using  the 
bootstrapped  transcriptions  provide  a  significant 
improvement  in  performance  and  that  the  most 
accurate  system  requires  retraining  of  both  the 
acoustic models and the final classifier,  this is with a 
small margin only

In further work we are currently repeating some of 
the  above experiments  using only the  small  portions 
of  data  identified  as  “Correct”  during  human 
verification.  We  are  also  investigating  automated 
mechanisms  to  identify  problematic  audio  samples 
during system development.
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Abstract 

The paper presents the investigation and implementation of the 

relationship between diversity and the performance of multiple 

classifiers on classification accuracy. The study is critical as to 

build classifiers that are strong and can generalize better. The 

parameters of the neural network within the committee were 

varied to induce diversity; hence structural diversity is the focus 

for this study. The number of hidden nodes and the output 

activation function are the parameters that were varied. The 

diversity measures that were adopted from ecology such as 

Shannon and Simpson were used to quantify diversity. Genetic 

algorithm is used to find the optimal ensemble by using the 

accuracy as the cost function. The results observed shows that 

there is a relationship between structural diversity and accuracy. 

It is observed that the classification accuracy of an ensemble 

increases as the diversity increases. However, there is a point 

where as diversity increases, the accuracy does not increase. 

Furthermore, the paper also presents the effect of ensemble size 

on the prediction accuracy. This investigation is necessary in 

order to know and ensure the optimal size of classifiers that can 

be used in an ensemble. It has been observed that as the size of 

the ensemble increases, the accuracy increases. 

Key words: Classification, Diversity Measures, Ensemble Size, 

Genetic Algorithm, Structural Diversity  

1. Introduction 

Computational intelligence techniques have been used in 

many classification problems. The literature emphasises 

that a group of classifiers is better than one 

classifier [1-5]. This is because the decision that is made 

by a committee of classifiers is better than the decision 

made by one classifier. In this paper the committee of 

classifiers will be referred as an ensemble. The most 

popular way to gain confidence on the generalisation 

ability of an ensemble is by introducing diversity within 

the ensemble [1, 2, 5]. This has led to the development of 

measures of diversity and various aggregation schemes 

for combining classifiers. However, diversity is still not 

clearly defined [6, 7]. Thus, a proper measure of diversity 

that will relate diversity to accuracy is to be adopted. 

Current methods commonly use the outcome or 

generalization performance of the individual classifiers of 

an ensemble to measure diversity. Hence an ensemble is 

considered diverse if classifiers within the ensemble 

produce different outcomes as opposed to having the 

same outcomes [1, 6, 7].  

In this paper, as opposed to looking at the outcomes of the 

individual classifiers, ensemble diversity is viewed as the 

structural variation within classifiers that form an 

ensemble [1, 5]. Thus, diversity will be induced by 

changing structural parameters of a neural network [5]. 

The paper investigates the relationship between structural 

diversity within an ensemble and the prediction accuracy 

of the ensemble. It has been intuitively accepted that the 

classifiers to be combined should be diverse [8]. This is 

because it has been found meaningless to combine 

identical classifiers because no improvement can be 

achieved when combining them [8, 9]. Hence, measuring 

structural diversity and relating it to accuracy is crucial in 

order to build better learning machines. However, it is 

necessary to find the optimal size of an ensemble that 

gives better generalization. Therefore, a study on the size 

of the ensemble was done as to find the optimal size that 

can be used for the investigation. The methods for 

measuring structural diversity are to be devised and 

implemented. Moreover, the outcome diversity of 

structurally different classifiers is critical to be measured. 

This is because it is essential to show how correlated the 

outcomes of the structurally different classifiers is.  

Different methods for creating diversity such as bagging 

and boosting have been explored [1, 3]. However, the 

aggregation methods are to be used to combine the 

ensemble predictions. Methods of voting and averaging 

have been found to be popular [9, 10] and hence are used 

in this study. The paper first discusses the background in 

section 2. Analysis of the data used for this study is 

presented in section 3. The accuracy measure and 

structural measures of diversity used are discussed in 

section 4 and section 5. The methodologies used in 

investigating the effect of diversity on generalization are 

presented in section 6. The results and future work are 

then discussed in section 7.  

2. Background 

2.1. Neural Networks 

Neural Networks (NN) are computational models that 

have the ability to learn and model linear and non-linear 

systems [11]. There are many types of neural networks 

but the most common neural network architecture is the 

multilayer perceptron (MLP) [11]. The neural network 

architecture that is used in this paper is a MLP network as 
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shown in Figure 1. The MLP network has the input layer, 

the hidden layer and the output layer. An MLP network 

has parameters such as learning rate, number of hidden 

nodes and the activation function. These parameters can 

be varied to induce structural diversity [5]. The general 

equation of the output function of MLP neural network is 

shown below (1). 
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where: ky is the output from the neural network, ������  is 

the output activation function that can be linear, softmax 

or logistics, ��		�� is the hidden layer tangential activation 

function. M is the number of the hidden units, N is the 

number of input units, 
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the first and second layer moving from input i to hidden 

unit j, 
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0kw is the biases for the unit j. 

Figure 1: The MLP neural network architecture. 

The input into the neural network is the demographic data 

from the antenatal survey and the output is the HIV status 

which is zero to indicate negative and one for positive. 

The weights of the NN are updated using a back 

propagation algorithm during the training stage and the 

focus is on minimizing the error in predicting the 

output [11]. The structural variation that was used to 

achieve structural diversity in this study is the number of 

hidden nodes and the output activation function. That 

means that the number of hidden nodes and the output 

activation were varied to achieve structural diversity. This 

implies that every neural network that is different from 

the other in terms of the structure is considered diverse.  

2.2. Genetic Algorithm 

The genetic algorithms (GA) are computational models 

that are based on the evolution of biological population 

[2]. Potential solutions are encoded as the chromosomes 

of some individual. These individuals are initially 

generated randomly. The individuals are evaluated 

through the defined fitness function. Each preceding 

generation is populated by the fitness solution (members) 

of the previous generation and their offspring. The 

offsprings are created through crossover and mutation. 

The crossover process combines genetic information of 

two previous fittest solutions to create new offsprings.  

Mutation alters the genes of the individual to introduce 

more diversity into the population. In this way, the initial 

generated solution can be improved over time [2, 12].  

In applying the GA to the study of structural diversity, the 

evaluation function can be the structural diversity or the 

generalization performance. The main idea is to relate the 

structural diversity to the generalisation performance. If 

the evaluation function is the generalization performance, 

the GA will then look for a defined number of classifiers 

that give that performance and then the diversity of those 

classifiers can be measured. This method then helps to 

relate generalization performance and the structural 

diversity.    

3. Data Analysis 

3.1.  Data Collection  

The dataset used for the study is from the antenatal clinics 

in South Africa. The dataset was that collected by the 

department of health in 2001 [13]. The features in the data 

include the age, gravidity, parity, education, etc. The data 

was collected from the pregnant woman only. The 

demographic data used in the studies is shown in table 1 

below. The province was provided as a string so it was 

converted to integer form 1 to 9.  

Table 1: The features from the survey 

 Variable Type Range 

1 Age integer 13-50 

2 Education integer 0-13 

3 Parity integer 0-9 

4 Gravidity integer 1-12 

5 Province integer 1-9 

6 Age of father integer 14-90 

7 HIV status binary 0-1 

    

 

The age is that of the pregnant mother visiting the clinic. 

Education represents the level of education the mother 

has and ranges from 1-13, where 1-12 corresponds to 

grade 1 to 12 and 13 represents tertiary education. Parity 

is the number of times the mother has given birth whilst 

gravidity is the number of times the mother has been 

pregnant. Both these quantities are important, as they 

show the reproductive activity as well as the reproductive 

health state of the women. The age of the father 

responsible for the current pregnancy is also given and the 

province entry corresponds to the geographic area where 

the mother comes from. The last feature is the HIV status 

of the mother where 0 represents a negative status whilst 

1 represents a positive status. 
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3.2. Data Pre-Processing 

The data preprocessing includes elimination of the 

impossible situations like when parity is greater than 

gravidity. It is not possible for the mother to give birth 

without falling pregnant; therefore it is not possible to 

find a case where parity is greater than gravidity. The pre-

processing of the data resulted in a reduction of the 

dataset. To use the dataset for training, it needs to be 

normalized. This ensures that all variables can contribute 

to the final network weights of prediction model [14]. If 

the data are not normalized, some of the data variables 

with larger variances will influence the result more than 

others. Therefore, all the data is to be normalized between 

0 and 1 using (2). 
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where: 
minx  and maxx is the minimum and maximum 

value of the features of the data samples respectively. 

The data were divided into three sets, the training, 

validation and testing data. This was done as to avoid 

over-fitting of the network. The neural networks are 

trained by 60% of the data, validated with 20% and tested 

with 20%.   

4. Accuracy Measure 

Regression problems mostly focus on using the mean 

square error between the actual outcome and the predicted 

outcome as a measure of how well neural networks are 

performing. In classification problems, the accuracy can 

be measured using the confusion matrix [15]. Analysis of 

the dataset that is being used showed that the data is 

biased towards the negative HIV status outcomes. Hence, 

the data was divided such that there is equal number of 

HIV positive and negative cases. This was an advantage 

in order to allow the use of confusion matrix to measure 

accuracy. The accuracy measure that is used in this study 

is given by (3). 
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where:  

TP is the true positive -1 classified as a 1, 

TN is the true negative - 0 classified as a 0, 

FN is the false negative -1 classified as a 0, 

FP is the false positive - 0 classified as a 1. 

5. Measurements of Structural Diversity 

5.1. Shannon-Wiener Diversity Measure 

Shannon entropy is a diversity measure that was adopted 

from ecology and information theory to understand 

ensemble diversity [16]. This measure is implemented to 

measure structural diversity. The Shannon-Wiener index 

is commonly used in information theory to quantify the 

uncertainty of the state [16, 17]. If the states are diverse 

one becomes uncertain of the outcome. It is also used in 

ecology to measure diversity of biological species. 

Instead of biological species, the species are considered as 

the individual base classifiers. The Shannon diversity 

measure is given by (4). 
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Where: 


� = number of neural networks that have the same 

structure 

� = total number of neural networks in an ensemble 

� = total number of different neural networks/species 


 = the diversity index 

The diversity ranges from 0 to 1, where 0 indicates low 

diversity and 1 indicates highest diversity. 

5.2. Simpson Diversity Measure 

The other measure that was implemented is the Simpson 

diversity measure. This measure is also adopted from 

ecology to quantify diversity.  It is quantified by (5). 
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� = number of neural networks that have the same 

structure 

� = total number of neural networks in an ensemble 

� = total number of different neural networks/species 

The diversity index is given by 1 � 
. The diversity 

increases as the index increases. It ranges from 0 to 1 

where 0 means there is no diversity and 1 indicate the 

highest diversity.     

6. Implementation 

6.1. Creation of Diverse Classifiers 

Since the focus of the study is the structural diversity, the 

output activation function, learning rate and the number 
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of hidden nodes were varied as to induce diversity. 

However, varying all the parameters was found to be 

ineffective because the classifiers tend to generalize the 

same way. Therefore, only number of hidden nodes and 

activation function were varied for this investigation. 

The classifiers are trained individually using the back 

propagation method; where the error is propagated back 

so as to adjust the weights accordingly. The data used for 

training, validation and testing are the HIV data. All the 

features of the input are fed to all the networks. The 

classifiers which have the training accuracy of 60% were 

accepted. The training accuracy between 60% and 63% 

was achieved. The classifiers were trained using quasi-

Newton algorithm for 100 cycles at the same learning rate 

of 0.01. However, the number of hidden nodes is 

increased from 1 to 55 and the activation function is 

randomly changed from linear and logistics to induce 

structural diversity. 

6.2. Committee of Classifiers 

The committee of classifiers improves efficiency and 

classification accuracy [18].  This ensures that the results 

are based on the consensus decision of the base 

classifiers. The base classifiers operate concurrently 

during the classification and their outputs are integrated to 

obtain the final output [18]. The model for the committee 

of classifiers is shown in figure 2. 

 

Figure 2: The classifier ensemble of neural networks  

There are many aggregation methods that can be used to 

combine the outcomes of classifiers. The ensemble 

outcomes were all aggregated using simple majority 

voting. This was chosen because it is popular and easy to 

implement [9]. The outcomes of each individual from an 

ensemble are first converted to 0 or 1 using 0.5 as a 

threshold. The majority voting method chooses the 

prediction that is mostly predicted by different classifiers 

[19]. The other method that was implemented was 

averaging. All the outcomes from all the classifiers are 

taken and averaged. 

6.3. Evaluation of Optimal Ensemble Size 

It is important to use the optimal size of an ensemble that 

results in better generalisation of the data [20]. The 

ensemble size is determined by the number of classifiers 

that belong to an ensemble. The created classifiers were 

used to carry out this experiment. The ensemble size was 

incremented by one from 1 to 50.  However, the structure 

of the networks was made to be different by varying the 

number of hidden nodes as the ensemble size increases. 

Hence, the size of the network itself is increased as the 

number of classifiers in the ensemble increases [4]. Figure 

3 below shows the results obtained. 

 
Figure 3: The ensemble size and classification accuracy 

 

It was however observed that the relationship between the 

size and accuracy of the ensemble depends on the 

accuracy of the individual classifiers that belong to the 

ensemble. Increasing the size of the neural network by 

increasing the hidden nodes tends to improve the 

classification accuracy as the number of the classifiers in 

an ensemble increases. However, an increase in size 

results in an increase in the prediction accuracy. 

Consequently, after the optimal size of 19 classifiers is 

reached, the accuracy tends to remain constant. 

Nevertheless, the size of 19 was found to be optimal since 

it produced the best accuracy. The results obtained are 

found to be concurrent with literature. Currently the 

optimal size of an ensemble is 25 [19, 20]. Therefore, an 

ensemble size of 19 is used for evaluating the relationship 

between diversity and performance of classifiers on HIV 

classification. 

 

6.4. Evaluation of Diversity and Accuracy 

The created classifiers were used to investigate the 

relationship between the diversity and accuracy. There 

were ten base classifiers or species that were selected 

from the created classifiers which are all structurally 

different based only on the number of hidden nodes and 

the output activation function. The networks with the 

number of hidden nodes from 10 to 55 in steps 5 were 

chosen from the created classifiers. The GA has the 

capabilities to search large spaces for a global optimal 
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solution [5]. GA was therefore used to search for 19 

classifiers from the 10 base classifiers using the 

generalization performance as the fitness function. The 

fittest function is given by: 

                

2
)( Acc

Acc
TFunctionFittest −−=      (6) 

Where: 
Acc

T is the targeted accuracy and Acc  is the 

obtained accuracy.  

The GA continues to search until the error between the 

targeted accuracy and the obtained accuracy is minimal. 

Firstly, it was necessary to optimize the accuracies that 

could be attained in order to minimize the computational 

cost. Thereafter, the attained accuracies were used in the 

second run as the target accuracy. The size of the neural 

network committee used is 19 classifiers which are 

formed from a combination of 10 unique base classifiers. 

Hence, each ensemble will have a repetition of certain 

classifiers. Once the ensemble of 19 classifiers produces 

the targeted diversity, the corresponding structural 

diversity is obtained using both Simpson and Shannon 

diversity measures given in (4) and (5). The algorithm 

implemented is shown in figure 4.  

 

Figure 4: Algorithm for implementation of the 

relationship between diversity and accuracy  

7. Results Analysis 

7.1. Impact of Diversity on Prediction Accuracy 

In this study, diversity was induced by varying the 

parameters of the classifiers that form an ensemble 

[5, 17].  The investigation was done on an ensemble of 19 

classifiers. Figure 5 shows the obtained results using the 

Shannon diversity measure. Figure 6 shows the results 

obtained using the Simpson diversity measure. The 

figures indicate that an increase in structural diversity 

results in an increase in accuracy which is in agreement 

with [17]. The experiment was done several times 

observing the relationship between diversity and accuracy 

using both Simpson and Shannon diversity measure. 

Therefore the results shown above are the average of ten 

different experiments that were performed. The results 

show that the two measures are concurrent. In the 

Shannon diversity measure, the GA was able to attain 

wide range of diversity whereas in the Simpson measure, 

the range is limited from 0.8 to 0.9. This was because the 

Shannon diversity index depends on the number of base 

classifiers whereas the Simpson’s index depends on how 

evenly distributed the base classifiers are [16]. Shannon 

has shown that the more uncertain one is of the outcome, 

the more diverse an ensemble is.The results clearly show 

that structural variation of the parameters of the neural 

network (classifier) does have a relationship with 

prediction accuracy. As the structural diversity increased 

so did the accuracy. 

 

Figure 5: The evaluation of Shannon index with accuracy 

 

    Figure 6: Evaluation of Simpson index with accuracy 

7.2. Discussion and Recommendations 

It was however observed that the individual classifiers 

within the ensemble were highly correlated in the 

outcomes. This had affected the results because very low 

and high accuracies could not be attained. It is however 

recommended that a strategy of adding classifiers in an 

ensemble such that only classifiers that are uncorrelated 

are accepted in an ensemble can be adopted. The 

experiment focuses on training the classifiers using all the 

features of the data. It is however recommended that 

different networks can be fed different features of the 
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data. This might ensure that the outcomes of classifiers 

are not highly correlated. Hence, a higher range of 

accuracy and diversity index can be attained.  

During the training stage of the machine, the weights are 

normally randomly initialised. However, it has been 

found that different initial weights induce diversity within 

the ensemble [1]. The Shannon and Simpson diversity 

measures focuses on how structurally different the 

classifiers in an ensemble are. These measures do not 

consider diversity induced during initialisation of weights. 

Therefore, it is recommended that for future work, a 

better measure of structural diversity that incorporates the 

effect of weight initialisation should be developed. 

8. Conclusion 

The paper presented the relationship between structural 

diversity and generalization accuracy using Shannon and 

Simpson diversity measures to quantify diversity. The 

investigation is necessary as to build learning machines or 

committee of networks that can generalize better. The 

results have clearly shown that as the structural diversity 

index based on the measures used increases, the ensemble 

accuracy increases. Hence, the classifiers can be made 

structurally different in order to gain good classification 

accuracy. This has brought an increase of 3% to 6% in the 

classification accuracy. The method used to compute the 

results was found to be computationally expensive due to 

the use of GA. There is however limitations brought 

about by the individual classifiers producing similar 

outcomes even though they are structurally different. 

However, the use of measuring structural diversity in 

building good ensembles of classifiers is still to be 

explored.  
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Abstract
The performance of trainable speech-processing systems de-
teriorates significantly when there is a mismatch between the
training and testing data. The data mismatch becomes a domi-
nant factor when collecting speech data for resource scarce lan-
guages, where one wishes to use any available training data for
a variety of purposes. Research into a new channel normaliza-
tion (CN) technique for channel mismatched speech recognition
is presented. A process of inverse linear filtering is used in or-
der to match training and testing short-term spectra as closely as
possible. Our technique is able to reduce the phoneme recogni-
tion error rate between the baseline and mismatched systems, to
an extent comparable to the results obtained by the widely-used
cepstral mean subtraction. Combining these techniques gives
some additional improvement.

1. Introduction
In this paper, we investigate a channel normalization technique
that reduces the speech data channel mismatch between varied
sources by estimating the average short-term spectral energy
and then filtering the speech data with an appropriate mapping
filter.

Any mismatch between training and testing speech data
significantly degrades the performance of trainable speech-
processing systems. The mismatch is introduced by physi-
cal processes such as background noise, non-stationary noise,
recording transducers and transmission channels, as well as
population differences such as speaker dialects, age and gen-
der distributions, etc. Only the combined effect of these vary-
ing processes are generally observable in the data; therefore
all these effects are treated as one “channel” mismatch pro-
cess. Once a mismatch has been identified, channel normaliza-
tion techniques are employed to reduce the effect it has on the
speech system. Such issues are often dealt with by recording
sufficiently variable training data, but the penalty introduced by
the channel mismatch becomes critical when a resource scarce
language is used. One of the major problems in dealing with
resource scarce languages is that collecting speech data is ex-
pensive and the amount of data is not comparable to that tra-
ditionally used for global languages. One method to reduce
the impact of data scarcity is to use different recording devices
such as cellular phones, land-line phones and computer micro-
phones. However, this method would inevitably introduce a
channel mismatch. Thus, an effective channel normalization

technique is needed to satisfactorily reduce the channel mis-
match. Ideally, one would want the speech system to behave as
if the speech data originated from one source.

There are many strategies that are used to minimize the ef-
fect of channel mismatch. In the fortunate case that speech data
is available from all the channels, channel-dependent acous-
tic models can be trained or existing acoustic models could be
adapted to better handle incoming speech data. Even though
this strategy works the best, it is rare that enough speech data is
available to develop robust acoustic models for each channel. In
the speech signal domain, blind channel estimation and inverse
filtering have been used to reduce the channel influence on the
speech data [1]. However, it is difficult to make assumptions
about the channel response and spectral nature of speech data.
Experiments have shown that if a non-linear channel response
is encountered, the blind channel estimation technique did not
provide an increase in recognition accuracy [1].

Feature vector mapping tries to overcome the channel mis-
match by treating the channel effect as feature transforma-
tion in the model domain [2, 3, 4]. More traditional tech-
niques are Cepstral mean subtraction (CMS) and Relative spec-
tra (RASTA) filtering [5, 6, 1]. CMS subtracts a long-term av-
erage cepstral component from each extracted cepstral compo-
nent. This method has gained significant popularity in speech
and speaker recognition systems for removing slow-varying
channel changes [7], but a small amount of speech informa-
tion is also removed [1]. The CMS method can only be used
in speech-based systems that use cepstral feature vectors to rep-
resent the speech data. The RASTA filtering method applies a
filter that rejects spectral components that move too slowly or
quickly compared to the normal rate of change of speech spec-
tral components [7]. However, RASTA filtering violates the
standard hidden Markov model (HMM) assumption of piece-
wise stationary [6] and introduces phase distortion [5], which
negatively impacts on recognition accuracies. The simple CMS
technique has been proved equally as good as phase corrected
RASTA for telephony experiments [5].

Based on the previous work done, the three main criteria
that were used to develop a new channel normalization tech-
nique, were:

• a resource scarce language environment is assumed,
therefore generating channel-dependent acoustic models
becomes impractical,

• more complex channel normalization techniques afford
little benefit over simpler methods, and
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• feature vector independence is required in order to bene-
fit a variety of systems.

The CMS technique meets two of the three criteria; therefore it
was used as a baseline channel normalization method. The new
channel normalization technique should provide a performance
gain over no normalization and the resulting error rate of the
mismatch data system should be similar to the error rate given
by a CMS implementation.

2. Method
As in speech parametrization techniques, which encode short-
term speech information, an initial step was to calculate the
average short-term spectral energy over the frames of speech.
The frame length was chosen to roughly ensure stationarity of
the signal, shifted to create overlap between adjacent frames
and each frame windowed. Given frames of speech, XN

i =
{X1, X2, ..., XN}, the average short-term spectral energy is
calculated as

Yc(f) =
1

N

NX
i=1

| Hc(f)Xi(f)WHAM (f) |2 (1)

where Hc(f) is the channel frequency response, Xi(f) repre-
sents the frame level spectrum and WHAM (f) is the Hamming
window frequency response.

It is assumed that the filter response is linear and time-
invariant, therefore remaining constant across the frames of
speech and speakers in the database. It would be a difficult
task to calculate the channel response using just this informa-
tion, but the goal here is not to determine the most probable
frequency response. The desire is to transform the data from
a channel, to better match a channel with a different response,
through the use of inverse filtering. An approximation of the
mapping filter can be found, if the ratio between two average
short-term spectral energies is calculated:

eHInv(f) =
| HC1(f) |2

PN
i=1 | Xi(f) |2

| HC2(f) |2
PN

j=1 | Xj(f) |2
(2)

If the assumption is made that the speech characteristics
are similar across the data collected from varying channels, the
difference that is present in the energy distribution is directly as
a result of the channel responses. Figure 1, shows the average
short-term spectral energy for a subset of data collected from
TIMIT and Wall Street journal corpora, which demonstrates a
clear difference in the spectral energy distributions.

The assumption that the speech characteristics are similar
across corpora could easily be in error. For instance, the pho-
netic distribution could be skewed, which would result in more
energy being present in certain frequency bands. Therefore, as
an average short-term spectral energy estimation improvement,
confining the estimator and inverse filter calculation to broad
phonetic classes should improve the assumption that the speech
characteristics of the two sources are similar; we report on ex-
periments involving both the basic idea and the refined approach
below.

3. Experiments
A triphone-based HMM phoneme recognizer, developed using
the Cambridge University HMM Toolkit (HTK) [10], was used
to perform a variety of channel normalization experiments. The
task we used for our benchmarking experiments was phone
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Figure 1: Average short-term spectral energy calculated from
a subset of data using the TIMIT[8] and Wall Street Journal[9]
corpora.

Task # Speaker # File # Minutes
Recognizer Training 462 2772 143
Recognizer Testing 168 1344 69
Channel Estimator 462 924 46

Broad Classifier Training 462 924 46

Table 1: TIMIT corpus statistics.

recognition; this allows us to focus on acoustic modelling ex-
clusively. The two corpora chosen for experimentation were
TIMIT and Wall Street Journal (WSJ). A difference in channel
characteristics can be expected due to the varied recording envi-
ronments (room acoustics) and setup (type of microphone used
to record the utterances). The sample average short-term spec-
tral energy distribution for the two corpora are shown in Figure
1.

The data from both corpora was partitioned into separate
sets for phoneme recognizer training and testing, where no
speakers were in common between the sets (though for TIMIT,
certain sentences did occur in both). The same data was used for
channel estimation and training the broad phonetic class classi-
fier; this data was obtained and removed from the phone rec-
ognizer training data. The phone recognizer testing data was
used to verify the accuracy of the broad phonetic class classifier.
The broad phonetic class classifier used six classes: consonants,
fricatives, glides, nasals, stops and vowels. Silence was an addi-
tional class, but was ignored in the mapping filter calculations.

The TIMIT corpus partitioning statistics are shown in Table
1, while those for the WSJ corpus are given in Table 2.

A number of experiments were run using different chan-
nel normalization techniques. The accuracy results are shown
in Table 3, which used TIMIT trained acoustic models, and in

Task # Speaker # File # Minutes
Recognizer Training 77 2404 275
Recognizer Testing 24 914 103
Channel Estimator 77 707 88

Broad Classifier Training 77 707 88

Table 2: WSJ corpus breakup statistics.
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System Type Testing Data
TIMIT WSJ

PR 56.80
BPCC 74.92

NO NORM 45.30
CMS 51.42
AVG 49.89

CMS + AVG 52.90
SEGRAT 50.51
SEGLS 49.37
COMB 60.48

Table 3: Recognition accuracy results using models trained with
TIMIT data.

Table 4, which contains results for WSJ acoustic models. The
system type codes given in Tables 3 and 4 are as follows;

• PR - Phoneme Recognizer acoustic models trained and
tested using channel-specific data - i.e TIMIT only or
WSJ data only.

• BPCC - Broad Phonetic Class Classifier, which was
trained using unique channel-specific data. PR testing
data was used to obtain the accuracy results.

• NO NORM - The channel-specific phoneme recognizer
was used to decode the unseen channel testing data, e.g.
TIMIT trained models decoding WSJ testing data.

• CMS - Cepstral Mean Subtraction used by HTK to re-
move a mean cepstral vector from a set of cepstral vec-
tors extracted from one speech file. The process was ap-
plied to both the training and testing data.

• AVG - The average short-term spectral energy from each
channel was used to derive the mapping filter. The esti-
mation was calculated using unique channel estimation
data.

• SEGRAT - The channel estimation data was segmented
using the BPCC system, which was then used to generate
six class-specific average short-term spectral energy esti-
mates. The mapping filter was derived from the average
estimates.

• SEGLS - Same as SEGRAT, except that the mapping
filter was derived using a least squares fit between the
six average estimates.

• COMB - PR acoustic models were trained using data
from both channels. No channel normalization methods
were used.

4. Discussion
A 5% difference in the corpus-specific phoneme recognizer
(PR) results can be explained by the greater number of speakers
found in the TIMIT corpus and a larger amount of speech data
per speaker in the WSJ corpus. However, the TIMIT phoneme
recognition accuracy did improve when the WSJ training data
was added to the acoustic model training phase. This improve-
ment was not observed when these acoustic models were tested
with the WSJ data. This may indicate that the PR TIMIT
acoustic models require much more data to approach the sta-
bility of the PR WSJ acoustic models. Considering the chan-
nel normalization experiments, the channel-specific acoustic

System Type Testing Data
TIMIT WSJ

PR 62.03
BPCC 71.69

NO NORM 52.29
CMS 55.23
AVG 56.65

CMS + AVG 56.50
SEGRAT 56.88
SEGLS 51.71
COMB 61.92

Table 4: Recognition accuracy results using models trained with
WSJ data.

model (PR) results gave an upper bound with which to com-
pare the results obtained from the varying channel normaliza-
tion tests. The COMB experiment accuracies gave an upper
bound for the complete system, and could be considered as an
upper bound that can be achieved when both channel normal-
ization and normalization for other factors discussed in Section
1 are employed.

When no channel normalization techniques were used, the
phoneme recognizers drop in performance by 10%, which was
to be expected. With TIMIT training, the HTK CMS method
reduced the drop in accuracies by 5%; that is, about half of
the loss is recovered. For WSJ training, only about 30% of the
cross-channel loss is recovered with CMS. The average short-
term spectral energy filtering method (AVG) gave similar im-
provements to CMS, being somewhat better for WSJ and some-
what worse for TIMIT. When the CMS and AVG methods were
combined (CMS+AVG) and applied to the testing dataset, an
improvement in performance was observed compared to the
CMS results; now, about 60% of the cross-channel loss is re-
covered for TIMIT training, and 45% for WSJ training. The
AVG and CMS methods can be seen to perform approximately
the same task, where AVG modifies the speech waveform and
CMS transforms the cepstral coefficients.

The more elaborate BPCC segmentation system gave only
small improvements compared to the basic AVG method. Our
least-squares approach was clearly not successful, but the SEG-
RAT was slightly better on both corpora. The statistical signif-
icance of the SEGRAT results, compared to the AVG results,
were measured using McNemar’s test with a chi-squared statis-
tic and the McNemar table of values setup found in Gillick and
Cox [11]. A large statistical significance (P < 0.000001) was
found for the TIMIT trained acoustic models, while the gain
obtained for the WSJ trained acoustic models was insignificant
(P < 0.61). However, many other sensible ways to combine
the filters obtained for the different broad phonetic classes re-
main to be explored. We are therefore confident that the small
observed improvement points the way towards even more suc-
cessful methods.

5. Conclusion
The adverse effect of recording speech data on different chan-
nels was demonstrated using the TIMIT and WSJ corpora. A
channel normalization technique, which derives a mapping fil-
ter from the average short-term spectral energy estimates was
shown to give results comparable to the cepstral mean subtrac-
tion method. The benefit provided by the new technique is that
it is applied to the speech waveform and is therefore indepen-
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dent of the chosen speech parametrization calculations. The
broad phonetic class classifier approach provided a small boost
to the performance, but the additional work required to imple-
ment this method is not justified. However, the marginal im-
provement was surprising, which indicates that further experi-
mentation must be done to determine how the channel estima-
tion and filtering should be combined to increase the system’s
performance. The best experimental results that were obtained,
came from the case where the acoustic models were trained with
speech data from both channel datasets. During the training pro-
cess, the means and variances of phonetic models are updated to
better represent the observed data, therefore a channel normal-
ization process that can translate a model space transform to the
speech signal domain should theoretically provide performance
enhancements comparable to updated phonetic models. This
approach will be further investigated.
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Abstract 
 

Cine displacement encoding with stimulated 

echoes (cine DENSE) is an MRI technique that 

encodes displacement over a time series into the 

phase of complex MRI images. Phase aliasing is 

unavoidable and this phase needs to be unwrapped 

to determine the displacement fields. Phase 

unwrapping is complicated by image noise, phase 

shear and the fact that only a few pixels span the 

myocardial walls. This work investigates the 

effectiveness of a 3D cost function based region 

merging method for unwrapping cine DENSE 

images. The new technique is shown to provide 

comparable accuracy to an existing technique. 

 

1 Introduction 
 
Cardiovascular disease is the leading cause of 

death in many developed countries. The ability to 

quantify the motion of the heart muscle, or 

myocardium, is valuable for understanding both 

normal and diseased cardiac kinematics [1].   

Magnetic resonance imaging (MRI) is a 

powerful tool for imaging the heart. Cardiac MRI 

is superior to other modalities in imaging 

myocardial mechanics. Computed tomography 

(CT) methods rely on movement of the heart 

boundaries and they give limited insight into 

intramyocardial motion. Radionuclide single-

photon emission CT (SPECT) and positron 

emission tomography (PET) provide valuable 

information about myocardial metabolism but do 

not reliably measure myocardial motion. Doppler 

ultrasound is capable of measuring myocardial 

velocities and strain rates, but the technique has a 

low spatial resolution and there are limited 

anatomical viewing windows. 

MRI is capable of monitoring 

intramyocardial motion in any imaging plane 

using a variety of techniques including myocardial 

tagging [2, 3] phase contrast velocity encoding 

[4], harmonic phase (HARP) [5], and most 

recently displacement-encoded imaging using 

stimulated echoes (DENSE) [6].  

DENSE measures the motion of 

myocardial tissue by encoding displacement in a 

particular direction into the phase of the complex 

MRI image. Cine DENSE [7] measures 

myocardial displacement throughout the cardiac 

cycle.   

DENSE provides a better spatial 

resolution than myocardial tagging, and a greater 

tissue tracking accuracy than velocity encoding. 

Example magnitude and phase cine DENSE 

images are shown for end-systole in Figure 1a and 

1b, respectively. The phase images are confined to 

the range [-π,π] and unavoidable phase aliasing 

occurs in the walls of the heart as it contracts. 

 

         
                       (a)                              (b) 

Figure 1: (a) DENSE magnitude short axis view 

of the heart depicting the anatomical structures, 

and (b) the corresponding phase image where the 

displacement is encoded and constrained between 

-π (black) and π (white). LV – left ventricle;  

RV – right ventricle. 

 

Phase unwrapping is required to determine 

displacement fields. Figure 2a and 2b show 

unwrapped phase images for respective motion 

encoded vertically and horizontally. In Figure 2a 

white represents upward motion and black 

represents downward motion, and in Figure 2b  
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white represents motion to the right and black 

represents motion to the left. The corresponding 

displacement field is shown in Figure 2c. These 

can be used to derive strain by applying finite 

element methods. These strains can then be used 

to discern between healthy and diseased 

myocardium, and to assess mechanical 

dyssynchrony [8]. 

 

  
(a) (b) 

  
(c) 

 

Figure 2: (a) Unwrapped phase image for vertical 

motion, (b) unwrapped phase image for horizontal 

motion, and (c) the corresponding displacement 

field. 

 

All phase unwrapping algorithms require a known 

phase reference point. In cine DENSE, phase 

aliasing is not present in early systole, at the 

beginning of the cine series. Referencing a true 

phase value can thus be achieved by unwrapping 

in three dimensions, i.e. two spatial and one 

temporal dimension [10]. This paper discusses an 

alternative 3D phase unwrapping technique for 2D 

cine DENSE data sets.  

 

2 Phase unwrapping 
  

Phase unwrapping is the process of determining 

the absolute phase given its principal value. The 

relationship between the measured, or wrapped, 

phase jφ  and the actual phase jθ  is 

                            jjj mπφθ 2+=                         (1) 

where j is an N-dimensional index specifying the 

spatial location and jm  at each voxel specifies the 

corrective offset required. The phase unwrapping 

problem reduces to determining jm  for each 

voxel in an image. Phase unwrapping in cardiac 

MRI images is complicated by image noise, phase 

shear and the fact that only a few pixels span the 

myocardial walls. 

 
Existing techniques for phase unwrapping can be 

grouped according to their  

(i)    Dimensionality (1D, 2D, 3D etc);  

(ii)  Application (Synthetic Aperture Radar,  

     general optical interferometry, MR        

angiography, MR chemical shift mapping or 

MR field mapping); or 

(iii) Approach (fitting functions, cost function 

optimisation, filtering, region growing / 

merging). 

 

Phase unwrapping algorithms typically fall into 

two classes:  

Path–following algorithms. These use localized 

operations by following paths through the 

wrapped phase. Variations include Goldstein’s 

algorithm, Quality-guided algorithms, Mask Map 

algorithm, and Flynn’s Minimum Discontinuity 

algorithm [9]. 

Minimum– norm algorithms. These adopt a more 

global minimisation approach and include 

unweighted least-squares algorithm, pre-

conditioned conjugate gradient (PCG) algorithm, 

weighted multigrid algorithm, and Minimum L
p  

- 

norm algorithm [9]. 

 

Previously, 2D cine DENSE images have been 

analysed using a quality-guided (QG) path 

following algorithm that unwraps the phase 

through both space and time by using a measure 

of phase quality to guide the path of 

unwrapping [10].  

 

This method can be summarised as follows. 

1. A measure of phase quality for each pixel is 

calculated by 

3
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where for each sum the indexes (i, j, k) range 

over the n × n × n window centered at the pixel 

(p,q,r). The terms 1

,,

x

kji∆ , 2

,,

x

kji∆ , and 3

,,

x

kji∆  are 

the partial derivatives of the locally unwrapped 

phase, and the terms 1

,,

x

rqp∆ , 2

,,

x

rqp∆ , and 3

,,

x

rqp∆  

are the averages of these partial derivatives in 

the n × n × n windows. 

2. A starting point with known phase is selected 

and stored in a solution matrix.  

3. The four pixels adjacent to the starting point are 

placed in an ‘adjoin’ matrix, which keeps track 

of wrapped pixels with adjacent unwrapped 

pixels. 

4. The pixel in the adjoin matrix with the highest 

phase quality is selected and unwrapped using 

its adjacent unwrapped pixel. This pixel is 

removed from the adjoin matrix and added to 

the solution matrix. 

5. The new wrapped nearest neighbours are 

included in the adjoin matrix. 

6. Steps 4 and 5 are repeated until the adjoin 

matrix is empty. 

 

Figure 3a and 3b shows the wrapped phase image 

and corresponding phase quality map, 

respectively. Figure 3c to 3f show the phase 

unwrapping path flooding from regions of high to 

low phase quality, and Figure 3g shows the 

resulting unwrapped image. The unwrapped 

image is smooth with no 2π phase transitions in 

the myocardium.  

 

   
   (a)                                  (b)  

  
   (c)                                (d) 

  
    (e)                                (f) 

                    
                      (g)                              

Figure 3: (a) Phase image, (b) corresponding 

phase quality map, (c-f) the progression of 

unwrapping in the quality guided (QG) method, 

and (g) unwrapped phase image 

  

3 Methods 
 

Phase Region Expanding Labeller for 

Unwrapping Discrete Estimates (PRELUDE) is an 

N-dimensional region merging phase unwrapping 

algorithm developed for MR images [11]. Here an 

image is divided into a number of regions 

corresponding to specific phase brackets. 

Neighbouring regions are interrogated and merged 

based on a cost function.   

To penalise the phase differences along 

the interfaces the sum of the square of the phase 

difference along the interface is used, that is   

                   

(
( )

)
2

,

2 ABBk

jNkj

AjAB MC πφφ +−= ∑
∈

            (3) 

where BAAB MMM −= with AM  and BM  

being integer offsets for adjacent regions A  and 

B . The summation is taken over two indices, j 

and k, where j is the index of a voxel in region A, 

while k is the index of a voxel in region B. The 

total cost over the whole (N-dimensional) volume 

is the sum over all the interfaces:  

                     ∑=
BA ABCC

,
 

Differentiating by the parameters, ABM  gives the 

equation for the minimum cost solution 
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where ABN  is the number of interfacing voxel 

pairs and (

( )

)Bk

jNkj

AjABP φφ −= ∑
∈,

  

In order to solve the integer programming 

problem generated by Equation 4 we can treat it 

as follows 

                






 −
=

AB

AB

AB
N

P
roundM

π2
       (5) 

so that we can get a low (ideally minimum) cost. 

Let, ( )ABABAB NPK π2−=    and  

        ( )ABAB KroundL =                        (6) 

The difference in cost between    ABAB LM =  and 

1±= ABAB LM  is 

            ( )







−±=∆ ABABABAB LKNC
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1
8

2
π   (7) 

Since
2

1
|| ≤− ABAB LK , then 0≥∆ ABC  for both 

cases, confirming that ABAB LM =  is the local 

minimum, with the smallest cost difference being 

            







−−=∆ ||

2

1
8

2

ABABABAB LKNC π  (8) 

 

This implementation involves the following steps: 

1. Determine masks to dichotomise the 

myocardium from the background noise in 

the blood pools and lung cavity. This was 

done using both image magnitude and phase 

discontinuities [12]. Phase inconsistencies, or 

residues, were identified by integrating the 

phase in small 4-pixel loops, and removing 

the pixel of lowest magnitude that lies 

adjacent to each residue. This provided the 

basis for identifying a threshold level for the 

magnitude image.  

2.   Create initial connected regions which will be 

merged during the unwrapping process.  

The myocardium was phase partitioned into 

regions according to the intervals {[-π, -2π/3], 

[- 2π/3, - π/3], [-π/3, 0], [0, π/3], [π/3, 2π/3] 

and [2π/3, π]}. 

3.   Identify the pair of regions that has the largest 

border weight ( )C∆ . The pair is selected 

according to Equations 6 and 8, 

and ABAB CAB ∆= maxarg , where A  

and B are adjacent regions with the highest 

border weights. Merge the two regions by 

adding 2πLAB to region B. 

4. Update the statistics for all interfaces (with 

other regions) to this new region. This involves 

updating the matrices ABP , ABN  and C∆ . 

5. Select a new pair of regions to merge. Region 

merging continues until there are no more 

interfaces.  

 

       
       (a)                               (b) 

       
                     (c)                               (d)  

       
(e) (f)   

  

Figure 4: The PRELUDE unwrapping process. (a) 

Masked phase image, (b) partitioned phase image, 

(c-f) progression of unwrapping phase image after 

15, 55, 90, and 115 iterations, respectively, and (f) 

unwrapped phase image after all regions have 

been merged. 

 

Figure 4 illustrates the PRELUDE unwrapping 

process. The regions corresponding to the masked 

phase image in Figure 4a are shown in Figure 4b. 

Figure 4c to 4f shows the progression of the 
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unwrapping process, and Figure 4f shows the final 

unwrapped image. 

 

Figure 5 depicts the maximum border weight for 

pairs of adjacent regions during the unwrapping 

process for Figure 4. The sharp increases occur 

when two merged regions yield a new united 

border with a higher border weight.  

 

 

 
Figure 5: Maximum border weight C∆  as a 

function of the number of iterations. 

 

The PRELUDE algorithm was implemented in 

MATLAB (The Mathworks, Natick, MA) and run 

on an Intel


 Core 2 Duo processor with 2GB of 

RAM. The reliability of the PRELUDE algorithm 

was compared to the quality guided (QG) 

algorithm on 300 cine DENSE images. Phase 

unwrapping errors were identified visually with 

the assistance of discontinuity maps [9]. A 

discontinuity map highlights pixels where an 

adjacent pixel contains a phase offset greater than 

π/2 or less than -π/2.  If a line of discontinuities is 

seen to span the walls of the left or right 

ventricles, then the image is deemed incorrectly 

unwrapped. An example is shown in Figure 6. 

 

 

  
                (a)                                (b) 

Figure 6 (a) Unwrapped phase image with no 

discontinuities spanning the myocardial walls, (b) 

Unwrapped phase image with discontinuities 

across the right ventricle (white arrow). 

 

4 Results 

 
The results are summarised in Table 1 below. The 

PRELUDE technique provides comparable results 

to the quality-guided algorithm but the processing 

time is slower.  
 

Table 1: Comparison of 3D quality-guided and 

PRELUDE phase unwrapping algorithms. LV- 

left ventricle; RV – right ventricle.  

 Quality-guided PRELUDE 

LV correctly 

unwrapped  

99.3 % 99.0 % 

RV correctly 

unwrapped 

73.3 % 74.6 % 

Processing time 

per frame 

< 0.6 s ≤ 90 s 

 

 

 

5 Discussion and Conclusions 

 
There are several limitations to the PRELUDE 

technique. Partitioning the image into phase 

bracket should be done judiciously. If a single 

region includes two areas where the original phase 

differs by more than 2π, the algorithm can never 

successfully recover this original phase difference. 

Secondly, to obtain reasonable processing speeds 

the method is reliant on a mask to remove 

background noise. 

The PRELUDE algorithm was 

considerably faster than the quality-guided 

algorithm for 2D phase unwrapping, but the 3D 

extension of PRELUDE results in prohibitively 

long processing times. Alternative phase 
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unwrapping methods will be required for 

volumetric cine DENSE studies [13] where 4D 

phase unwrapping is required. 

Phase unwrapping is particularly 

challenging for the right ventricle, where the 

myocardial wall thickness is similar in width as 

the cine DENSE pixel size.  

Spatio-temporal phase unwrapping 

remains a challenge for cine DENSE, but it is an 

unavoidable step in computing displacement 

fields which can then be used to determine strain 

patterns within the wall of the heart. This will help 

to detect abnormal wall motion which could be 

useful in the diagnosis of heart disease. 
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Abstract
This study aims to improve the calculation time of DRRs for
use in intensity based 2D-3D Image Registration. Carstens and
Muller [1] showed that image order algorithms, which are triv-
ially parallelisable, can easily be adapted to take advantage of
hardware systems with more than one CPU. The ray casting
algorithm and light field rendering were found to be suitable
for this purpose. A discussion of the ray cast algorithm and
light field rendering is presented and followed by performance
measurements. A significant performance increase is achieved
when using the parallelised light field algorithm over the serial
ray casting algorithm. The DRRs calculated using the light field
algorithm are also shown to be feasible for use in an image reg-
istration algorithm.

1. Introduction
The current patient positioning system used at iThemba LABS
uses a close-fitting, patient specific mask with markers located
on it. A CT scan of the patient is taken with the mask fitted
to the patient in order to establish a relationship between the
marker positions and the anatomy of the patient. A real-time
stereophotogrammetry (SPG) system is used to detect the mark-
ers in the treatment room and compute their respective positions
in a 3D coordinate system. A motorised chair and an immo-
bilisation device is used to fix the mask and, theoretically,the
patient to the chair. The motorised chair is then instructedby
the SPG system to move the markers and, by implication, the
patient to the position required for treatment.

Fitting the mask to the patient on different occasions opens
up the possibility of small differences being introduced inthe
relative positions of the markers and the patient anatomy. When
treating a patient, it is necessary to verify that the patient’s
anatomy is correctly positioned according to the treatmentplan
before the patient can be treated. This verification is currently
accomplished by visual comparison of a film X-ray image,
called a portal radiograph (PR), taken when the patient is po-
sitioned and a digitally reconstructed radiograph (DRR), gen-
erated by the treatment planning system, in which the patient
has the correct treatment position. A DRR is a synthetic image
that approximates the physics involved when an X-ray image
is generated. The verification procedure described is manual,
time-consuming and needs to be repeated for each of the treat-
ment fields [2]. Furthermore, visual inspection is prone to er-
rors. Because proton therapy is used for treatment of lesions
close to sensitive organs, these errors will be detrimentalto the
patient’s health.

Image registration is a process whereby the spatial corre-
spondence between two coordinate spaces are established. The

result is a transformation linking the two spaces. In this prob-
lem we want to establishGE , the error between the treatment
position and the observed position.

Van der Bijl [3] proposed a 2D-3D image registration sys-
tem that is accurate, robust and automatic. 2D-3D image regis-
tration is a process where 3D CT data acquired pre-operatively
are registered to a 2D PR image obtained intra-operatively [4].
The PR is compared to various DRRs calculated from the CT
data. The comparison is done using a similarity measure and an
optimiser searches for the transformation that produces a DRR
most similar to the PR. Van der Bijl [3] used Powell’s minimiser
and the Correlation Coefficient or Mutual Information similar-
ity measures to perform registration using DRRs generated with
the ray cast algorithm. A schematic representation of the pro-
cess is shown in figure 1.

CT data

Optimiser

Rigid
Transform

Portal
Radiograph 

Processing
on f loating
image

Processing
on reference 
image

Similarity
Measure

Regsitration
completed

Figure 1: An overview of the 2D-3D registration process. A
PR (reference image) is compared to various DRRs (floating
images) using a similarity measure. The optimiser searchesfor
the rigid transformation that produces a DRR most similar to
the PR.

Van der Bijl [3] reported that his image registration imple-
mentation took about 7.5 minutes to verify the patient position.
This is too slow for use in practice. The longer a patient needs
to wait for the registration process to complete, the higherthe
probability that the patient will move out of his initial position.
The generation of DRRs is computationally expensive and since
hundreds of DRRs may be required for the registration process,
it is very important to speed up DRR generation.

The aim of this study is to find a fast DRR generation al-
gorithm. In particular we only have to cater for the creationof
DRR images that are contained in a known limited vicinity. The
image registration process should complete in less than three
minutes, which is the minimum time the current manual veri-
fication process takes. Furthermore, it must be shown that the
new DRR generation algorithm does not destroy the accuracy
or robustness of the registration process.
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2. Discussion
2.1. DRR generation methods

Carstens and Muller [1] discussed various DRR generation al-
gorithms and concluded that the ray casting and light field algo-
rithms can be trivially parallelised. The ray casting algorithm
is used as the gold standard for DRR generation and the light
field algorithm can be used to improve the DRR generation time
by pre-operative computation of scene dependent data and the
intra-operative computation of images using interpolation. Both
methods will be discussed briefly.

2.1.1. Ray casting

Let ρ(i, j, k) denote the voxel density or attenuation coefficient
in a 3-dimensional CT volume andl(i, j, k) the length of the
intersection of an X-ray with that voxel, then the radiological
path length is defined as

d =
X

i

X

j

X

k

l(i, j, k)ρ(i, j, k) (1)

The radiological path length is an approximation of the physics
involved when an X-ray image is generated. Computing DRRs
using the radiological path definition isO(n3) and very inef-
ficient. Only a few voxels actually contribute to a path, since
mostl(i, j, k) values will be zero. Siddon [5] proposed viewing
CT voxels as the intersection of equally spaced, parallel planes.
The intersection of the ray with the planes is then calculated,
rather than the intersection of the ray with the different vox-
els. Determining the intersection of a ray with equally spaced,
parallel planes is a simple problem. One needs to calculate the
intersection with the first plane and the rest follows at fixedin-
tervals because the planes are equally spaced.

An optimised version of Siddon’s algorithm was proposed
by Jacobs [6]. The new algorithm reduces computation by elim-
inating the need to explicitly compute the voxel indices forev-
ery interval. Also, it removes the need to allocate memory for
the different arrays containing the intersection points. Figure 2
shows how a DRR is constructed.

Source

CT cube

DRR

Figure 2:A 2D view of DRR generation. The DRR is the set of
values for the radiological paths from the source to the pixels
on the image plane.

The ray casting method is used as a benchmark of DRR
quality, but it is too slow for real-time computations [7] and in
its standard form slower than most other algorithms [7][4][8].

2.1.2. Light fields

Light fields is a method that was originally proposed by Levoy
and Hanrahan [9]. It can be described as a way of parameter-
ising the set of all rays that emanate from a static scene. Each

ray is identified by its intersection with two arbitrary planes in
space. It is convention that the coordinate system on the first
plane is(u, v) and that this plane is called thefocal plane. The
second plane has a coordinate system(s, t) and is called the
imageplane. It follows that every ray in this space can be rep-
resented as a point or pixel valuepi = (ui, vi, si, ti) in 4-
dimensional space.

A light slabis the shape that is created when the focal plane
and the image plane are connected. This represents all the light
that enters the restricted focal plane and exits the restricted im-
age plane.

If one can generate infinitely many rays inside a light slab,
one can recreate almost any image with a focal point inside the
light slab. This is done by finding the associated rays and their
corresponding pixel values (figure 3). In practice one cannot
generate infinitely many rays and are thus constrained to gen-
erate a large number and compute the missing rays using some
form of interpolation.

st

uv

Figure 3: A 2D view of a light slab, illustrating the view (in
bold) generated for an arbitrary focal point.

Light fields is a simple method to construct novel views
from arbitrary camera positions. This is achieved by resampling
a set of existing images and is therefore calledimage-based ren-
dering [9]. Image-based rendering algorithms have the advan-
tages that they are suitable for real-time implementationssince
they are not computationally expensive, the cost of generating a
scene is not dependent on the complexity of the scene, and the
set of base images can be real images, artificially created ones
or both.

The amount of light travelling along any arbitrary ray in
space is called itsradiance. For any arbitrary scene with static
illumination the radiance of all rays is called theplenoptic func-
tion. In the plenoptic function rays are represented by the co-
ordinatesx, y, z and the anglesθ andφ. Each ray has an as-
sociated radiance value. When the radiance along a ray does
not change the 5D plenoptic function can be reduced to a 4D
function. This 4D function is the formal definition of a light
field.

The light slab is also called aplane-planerepresentation.
This type of parameterisation does not include, for instance,
rays that are parallel to the two planes. However, multiple light
slabs can be used to represent these. In 3D six light slabs would
be required to recreate any arbitrary view of an object.

It is important to note that since the projection space for
our DRRs is constrained, only a single light slab is necessary
to represent the sampling space. Figure 4 shows how a light
slab can be viewed as a 2D array of 2D images where the(u, v)
coordinates identify a sub-image in the light slab and the(s, t)
coordinates identify a pixel in the sub-image.

What makes light fields attractive for the DRR generation
problem is the fact that most computation can be done pre-
operatively. During patient treatment, when computation time
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Figure 4: A light slab can be interpreted as a 2D collection of
2D images from different observation points. The(u, v) coor-
dinates identify a sub-image and the(s, t) coordinates a pixel
in the sub-image.

must be minimised, it is then possible to quickly generate im-
ages from the pre-computed data. The generation of images is
achieved by interpolation of the pre-computed data. This can be
done in constant time, since the computation time is not depen-
dent on the complexity of the image.

A pixel value in a general light field is an indication of the
amount of light reflected off the first surface a ray intersects
with. When evaluating DRRs, however, the pixel values are the
radiological path lengths (equation 1) the rays encounter from
the projection point to the image plane.

To accommodate the generation of DRRs, we can associate
each pointpi = (ui, vi, si, ti) with a scalar functionpi 7→
q(pi) which maps a point to the radiological path length of the
rayRpi

.
In order to trace a ray through the CT data and maintain the

same parameterisation of rays in space as traditional lightfields
one must cast the rays beyond avirtual image planeonto an
effective image plane. The values on the effective image plane
is used for the light field generation.

In traditional light field rendering as well as light field DRR
generation, the generated image is a skewed perspective im-
age. However, where in traditional light field rendering the
image plane remains fixed and between the scene and the fo-
cal plane, in DRR generation the virtual image plane remains
fixed while the effective image plane can move and the effec-
tive image plane lies on the other side of the scene from the
focal plane. Figure 5 illustrates this. Figure 6 shows how anar-
bitrary DRR can be created from a light slab. For each ray from
an arbitrary projection point to an arbitrary projection plane, the
intersections with the focal and virtual image planes are com-
puted. These intersections are then used to calculate the indices
into the light slab as well as the weights used to perform the
interpolation.

The implementation of the light field DRR generation algo-
rithm is parallelised using OpenMP [10] as follows:

Focal plane

Virtual image plane

Effective image plane

Figure 5: The positions of the focal-, effective image- and vir-
tual image planes used when constructing DRRs using light
fields. The grey object is the CT data positioned relative to the
planes. The virtual image plane can be positioned anywhere
between the focal- and effective image planes.

DRR projection point

DRR projection plane

Virtual image plane

Focal plane

Effective image plane

Figure 6: An example of constructing a DRR from a light slab.
The dashed lines show the intersections of rays with the focal
and virtual image planes. The effective image plane is shown
for illustrative purposes only.

#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int j=0; j<yResolution; j++)
#ifdef _OPENMP
#pragma omp parallel for
#endif

for (int i=0; i<xResolution; i++)
image(i,j)=getValue(focalPoint,

targetPoint(i,j),
lightSlabData);

The algorithm iterates over the pixel indices of the DRR im-
age and for each pixel computes the value using a specified fo-
cal point and the target point associated with the pixel index
as input to thegetValue function. ThegetValue function
computes the intersections of the ray passing through the focal
and target points with the focal and virtual image planes. These
intersections are then used to compute the interpolated value
using quadrilinear interpolation. Because of the parallelisation
multiple pixel values are computed simultaneously.

3. Evaluation
3.1. Quantifying the error

The error transformation is defined as

GE = (Rz(θz)Ry(θy)Rx(θx), (δx, δy , δz)
T ) . (2)
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The components of equation 2 can also be represented in vector
form:

v = (δx, δy, δz, θx, θy, θz) , (3)

wherev is referred to as a position vector.
Let theexact(correct) solution to an optimisation process

be calledse and thecalculatedsolutionsc, where both vectors
are position vectors. The difference between the exact solution
and the calculated solution is

sd = se − sc .

The first three elements ofsd havemillimetreunits and the last
three elements havedegreeunits. Converting the differences of
the individual elements to percentages removes this difference.
Since the size of the allowed error range for a dimension is2ǫθ

degrees or2ǫδmm, we use these ranges when calculating the
percentage error.

The Euclidean distance of the individual errors are calcu-
lated and scaled by a factor1√

6
to produce a dimensionless

value quantifying the total error. In practice we also evaluate
the errors on the individual elements when looking at the ac-
curacy of the registration process, but for brevity the individual
results are not included in this article.

3.2. Evaluation of DRR generation methods

The similarity of DRRs can be evaluated qualitatively or quanti-
tatively, although only the latter is feasible for use in algorithms.
Difference imagesare a means of qualitative comparison. The
absolute difference imaged of two M × N imagesf andg is
given by

d(m,n) =| f(m, n) − g(m,n) | ,

wherem andn are indices in the images. The quantitative mea-
sures used in this study was the Correlation Coefficient and the
Mutual Information similarity measures, as suggested by Van
der Bijl [3].

The correlation coefficient of two imagesf andg is defined
as

CC(f, g) =

PN
n=1

PM
m=1 ab

q

PN
n=1

PM
m=1 a2

PN
n=1

PM
m=1 b2

,

wherea = f(m, n)−f̄ , b = g(m,n)−ḡ, f(m, n) andg(m,n)
denote the pixel values at position(m, n) in imagef and g,
respectively, and̄f andḡ denote the mean pixel value in image
f andg, respectively.

The Mutual Information shared between two imagesf and
g is defined as

MI(f, g) = H(f) + H(g) − H(f, g) ,

whereH(f) and H(g) are Shannon’s entropies of imagesf
andg, respectively, andH(f, g) is thejoint entropy of the two
images.

3.3. The optimiser

Powell’s method is an unbounded minimisation algorithm to de-
termine local minima for multidimensional functions and forms
part of a class of methods calleddirection set methods. It
accomplishes the minimisation by repeatedly performing line
minimisations. What makes Powell’s method very attractivefor
the purposes of this study is the fact that it does not involvecom-
putation of the cost function’s gradient [11]. Firstly, no analytic

gradient exists for our cost function and secondly, approximat-
ing the gradient numerically using finite difference or forward
difference methods would be computationally expensive as it
requires the generation of more DRRs.

3.4. The cost function

The cost function is defined as a minimising function. This
function needs to be defined for allx ∈ ℜ6, since Powell’s
minimiser is an unconstrained optimiser. Using ray castingwe
can easily generate arbitrary DRRs, but using the light fieldal-
gorithm we are constrained to the sampled space contained in
the light slab. To overcome this limitation we define an arbi-
trary function with the criteria that it provides values forpoints
outside the sampled space and guides the optimiser to the mini-
mum.

Let g(x) be a similarity measure defined in the interval
−ǫ ≤ xi ≤ ǫ for all six dimensions. It compares two DRRs
and returns lower values for higher similarity and higher values
for lower similarities.

Let c(x) be a cost function, where

c(x) =

8

<

:

−xi if xi < −ǫ
g(x) if −ǫ ≤ xi ≤ ǫ
xi if ǫ < xi

The two functions investigated in this study as possibilities
for g(x) are the Mutual Information and Correlation Coefficient
similarity measures. Since the Mutual Information and Cross
Correlation similarity measures both always return positive re-
sults, it must be negated when used in the cost function. So, for
Mutual Information,

g(x) = −MI (DRR(x), DRRref ) ,

whereDRR(x) is a function returning the DRR when a trans-
formationx is used andDRRref is a reference image. The
same applies when using the Correlation Coefficient similarity
measure.

4. Results
4.1. Similarity performance

A similarity experiment was used to evaluate the effect of using
DRRs from various light slab configurations on the cost func-
tion of the optimiser. The effect was compared to the similarity
performance of ray casted DRRs.

The similarity measures peaked where the DRRs were most
similar and gradually worsened in a decreasing fashion when
DRRs were positioned further away from the reference DRR.

For the light field DRRs to be useful, we expect that the
similarity curves do not contain local minima or maxima (ex-
trema) and the location of the extremum must coincide with the
extremum of the ray casted DRRs.

The similarity measurements were taken for movements
along the six error dimensions as well as four other arbitrary
complex movements. The different error dimensions are all
limited to ±5mm or ±5◦. On the graphs all movements are
parameterised to the interval[0 . . . 1] and are expected to peak
at 1

2
. Figure 7 shows an example of one such test. In most of

the tests both the Correlation Coefficient as well as the Mutual
Information similarity measures performed quite well in terms
of the criteria set out initially. The curves does not contain lo-
cal extrema and the locations of the extrema coincide with the
extremum of the ray casted DRRs.

128



0.0 0.2 0.4 0.6 0.8 1.0

0.90

0.95

1.00

C
or

re
la

tio
n 

C
oe

ffi
ci

en
t

, 0.0 0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

M
ut

ua
l I

nf
or

m
at

io
n

Figure 7: Similarity measures for translations along they andz
axes using DRRs generated from various light slab resolutions.

It is worth noting that the Correlation Coefficient similarity
measure were sometimes close to a straight line, having a range
of [0.995 . . . 1.00025]. Figure 8 shows an example. This makes
it susceptible to numerical errors which produces local extrema.
This behaviour was most prevalent for translations on thex axis,
which has a zoom or shrink affect on the resulting DRR.
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Figure 8: Similarity measures for translations along thex axis
using DRRs generated from various light slab resolutions.

4.2. DRR computation time performance

The tests were performed on a machine with the following spec-
ifications:

CPUs Two quad-core Intel Xeon CPUs running at 2GHz. This
effectively translates toeightprocessors.

RAM 2GB

Operating System Scientific Linux SL release 5.1 (Boron)
(based on Red Hat)

Compiler gcc version 4.1.2 20070626 (Red Hat 4.1.2-14)

Table 1 shows the average ray casting performance times
when using sequential compilation and when using parallelisa-
tion on the ray cast and light field algorithms.

RC LF PRC PLF
avg 2.781 0.439 0.450 0.056
σ 0.023 0.001 0.004 0.001

Table 1: Generation time (s) of a512×512 DRR using the Ray
Cast, Light Field, Parallelised Ray Cast and Parallelised Light
Field algorithms.

4.3. Light slab computation time

Although the light slab computation time is performed pre-
operatively and therefore does not add to the patient treatment
time, it is informative from a practical point of view to showthat
these computation times are not excessive. A parallelised light
slab generation algorithm was used. The average computation
time of the light slabs are given in table 2.

Focal Res Image Res Min (s) Max (s) Avg (s)
32 × 32 128 × 128 10.352 38.106 21.494
32 × 32 256 × 256 41.063 108.216 72.302
32 × 32 512 × 512 160.915 338.579 260.800
64 × 64 128 × 128 43.112 156.291 87.766
64 × 64 256 × 256 163.989 418.143 285.329

Table 2: The computation times of light slabs with varying focal
and image plane resolutions.

The differences between the minimum and maximum light
slab computation times can be attributed to the fact that theray
cast algorithm, which is used to generate the light slab, hasa
computation time which is dependent on the complexity of the
scene. For certain configurations, most notably a DRR with
a view diagonally through the CT cube, the number of voxel
traversals is significantly higher than other configurations.

The maximum time measured in this experiment is approx-
imately 7 minutes for the light slab with a virtual image plane
resolution of256×256 and a focal plane resolution of64×64.
Being a pre-operative computation, it is completely acceptable.

4.4. Image registration performance

In this experiment we evaluated the effect of using light field
DRRs in an image registration algorithm compared to ray casted
DRRs. Each algorithm was tested in conjunction with the two
similarity measures and as in the similarity tests, a comparison
was made between solutions found using ray casted DRRs and
those found using the light field algorithm.

The tolerance of the line search method used by Powell’s
algorithm was0.1. No tolerance was set on the value of the
cost function. The algorithm terminates when the absolute dif-
ference in all the individual dimensions of the solution areless
than0.1mm or0.1◦ from the previous solution.

The results are presented using the following definitions:

S The similarity measure used. The two options are:

M Mutual Information

C Correlation Coefficient

A The DRR generation algorithm used. The two options are:

R Ray Cast

L Light Field

ξ The total error.

Time The time (in seconds) required by the image registration
process.

It is important to note that, since the sizes of the search
spaces are10mm (−5mm. . . 5mm) and10◦ (−5◦ . . . 5◦), a one
percent error in one of the dimensions translates to a real error
of 0.1mm and0.1◦.

The SPG system aims to achieve sub-millimetre accuracy.
This is the aim of the image registration system as well, which
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means that errors larger than 10% are considered unacceptably
high.

The tests were performed using various light slab dimen-
sions. Also, solutions were varied to lie within the sampled
space and at the discontinuities in the cost function, whichare
boundary cases. The results corresponded and an arbitrary sam-
ple is provided in table 3.

S A ξ Time (s)
M L 0.35 29.19
M R 0.36 86.63
C L 1.83 14.51
C R 1.17 63.43

Table 3: Image registration performance for perturbationsin all
dimensions.

4.4.1. Performance in terms of accuracy

The performance of the Mutual Information similarity measure
in terms of accuracy was very good. Most of the errors were
less than 1% and all errors were less than 2%.

The Correlation Coefficient similarity measure performed
badly when determining thex translation parameter. This is not
unexpected. It was seen in the similarity tests that the Corre-
lation Coefficient similarity measure performed poorly andthis
reflects directly in the optimiser accuracy performance. All er-
rors were less than 6% and most were less than 2%. Disregard-
ing thex translation parameter, all the errors were smaller than
2% and in most cases the error was less than 1%, similar to the
Mutual Information similarity measure.

All tests using the light field algorithm performed well com-
pared to the tests using the ray cast algorithm, with accuracy that
was mostly in the same order of magnitude and sometimes even
better.

4.4.2. Performance in terms of computation time

In all the experiments the optimiser using the Correlation Coef-
ficient similarity measure combined with DRRs generated from
light slab performed the fastest, with registration times faster
than 21 seconds. The second fastest setup in all experiments
are the Mutual Information similarity measure combined with
DRRs generated from light slabs, with registration completing
in less than 40 seconds. This is almost double the worst case
time when using the Correlation Coefficient similarity measure,
but still a big improvement over the time taken for manual ver-
ification. It is important to note that in all experiments theop-
timisation processes using the light field algorithm alwaysout-
performed those using ray casting.

5. Conclusions and future work
This study set out to find a DRR generation algorithm that is fast
and that, when used in conjunction with an image registration
algorithm, produces a fast, accurate and robust method for veri-
fying the patient position. The goal was to be able to accurately
determine the error in the patient position in under three min-
utes. A parallelised implementation of the light field algorithm
was shown to satisfy all the requirements.

Accurate registration is performed in under a minute and
the algorithm will automatically perform even better if more
CPUs are added to the machine on which it is executed. This

greatly improves the 7.5 minutes reported by Van der Bijl [3].
The parallelised light field algorithm performs roughly 50 times
faster than than the serial ray cast algorithm as proposed byJa-
cobs [6]. This improvement did not directly translate to the
optimiser time, as the implementation in this study required
substantially more cost function evaluations than was the case
in [3].

An arbitrary definition of an unconstrained cost function
was used in the image registration implementation. This cost
function was shown to work with both the Mutual Informa-
tion and the Correlation Coefficient similarity measures. Al-
though the Mutual Information similarity measure took longer
to complete than the Correlation Coefficient similarity measure
in some cases, it produced lower errors overall. The definition
of the unconstrained cost function and possibly the parameters
used by the optimisation algorithm would be worthwhile areas
for further investigations.
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Abstract
This paper presents a new technique for the recognition of road
traffic signs. The technique is based on colour and shape anal-
ysis of a single image. It is aimed at the detection and clas-
sification of triangular traffic signs, such as warning and yield
signs. The technique is applied to a set of images obtained from
a camera mounted on a moving vehicle. Good detection and
classification performance is achieved.

1. Introduction
The ability to recognise road and traffic signs is becoming an
important research area in Intelligent Transport Systems (ITS)
and has a number of applications. In driver support systems,
such a system could focus a driver’s attention to road conditions
ahead, such as pedestrians that may be crossing the road or a
change in the allowed speed limit, allowing the driver to take
appropriate action on time. In intelligent autonomous vehicles,
the ability to recognise and interpret such signs could contribute
greatly to their control and safe navigation. For example, a sign
indicating that there is a stop ahead may lead the control system
to reduce the speed of the vehicle. In highway maintenance and
sign inventory applications, the ability to recognise and possibly
to evaluate the condition of the signs, can greatly reduce the
effort in maintaining current road infrastructure.

Traffic signs are designed to have specific saturated colours
that are easily distinguishable from their environment. In South
Africa and many other countries, typical control, prohibition
and warning signs contain red, black and/or white; typical com-
mand and reservation signs contain blue and/or white; and typ-
ical route markers and tourism signs contain green, blue or
brown with white and/or yellow lettering. They also have spe-
cific shapes; command and prohibition signs are circular, warn-
ing signs and yield signs are triangular, reservation, route mark-
ers and tourism signs are rectangular and stop signs are octag-
onal. They are placed near the road surface in a clearly visible
position, usually free from any occlusions. Figure 1 shows ex-
amples of commonly occuring traffic signs.

Figure 1: Typical traffic signs, showing their unique colour and
shape (from left to right: stop, yield, pedestrians only, 100km/h
speed limit, no u-turn, pedestrian crossing ahead) (note that
images are available in colour).

The fact that traffic signs have unique colours and shapes
are often exploited in algorithms designed to recognise them.
These algorithms typically follow a two step process. In the

detection phase, the position and shape of the signs (if any) in
the image are determined. In the classification phase, the aim is
to assign class labels to the signs that were detected. Detection
and classification usually constitute recognition in the scientific
literature. A third applicability phase may be required to de-
termine whether a given sign in the visual field is applicable
in the current situation or, put differently, to recognise whether
a particular sign is relevant in the current context of the appli-
cation. This is particularly important in applications such as
driver support systems and intelligent autonomous vehicles. Al-
though robust detection and classification algorithms have been
developed, determining the applicability of a sign is a difficult
task that has not been adequately addressed in the literature and
presents an opportunity for future research.

Detection is usually performed on colour images, although
some studies have also been executed on grayscale images.
When colour images are used, segmentation through colour
thresholding, region detection and shape analysis are usually
performed. The choice of colour space is important during the
detection phase. When the RGB colour space is used [1, 2, 3],
thresholding is usually based on relations between the colour
components. Others work in the HSI or HSV colour space [4,
5, 6], where the relations between the components is somewhat
simplified. Other colour spaces, such as LUV [8] and CIECAM
[9] have also been used. Due to the varying colour conditions
that may occur, more extensive approaches have also been de-
veloped. Databases for colour pixel classification are used in
[10] and [11]. Fuzzy classification [12] and neural networks
[13] have also been tried. Border detection on grayscale images
[14] is another approach that have been taken.

Classification can be accomplished by a number of ap-
proaches. Template matching is used in [15] and [16]. Mul-
tilayer perceptrons [1, 17], radial basis function networks [18],
Laplace kernel classifiers [19] and genetic algorithms [4] have
also been studied.

The recognition of traffic signs presents a number of dif-
ficulties, both in terms of the image formation process and in
terms of the environment in which the sign is found. In the im-
age formation process, the size of the sign in the image depends
on its physical size and its distance from the camera and in gen-
eral could be arbitrarily rotated. There will be an aspect modi-
fication in the projection of the sign in the image if the optical
axis of the camera is not perpendicular to the sign (i.e. perspec-
tive distortion). There is also no standard colour associated with
the signs, as the colour will depend on various photometric ef-
fects. In addition, effects such as sensor noise and motion blur
may be present in the image. Difficulties in the environment
in which the sign is found can be divided into four groups, il-
lustrated in Figure 2. The physical condition of the sign may
make recognition difficult, such as the effect of deteriorating
paint quality over time (Fig. 2a), signs that are damaged (Fig.
2b), signs that are incorrectly placed, the presence of graffiti
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Figure 2: Difficulties in the recognition of traffic signs: (a) de-
teriorating paint quality, (b) damaged sign, (c) graffiti, (d) gen-
eral deterioration, (e) partial occlusion by a static object, (g)
partial occlusion by a dynamic object, (g) reflections, (h) shad-
ows, (i) low-light conditions, (j) sign not applicable, (k) sign not
applicable, (l) too many signs.

(Fig. 2c) or just general deterioration of the sign (Fig. 2d). Par-
tial occlusions of the sign, both of a static (Fig. 2e) and dynamic
(Fig. 2f) nature, and lighting conditions such as reflections (Fig.
2g), shadows (Fig. 2h) and low-light conditions (Fig. 2i) may
also have a severe influence. Finally, there may be difficulty in
determining the applicability of a traffic sign. In Fig. 2j the yield
sign is only applicable to drivers using the side road, in Fig. 2k
the speed sign is applicable only to the vehicle with which it is
associated and in Fig. 2l there may be general confusion due to
the many signs present.

2. Method
In the work presented here, the interest is in recognising trian-
gular signs such as warning and yield signs. These signs have
a red triangular frame that usually surrounds a black iconic rep-
resentation of an object on a white background. The algorithm
discussed here can be applied to a single image, i.e. it is not de-
pendent on temporal consistencies between successive frames
in a video sequence. It is assumed that the traffic sign is not
occluded by objects in the environment in such a way as to seg-
ment its projection onto the image plane into different regions
or in such a way that the visible portion of the interior of the
sign is fundamentally altered. A further assumption is that the
sign is fully contained in the interior of the image, i.e. it does
not protrude beyond the boundaries of the image.

An overview of the steps in the algorithm is shown in Figure
3. An example of the output of some of these steps is shown in
Figure 4, using the source image shown in Fig. 4a. The steps

Figure 3: Steps in the recognition of traffic signs.

are discussed in detail in the subsections that follow; here a brief
overview is given.

The image is converted from the RGB to the HSV colour
space, after which an initial threshold is applied to determine
red regions (possible traffic signs) (Fig. 4b - background shown
as white). These red regions are “grown” to include other pos-
sible regions that may qualify but which may not have qualified
during the initial thresholding step. Next, the interiors and exte-
riors (background) of possible signs are marked (Fig. 4c - back-
ground in white, interiors in yellow). This process is likely to
fail in the presence of occlusions, where the interior and exterior
regions are connected and thus not be easily separable. Edges
are then extracted from the image where the interiors touch the
possible signs (Fig. 4d). A component labelling algorithm is
then applied to determine different edge segments that are 8-
connected. Small edge segments that are likely to be noise is
discarded (Fig. 4e). Separate edge segments are tested to de-
termine whether they provide a good fit for a triangle (Fig. 4f).
If such a fit is established, the three vertices of the triangle are
noted. Using these vertices, interpolation based on barycentric
coordinates is applied to map the triangle in the original im-
age onto a new normalised triangle with fixed scale and rotation
(Fig. 4g). This normalisation also aims to reduce the effect of
perspective distortion. Classification is achieved by matching
this normalised triangle to a set of reference templates.

2.1. Colour Conversion

Most digital image formats store a digital image as a series
of two-dimensional arrays, specifying the red, green and blue
(RGB) channels. The first step is to convert each pixel of the
source image to its equivalent in the hue, saturation and value
(HSV) colour space. The HSV colour space provides a con-
venient interpretation of the meaning of colour. The reader is
referred to [22, p.623] for a description of the conversion pro-
cess.

2.2. Image Thresholding

The fact that triangular signs have a characteristic red frame can
be exploited to identify regions in the image that could possibly
contain such signs. The image is thresholded to identify regions
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Figure 4: Output of the various steps in the recognition pro-
cess: (a) source image, (b) after thresholding, (c) after back-
ground/interior labelling, (d) after edge finding, (e) after la-
belling and filtering, (f) after shape fitting, (g) after normalised
images have been extracted, (h) after classification.

with red pixels. The output of this process is a mask that speci-
fies for every pixel whether it is adequately red or not.

The hue and saturation components are sufficient in identi-
fying red regions in warning signs. The mask is defined as

µ1(x, y) =

 1, if S(x, y) ≥ TS and
(H(x, y) ≤ TH or H(x, y) ≥ 1− TH),

0, otherwise,
(1)

where TS is a threshold related to the saturation of the pixel,
and TH is a threshold related to the hue of the pixel and S and
H are the saturation and hue respectively at coordinate (x, y).

Since hue values close to 0 and 1 are indicative or red, there
are two conditions related to the hue value. The output of this
step is shown in Figure 4b (object pixels are shown in their orig-
inal colour, background pixels are white).

2.3. Region Growing

For a variety of reasons, such as a sign’s paint that fade over
time or the presence of reflections and shadows, the frame of
the sign may contain regions that are not a highly saturated red
colour. Such regions may not be detected under the mask de-
fined by (1).

Under the assumption that such regions will be close to the
regions identified by (1), and that they will be “somewhat” red,
the mask can be grown to include such regions. The new red
mask µ2 is expressed by

µ2(x, y) =


1, if µ1(x, y) = 1 or

(S(x, y) ≥ tS and
(H(x, y) ≤ tH or H(x, y) ≥ 1− tH) and
∃(x0, y0) ∈ N(x, y) s.t. µ1(x0, y0) = 1),

0, otherwise,
(2)

where tS and tH are new threshold values and N(x, y) is a
neighbourhood of (x, y). Note that proximity to a pixel that is
already classified as red is required, but the thresholding condi-
tions are relaxed such that tS ≤ TS and tH ≥ TH . The proce-
dure can be applied iteratively, replacing the previous mask by
the new mask, and can be stopped after convergence.

2.4. Background/Interior Labelling

At this stage, it is undecided whether a given non-object pixel
(corresponding to a 0 in the mask) is internal or external (back-
ground) to the object.

As was previously mentioned, the assumption is made that
the sign is fully contained in the interior of the image (we are not
making predictions about signs that protrude across the bound-
aries of the image). Under this assumption, all internal pixels
are completely surrounded by at least a single line of object pix-
els. No internal pixels are thus found in the boundary (the first
and last rows and columns) of the image.

We can exploit this assumption by noting where mask
boundary that have a value of 0 and correspondingly marking
them as background. Using these coordinates as seed values, we
recursively find 4-connected pixel neighbours, and each such
neighbour which also has a mask value of 0 is then also marked
as background. After the recursion process, all coordinates with
a mask that has a value of 0 and which has not been marked as
background are interior pixels. It is possible for remaining val-
ues not to be “true” interiors but rather to exist due to the bound-
aries of the objects surrounding them touching each other. How-
ever, such regions will be completely surrounded by the object
boundaries and thus cannot be distinguished from true interiors.

Mathematically, this can be expressed as

µ3(x, y) =


1, if µ2(x, y) = 1,
−1, if ∃(x0, y0) ∈ B s.t. there exists

a 4-connected path P between (x, y) and
(x0, y0) s.t. µ2(xi, yi) = 0∀(xi, yi) ∈ P,

0, otherwise,
(3)

whereB is the set of pixel coordinates defining the boundary of
the image, P is a set of pixel coordinates defining a 4-connected
path between (x0, y0) and (x, y)..

The output of this step is shown in Figure 4c, where yellow
is used to indicates an internal pixel and white a background
pixel. Object pixels are shown in their original colours.

2.5. Edge Finding

The next step in the algorithm is to find the pixels corresponding
to the object-interior edges. An edge in this context is defined
as any interior pixel that is 4-connected to an object pixel, and
is given by

µ4(x, y) =


1, if µ3(x, y) = 0 and

(µ3(x+ 1, y) = 1 or µ3(x− 1, y) = 1 or
µ3(x, y + 1) = 1 or µ3(x, y − 1) = 1),

0, otherwise.
(4)

The output of this step is shown in Figure 4d, where a black
indicates an edge and a white a non-edge.

2.6. Labelling and Filtering

A connected component labelling algorithm is applied to the
mask to determine which edges are 8-connected. A two-pass
algorithm is applied. In the first pass, an initial labelling of
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Figure 5: Connection points (indicated in red) used for line fit-
ting.

the edges in single scan lines is performed. Labelling conflicts
between successive scan lines are noted. On completion of the
first pass, the union find algorithm [20, pp. 441-440] is applied
to resolve labelling conflicts. A second pass is performed to
re-label each of the original edge labels.

The labelling algorithm produces a new mask µ5. A posi-
tive value of i = µ5(x, y) indicates that the coordinate (x, y) is
associated with the i’th edge object.

The area of each edge object is calculated as

Ai =
∑
µ5

ai, where ai =

{
1, if µ5(x, y) = i,
0, otherwise, (5)

where the sum is taken over all image coordinates (x, y). Edge
objects with a large enough areas are retained, that is edge ob-
jects for which Ai ≥ TA, where TA is a threshold specifying
the minimum area. The step is likely to filter out edge objects
that are present due to noise. In addition, edge objects that cor-
respond to small areas for which a classification would in any
case not be possible are filtered out.

The output of this step is shown in Figure 4e, where differ-
ent colours are used to represent the different edge objects that
are retained.

2.7. Shape Fitting

The previous step will retain all edge objects that have a large
enough area to merit further consideration. In this step, the
objective is to determine whether these edge objects provide a
good fit to a triangle. The approach taken is to fit various lines
through edge pixels. An algorithm such as RANSAC could be
applied for this purpose, but a deterministic approach is sought
for robust detection.

This is achieved by means of “connection points” (illus-
trated in Figure 5). Given the bounding box of the edge object,
the connection points are defined as the most top-left, top-right,
right-top, right-bottom, bottom-right, bottom-left, left-bottom
and left-top pixel coordinates in the bounding box that form
part of the edge object. Connection points with the same coor-
dinates are noted as a single point. There are thus a maximum
of 8 unique connection points. Let N be the number of such
unique points.

A line segment is fitted through successive pairs of succes-
sive connection points (modulo N ), using their coordinates as
beginning and end points for the line segment. For each such
line segment, the closest distance d from each edge object co-
ordinate to the line segment is calculated. All edge object co-

ordinates within a distance d ≤ D are noted. Let the number
of such points be Si (i varies from 1 to N ). This represents a
score associated with the line segment i. For each line segment,
a linear least squares approximation is performed to determine
the equation of a line that fits through the Si points.

The N lines are now sorted according to the score Si asso-
ciated with each line, in descending order. Some of these lines
may be associated with the same side of a triangle and thus need
to be filtered out. To achieve this, a new list of lines is created.
Working in descending order of score, a line is added to the
new list if it has a non-overlapping angle with any of the lines
already in the list. Two lines are overlapping if their angular
difference is less than a threshold Tθ . The three top scoring,
non-overlapping lines are used for triangle estimation. If there
are less than three such lines, the detection process is stopped.

The sum of the scores associated with these three lines is
noted (filtering out coordinates that contribute more than once
in each of the individual scores). Let the sum of these scores
be S. For a good fit, it is required that S ≥ kSAi, for some
0 ≤ kS ≤ 1. If such a good fit exists, the intersection
points of the three lines are determined. Let these points be
Pi = (xi, yi), i = 1, 2, 3. A final test is performed to de-
termine whether these intersection points are within a certain
distance from the bounding box of the edge segment and within
the bounds of the image. If this is the case, it is assumed that a
triangle is successfully detected.

A distinction is made between the “yield” (pointing to the
bottom) and “warning” (pointing to the top) configuration of
the triangle. Let ymin represent the minimum of the three tri-
angle y-coordinates and ymax the maximum. The yield config-
uration is assumed if two of the y-coordinates of the triangle
are less than ymin+ymax

2
and the warning configuration is as-

sumed otherwise. The coordinates Pi defining the triangle are
reordered. In the case of the yield configuration the order is
top-left, top-right, bottom-centre and in the case of the warning
configuration the order is top-centre, bottom-left, bottom-right.

The output of this step is shown in Figure 4f, where the
detected triangle sides are indicated in red.

2.8. Image Normalisation

A normalised image with dimensions L× L pixels is now cre-
ated. A useful choice, if multiresolution techniques is to be
applied, is to let L be of the form 2n. In the case of the yield
configuration, the coordinates defining the normalised triangle
is given by p1 = (0, 0), p2 = (0, L-1) and p3 = (L−1

2
, L-1) and

in the case of the warning configuration, these coordinates are
p1 = (0, L−1

2
), p2 = (L-1, 0) and p3 = (L-1, L-1). A mapping

is required that will map the triangle defined by the coordinates
Pi in the original image to a triangle defined by the coordinates
pi in the normalised image.

To achieve this, barycentric coordinates are used. A point
p = (x, y) within the bounds of the triangle defined by the pi
coordinates is expressed as p = w1p1 + w2p2 + w3p3, where
wi are weights such that w1 + w2 + w3 = 1. [w1, w2, w3] are
the barycentric coordinates. For a warning configuration, the
coordinates are given by

w1 =
−1

L− 1
y + 1 (6)

w2 =
−1

L− 1
x+

1

2(L− 1)
y +

1

2
(7)

w3 = 1− w1 − w2, (8)
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and for the yield configuration, the coordinates are given by

w3 =
1

L− 1
y (9)

w2 =
1

L− 1
x− 1

2(L− 1)
y (10)

w1 = 1− w2 − w3. (11)
The barycentric coordinates are calculated for each pixel in the
normalised image that lies within the triangle. A corresponding
point P in the original image is then calculated as P = w1P1 +
w2P2 + w3P3. Using this coordinate, bilinear interpolation is
applied to determine a red, green and blue value for the pixel in
the normalised image.

2.9. Classification

A grayscale version of the normalised image is calculated. The
classification approaches taken for warning and yield signs are
slightly different. For warning signs a binary image is created
from the grayscale image through thresholding. Due to the pos-
sible variety of lighting conditions, a single threshold value will
not be sufficient in all cases. To address this, a dynamic thresh-
olding algorithm as described in [22, pp. 599-600] is imple-
mented. The histogram of the grayscale values is calculated.
The objective is to find a threshold value that will clearly dis-
tinguish between dark and light regions in the image, which is
akin to finding a “good” separation between the two peaks in
the histogram. The median grayscale value is chosen as the ini-
tial threshold. Two means are calculated: the mean of pixels
darker than the threshold and the mean of pixels lighter than the
threshold. The average of the two means is taken as the next
threshold value. Threshold values are iteratively calculated un-
til convergence is achieved.

Let b(x, y) represent the resulting binary image with di-
mensions L × L. The geometric mean of the binary image is
calculated as

(mx,my) =
1

Nb
(

L−1∑
x=0

L−1∑
y=0

(1−b(x, y))x,
L−1∑
x=0

L−1∑
y=0

(1−b(x, y))y),

(12)
where the values 0 and 1 in the binary image represent black
and white respectively and Nb is the number of black pixels.

The binary image is compared to a set of reference tem-
plates. This is achieved by aligning the binary image with each
reference template by their mean coordinates and calculating
the number of pixel differences δi in the intersection of the bi-
nary image with the ith reference image. Let δmin be the mini-
mum over all δi and I the index associated with the minimum.
The sign is classified as belonging to class I if δmin ≤ Tδ ,
where Tδ is a threshold specifying the maximum allowed dif-
ference between the image and the template. If the minimum
distance is larger than the threshold, no classification is made.

For yield signs the approach taken is different. Since the
proper yield sign consists only of light pixels, a dynamic thresh-
olding technique would fail, thus necessitating a different tech-
nique. The Euclidean distance between the grayscale image and
the template image is calculated and the class associated with
the minimum distance is assigned. Since there are only two
types of yield signs, this approach works well.

3. Results and Discussion
To create the template images, reference sheets of the offi-
cial traffic sign designs were obtained from the Department of

Transport in South Africa [21]. From these sheets, the templates
for 87 warning signs (which is further subdivided into road lay-
out signs, direction of movement signs and symbolic signs) and
two yield signs were created.

The colour threshold parameters used were TS = 0.75, TH
= 0.05, tS = 0.5 and tH = 0.1. The area threshold was set at TA
= 50 pixels. The neighbourhood operation in Equation 2 was
taken to mean 8-connected pixels. For line fitting, D = 2 pixels,
Tθ = 5 degrees and kS = 0.9 was used. Images were normalised
to L = 256 pixels in the vertical and horizontal dimensions. No
threshold was applied during classification, that is Tδ =∞.

The algorithm was tested on images extracted from a num-
ber of video sequences. The images were captured at a reso-
lution of 640 x 480 pixels in RGB format and with 8 bits per
channel. Video sequences 1 to 5 were captured under good
daylight conditions, with the focus on a specific traffic sign(s)
and with the sign occupying a relatively large area of the image
(from 26 to 235 pixels in the horizontal dimension). Video se-
quences 6 to 8 were captured from a moving vehicle, with the
camera pointed forward in the direction of the vehicle move-
ment, so that different signs are present in the video. These
videos present a greater challenge, since the signs are relatively
small (from 20 to 60 pixels in the horizontal dimension) and the
camera is not always focussed on them.

The results obtained by applying the algorithm are shown
in Table 1. Classification was attempted only on signs where
a true positive detection was made. To describe the results of
the detection and classification processes in a meaningful way,
the positive predictive value (PPV) was defined as PPV =

C
TPD+FPD

and the sensitivity as SN = C
TPD+FND

. Note
that a classification is attempted for each detection (Tδ = ∞).
the PPV and sensitivity values may be improved by rejecting
detections for which there is a low confidence in correct classi-
fication.

As may be expected, the PPV and sensitivity are signifi-
cantly better for video sequences 1 to 5 than for sequences 6
to 8. An analysis of the images for which errors occurs reveals
that false negatives are mainly the result of the signs having a
darkish red colour that is not detected through the thresholding
process. Noise on the object-interior boundary also result in de-
tection failures. False positives are mainly the result of areas in
the background (such as ground or buildings) that masquerade
as reddish areas that surround a triangular interior. Classifica-
tion errors are typically the result of a weak triangular fit that
rotates the normalised image.

Table 1: Summary of the results obtained using the algorithm
described in this paper (legend: PR - (horizontal) pixel range,
#S - number of signs, TPD - true positive detections, FPD - false
positive detections, FND - false negative detections, C - correct
classifications, PPV - positive predictive value, SN - sensitivity).

No PR #S TPD FPD FND C PPV SN
1 53-137 640 635 4 5 635 99.4 99.2
2 26-124 484 484 2 0 483 99.4 99.8
3 192-235 244 244 4 0 244 98.4 100
4 61-107 354 354 13 0 354 96.5 100
5 107-204 198 198 9 0 198 95.7 100
6 20-60 95 68 1 27 59 85.5 62.1
7 20-55 115 104 2 11 94 88.7 81.7
8 21-57 102 93 0 9 84 90.3 82.4
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4. Conclusions and Future Work
The paper presents a new algorithm for the detection and clas-
sification of triangular traffic signs such as warning and yield
signs, using colour and shape cues. The algorithm offers robust
recognition capabilities under normal daylight conditions in the
absence of occlusions.

The algorithm can be extended to other classes of traffic
signs, such as control, command and prohibition signs. The
approach for these signs could be similar to the approach pre-
sented in this algorithm, except that additional colours are used
in the threshold process and that other types of shapes (ellipses,
octagons, etc.) need to be fitted. In the case of command and
prohibition signs, an additional difficulty that needs to be ad-
dressed during the normalisation step is to produce a normalised
image that is rotation invariant. A more difficult challenge is the
recognition and interpretation of sign boards, where there is no
standard template and each such sign needs to be interpreted
individually for its content.

An important problem to address is the presence of occlu-
sions. The approach presented here is applicable only in the
case where occlusions do not intersect the object such that its
interior and exterior are connected. One way to solve this prob-
lem is to search directly for object-interior boundaries. This
could be accomplished by a metric that specifies the extent to
which two adjacent pixels are red and white respectively (or
other colours for the other classes of signs). These “fuzzy”
edges could be thresholded and the algorithm could proceed
with labelling and filtering, shape fitting, etc.

The work also needs to be extended to track a traffic sign
across multiple frames in a video sequence.
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Abstract 

Algorithms for automatic electrical power line 

detection are investigated. In particular, this paper 

presents a novel tuning technique using the Hough-

Transform to improve Bayesian pixel classification 

accuracy. Connected component analysis is used to 

remove small components (misclassified pixels) from 

the classified images. Experimental results presented 

show that the proposed algorithm outperforms 

traditional Bayesian classification for power line 

detection.   

 

1. Introduction 

Research on the use of robots to perform inspection 

of electrical power lines started in the mid-eighties 

[4]. Ma and Chen [3] proposed an Unmanned Aerial 

Vehicle (UAV) for overhead power line inspection. 

In their work automation technology for acquiring 

videos is described and problems that could be 

encountered when performing inspections outlined. 

These problems related to pattern recognition, 

camera stabilization, acquiring and maintaining the 

target in the camera’s Field Of View (FOV), image 

degradation, as well as data analysis.  

 

Jones and Earp [8] indicated that the allowable blur 

caused by camera motion for a static image should be 

1-2% in order to have a good image quality for video 

inspection of power lines. In [9] Jones et al. 

introduced the “detect and avoid obstacles” principle 

to be used in the airspace of a small helicopter, thus 

proposing machine vision and automated path 

planning as a potential solution for overhead power 

lines inspection. Jones and Golightly [7] later 

proposed corner detection and matching methods to 

keep the intersection of the pole and its cross-arm in 

the image.  

 

In this study, a novel scheme, combining the Hough 

Transform (HT) and a Bayesian Classifier (BC), is 

proposed to detect power lines in the images 

obtained by a camera mounted underneath a 

helicopter. The experimental results demonstrate that 

the proposed algorithm outperforms the BC and HT 

when used in isolation.  

 

This paper is structured as follows. Bayesian 

classification and connected component analysis are 

reviewed in section 2.  A description of Hough-

Transform tuning technique for the Bayesian 

classifier is discussed in section 3. Simulation results 

are presented in section 4, and concluding remarks in 

section 5. 

 

2. Target detection 

2.1. Bayesian pixel classification 

Bayesian pixel classification is popular for 

classifying pixels belonging to a target or the 

background. The main idea is to determine the 

posterior probability (target | ( , , ))P R G B  that a 

pixel belongs to objects given its Red, Green, and 

Blue (RGB) pixel values. Bayes’ rule [2] can be used 

to find the posterior probability: 

( )
(R,G,B|powerline) (powerline)

powerline|R,G,B =

(R,G,B)

р P

р

P  (1) 

RGB values of power line pixels and non-power line 

pixels were collected to generate a three-dimensional 

training dataset. Samples of each class (power line 

and non-power line) were then used to calculate the 

prior probabilities ( )
i

P ω . The general multivariate 

normal class-conditional probabilities were then 

calculated.  The discriminant functions for each class 

are given by  

,
t

 +  + 
0

W
t

g x X X w X
i i i i

ω) = ( 1, 2i =  (2) 

where 
11
,

2
i i

W
−

= − ∑    (3) 

1

,i i iw µ
−

= ∑             (4) 

0

1 1-1
ln | |   ln  ( )

2 2
i ii i i

t
Pω µ µ ω= − ∑ − ∑ +      (5) 
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i
µ  is the mean vector, and

i
∑  is the covariance 

matrix of the i th class (Class I is the power lines, 

Class II is the background).  

             
Images in the database were classified using the 

decision rule: 

1
ω (powerline class) if ( ) 0g x > ; otherwise 

2
ω (non-powerline class) where 

( ) ( ) ( )
1 2

g x g x g x= − . 

Fig. 1: Bayesian classification results. (On the left: input 

images from the database. On the right: classification result 

where the pixels belonging to class I (power lines) are set 

to be white the pixels belonging to the background are set 

to be black.) 

 

Fig. 1 shows the classification results. Clearly, there 

are various small image regions not belonging to 

power lines that have been misclassified.  

 

2.2. Connected component analysis 

Due to uncertainties and noise, some pixels in the 

images were not classified correctly. After applying 

the Bayesian pixel classification algorithm (see 

Figure 1) connected component analysis was used to 

remove unconnected small regions from classified 

images.  

 

In this step, the 4 connectivity labeling of regions 

was used to detect connected components. Assuming 

that there are at least two power lines, the two largest 

connected regions were considered as power lines 

and the remaining smaller regions were removed. 

Figure 2 shows the detected power lines after the 

connected component analysis. 

 
Figure 2: The results of connected component analysis. 

(On the left: output images from the Bayesian pixel 

classification. On the right: resulting image after connected 

component analysis.) 

 

Although unconnected small components due to 

misclassified are removed (as shown in Fig. 2), this 

method can only remove the unconnected 

misclassified regions but not the regions connected to 

the power lines. 

 

3. Hough transform for tuning Bayesian 

pixel classification 

 

After the connected component analysis it is clear 

that there are still some misclassified regions left.  In 

this section a Hough transform tuning scheme is used 

to improve the performance of Bayesian classifier. 

 

The Hough transform is used to detect lines and 

curves in images [6]. In this section, we discuss how 

the power line information obtained by Hough 

transform can be used to improve the classifier. Our 

goal in this technique is to: 

• Recalculate the prior probabilities ( )
i

P ω  

taking into consideration the power line 

obtained by Hough transform. 

• Recalculate the discriminant functions for 

power lines and background (see eq. (2)) 

• Redefine a single discriminant function (see 

eq. (6)). Notice that the prior probability 

( )
i

P ω appears in eq. (5) 

• Reapply the Bayesian pixel classification 

algorithm in the original image for a better 

classification result 
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Figure 4: A block diagram representation of Hough 

transform tuning Bayesian pixel classification 

 

Fig. 4 shows the block diagram for the proposed 

technique. The Hough transform algorithm is used to 

find the angle ( )θ  and position ( )x  of the power 

lines in both the binary image obtained as the output 

of the Bayesian classifier and the original image. The 

angles and positions obtained are compared and if 

the angles and positions of the detected objects 

(candidate power lines) in the two images are not the 

same, the following steps are executed: 

• Use the positions and angles of the lines found in 

the original image to calculate the lengths of the 

lines using Eq. (7) and Eq. (8); 

• Re-estimate the prior probabilities ( )
i

P ω  using 

Eqs. (9) and (10); 

• Redefine a single discriminant function using the 

new prior probabilities; 

• Reclassify the image to improve accuracy. 

 

The lengths of the candidate power lines are used to 

re-estimate the prior probabilities as follows: 

 2 2

1 11 21 11 21( ) ( )l x x y y= − + −          (7) 

     
2 2

2 12 22 12 22( ) ( )l x x y y= − + − , (8) 

where 11x , 21x , 11y , 21y are the x and y of line 1 

and 12x , 22x , 12y , 22y  the x and y of line 2 as 

shown in Fig. 5. 

 

The prior probabilities ( )
i

P ω  are estimated as  

      
1 2

1
( )

( )
l

P
l l w

WH
ω  = 

+
   (9) 

      
2 1

( ) 1 ( )P Pω ω =  − ,   (10) 

where 
l

w (tuning parameter) is an estimate of the 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: the parameters used in Eq. (7), (8), (9) and (10). 

 

width of the candidate power lines, W and H the 

width and height of the image, respectively.  

 

Figure 5 depicts the idea behind the technique. Note 

that the lines are similar therefore we assume that the 

width 
l

w  is the same for both lines. The optimal 

width 
l

w  was determined by trial and error.  

         

  

4. Simulation results 

In this section, two images where the Bayesian pixel 

classifier failed to detect power lines, are used to 

demonstrate the performance of the proposed 

scheme. Refer to Fig. 8. 

 

Figs. 8(a) are the original images with two power 

lines in the view. Figs. 8(b) are the results of 

Bayesian pixel classification. The classification 

performance is so poor that the power lines are 

almost totally obscured by misclassified regions 

(indicating that the original Bayesian method is 

severely affected by noise and uncertainties). 

 

Figs. 8(c)-(e) are the results obtained using the 

Hough transform to tune Bayesian pixel 

classification. It is clear that when the Hough 

transform is used for tuning that classification 

accuracy is significantly improved. The classification 

performance is remarkably better when the prior 

probabilities are more accurately estimated. 
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(a) original images 

 

 

 

 

 

 

 

 

(b) poor classified images 
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(d) 
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w = 0.5 

 

 

 

 

 

 

 

 

(e) 
l

w = 0.0005 

Figure 8: Hough transform tuning Bayesian pixel classification 

 

5. Conclusion and future work 

A technique to improve Bayesian pixel classification 

using the Hough transform was proposed in this 

paper.  The Hough transform tuned Bayesian pixel 

classifier outperformed the classical Bayesian 

approach. Future work aims at generalizing the work 

to a wider class of problems. 
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Alignment invariant image comparison implemented on the GPU 
 

Abstract 

This paper proposes a GPU implemented algorithm to 

determine the differences between two binary images using 

Distance Transformations. These differences are invariant to 

slight rotation and offsets, making the technique ideal for 

comparisons between images that are not perfectly aligned. The 

parallel processing capabilities of the GPU allows for faster 

implementation than on traditional desktop processors. In order 

to take full advantage of this all aspects of the algorithm was 

implemented on the GPU. 

Key words: Distance transform, binary image, GPU, 

parallel processing. 

1. Introduction 

In the field of image processing, image comparison has a 

wide variety of applications. These applications range from 

image retrieval to image registration [1]. In this paper we are 

proposing to make use of graphics processing units (GPU), 

parallel processing techniques and distance transformations to 

compare images invariant to slight rotation or offsets. 

The GPU was selected for this purpose due to its 

computational power. Recent advances in graphics architecture 

have ensured that GPUs have extensive memory bandwidth 

along with tremendous increases in its computational 

horsepower. These increases are clearly advantageous. Other 

advantages of GPU algorithm implementations include the fact 

that GPUs can perform these operations faster and their cost 

versus computational power is much lower than that of central 

processing units (CPU) [7, 8]. GPUs also provide better 

performance per thread than CPUs can provide [7]. The 

mentioned advantages have given GPUs a popular position 

amongst researchers to use them for general purpose 

computations [8, 9]. GPUs do however have their own set of 

disadvantages: “they lack some fundamental computing 

constructs” [8]. The absence of these constructs make GPUs ill 

suited for tasks such as cryptography. 

The Distance Transformation (DT) is an operation 

performed on binary images (images containing black and white 

pixels; or feature and non-feature pixels) which returns a 

greyscale representation where each pixel value represents that 

co-ordinate’s distance from its nearest feature pixel in the binary 

image [3, 9]. The Distance Transform is an important tool in 

image processing; however its uses have extended into other 

fields including that of pattern recognition computer vision,  

computer graphics to name a few [4, 9]. 

Various methods of determining Distance Transformation 

exist. In this paper we utilize the 4-connected distance 

(otherwise known as the city block distance map) [6]. Other 

distance maps such as the Euclidean distance map may also be 

used. The Euclidean map is described as a map which 

corresponds to how real world objects are measured, which 

makes it easily interpreted. That said, the brute force approach 

to calculating the Euclidian distance is not feasible as it involves 

measuring the distance between every feature pixel and every 

non-feature pixel yielding a computational complexity of O(n2) 

for every pixel [11]. However the 4-connected approach is the 

least complex and provides a good enough approximation of the 

distance for the purpose of this application. 

2. Definitions 

In this section we will more clearly define the concepts of 

binary images and distance transformations. These definitions 

are to be used at a later stage. 

A point on an image can be defined in terms of x and y such 

that },...,1{ widthx ∈ and },...,1{ heighty ∈ , where width and 

height are the dimensions of the image. Hence ),( yx  is an 

arbitrary point on the image. 

Adding to the earlier definition of a binary image it can be 

stated that binary images contain foreground pixels and 

background pixels. The foreground pixels represent the objects 

in the image. Thus it can be written as follows: 

A binary image can be represented as a function, ),( yxI  

where },{),( BOyxI ∈ . O and B represents object and 

background pixels respectively; in terms of 

implementation }0,1{),( ∈yxI . In other words the notation states 

that the texture value at the point (x, y) is either a foreground 

pixel or a background pixel. 

For the definition of the Distance Transform, we can say: 

the Distance Transform can be represented by the function,  

),( yxD  where }1,...,0{),( ∈yxD . The set }1,...,0{ is the distance 

to the nearest foreground pixel, the range of this set may vary 

depending on implementation, convention and preference. For 

example },...,1{),( imagesizeyxD ∈  

In this paper we will refer to the input image and the image 

to be compared, as ),(1 yxI and ),(2 yxI  respectively. For each 

comparison two Distance Transformations are required, one for 

all the distances to the nearest object, ),( yxDO  and the other all 

the distances to the nearest background pixel ),( yxDB . These 
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Figure 2. Figure 1’s Distance Transform. Darker colours 

are far from the objects. 

 

Figure 1. Binary image containing 2 objects represented 

as black pixels. 

 

transformations are only done for one of the input images; 

however both are done on the same input image. 

3. Implementation 

In this section we will discuss the implementations of the 

main components of the papers, namely the Distance 

Transformations and then the comparison algorithm. 

3.1 Distance Transform Implementation 

Initially our distance map was approximated using the 

concept of a local distance map. The distances were calculated 

around each pixel, but only for a small region or window as 

implemented by É. Baudier et al using the Hausdorff distance 

[1]. However, our implementation used a circular window 

around each point and the Euclidian distance between each pixel 

in the window and the centre of the window. 

The 4-connected distance transform is implemented by 

selecting the minimum value between a pixel’s four surrounding 

values (above, below, left and right) and storing them into an 

interim distance map. This interim distance map is then passed 

back and is recursively processed until all the distances have 

been computed [6]. 

3.2 Example of the distance transform 

For the purpose of clarity the colours of the images have 

been inverted, i.e. black represents the foreground and white 

represents the background as opposed to the norm where white 

represents the foreground (features) and black the background 

(non-features).  Figure 1 shows a binary image containing two 

objects, where figure 2 represents figure 1’s distance 

transformation. In figure 2, the darker the colour, the further 

away from the object the point is. 

3.3 Image Comparison Implementation 

The proposed algorithm is as follows: in order to compare 

the two images the distance maps of the first image, I1(x, y), 

have to be computed; with respect to both background pixels 

and foreground pixels i.e. two distance maps are created. One 

containing distances to the nearest white feature, DO(x, y) and 

another containing distances to the nearest black feature, DB(x, 

y). 

Once these distance maps have been acquired a pixel at 

point (x, y) from the second image, I2(x, y), is compared to the 2 

distance maps. If the pixel at the current point is black the 

corresponding distance value in the nearest-to-black map, DB(x, 

y), is returned. If the pixel is white the corresponding value is 

returned from the nearest-to-white map, DO(x, y). The output of 

the algorithm then represents the differences in the image, or 

rather how far a point is to its closest feature. Figure 3 shows a 

graphical representation of the algorithm where DO, DB and I2 

are the input textures. 

In terms of the GPU implementation of the algorithm; 

OpenGL fragment programs were coded to generate the two 

distance maps of the first image, I1. The distance maps are 

stored in the GPU’s memory as a texture (or image). This is 

done to avoid losing the GPU’s performance advantage by 

passing information back and forth between the GPU and CPU. 

The second distance map is done using the same algorithm as 

the first. However, the inverse of the first image is used as an 

input. The inversion is also implemented on the GPU. A 

separate fragment program was created in order to do the 

comparison on the GPU. The result of the comparison is then 

stored as a texture and then displayed on screen. 

The pseudo code below is the algorithm for comparing the 2 

images as implemented in the comparison fragment program. 

The value current_Pixel is the current texture value from 

the second image, I2.The value current_Distance is the 

texture value from either one of the two distance maps at the 
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current_Pixel<- current_Texture from I2 

 

if current_Pixel = black then 

   current_Distance<- value from DB 
else 

   current_Distance<- value from DO 
 

return current_Distance 

current (x, y) position; the same position where 

current_Pixel was obtained. The current_Distance 

is returned to a new texture in order to make the result 

graphically viewable.  

From the algorithm it is easy to see that a threshold can be 

added which can be used to make decisions based on the result, 

for example to discard any differences that are not intense 

enough and only keep the differences that are clear enough. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Experimental Setup 

The algorithm was tested on two different systems; both 

systems had Windows XP Professional 32Bit Service Pack 3 as 

operating systems. The main specifications of the two systems 

are as follows: 

 System A System B 

CPU AMD Athlon X2 4200+ AMD Athlon 3200+ 

GPU 8800GTX 6800GE 

RAM 2048 MB 2048 MB 

Table 1. System used in the performance test of the algorithm 

The systems were chosen as they are from two different eras 

in terms of performance, System A being a lot more powerful 

than System B especially in terms of graphics processing 

capabilities. 

 

 

 8800GTX 6800 

Pixel Shaders 128 16 

Core Clock (MHz) 575 350 

Memory (MB) 768 256 

Memory Clock (MHz) 900 (DDR3) 500 (DDR3) 

Shader Model 4.0 3.0 

Table 2. GPU specifications of the test systems 

The algorithm was initially written and implemented in 

RenderMonkey (version 1.81) to test and verify the OpenGL 

syntax. Once verified, the OpenGL was implemented in C++ in 

order to do more accurate performance tests and comparisons 

between the two systems. 

5. Results 

The results of the tests will be discussed in the following 

section. Firstly we will look at the results of the image 

comparisons followed by the performance results 

5.1 Comparison Results 

 The algorithm was tested on various images. One of the tests 

was done on a “spot the difference” game containing eight 

differences. The results are discussed below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DO DB I2 

Distance transforms of I1 Image of I2 

Comparison 

Algorithm. 

Output 

DO(x0, y0) 

DB(x0, y0) 

I2(x0, y0) 

Figure 3. Graphical representation of the algorithm 

Figure 4. Input images. Spot the difference game 

containing 8 differences [10]. 

Figure 5. Highlighted differences between the 

images in figure 4. 
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Figure 6 a and b. The second part of the algorithm test 

demonstrating possible uses in template matching and 

character recognition. 

Figure 7. Comparison results between figure 6 a and b 

Figure 9. Comparison demonstrating a larger rotation, 

where inevitably the test will begin to fail. 

Figure 5 (above) highlights the differences between the 

images in figure 4. Circles were placed round all eight of the 

differences. The comparison seems to fail in regions where it is 

difficult to compute distances as the differences are only subtle 

changes in shape, see points 1 and 2 on figure 5. The fact that 

these appear as light grey, shows that the algorithm is only 

recognizing a minor difference. The grey outlines of the images 

above are due to the fact that the images are not perfectly 

aligned for demonstration purposes; showing the invariance 

property of the algorithm. 

Further tests were done with regards to more practical 

applications such as template matching and character 

recognition. Figure 6 a and b (the numbers “3” and “8”) were 

compared. The result of the comparison can be seen in figure 7. 

When comparing the image (example figure 6 a) to a 

slightly rotated version of itself (figure 8 a) using the proposed 

technique, only minor differences are highlighted (see figure 8 

b). These changes can easily be discarded. However, when 

comparing our results to an XOR comparison, the rotation is 

clearly visible in the output (see figure 8 c). Rotating the image 

further, still only highlights minor changes when using our 

technique. Again the XOR comparison reveals very clear 

changes due to the rotation (see figure 8 d, e and f). 

Figure 9 demonstrates a situation where the comparison will 

begin to fail. The rotation of the image is much greater than the 

previous examples. However it will still be possible to threshold 

out and discard many of the errors, but in such an extreme case 

it leaves a lot of room for error. 

 

 

Figure 8 a – f. Comparison of images with rotation 

using the proposed algorithm and XOR comparisons. 

a d 

b e 

c f 
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5.2 Performance test results 

The performance was tested in terms of processing time and 

frames per second (fps). When we refer to frames per second we 

are referring to actual renders per second which is the inverse of 

the processing time. The tests on both systems were done using 

128 iterations to calculate each Distance Transformations. 

Images of size 1024 by 1024 were used in the tests. The 

performance results have been summarized as follows. 
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The above results show that the performance of the 

algorithm is sufficient even on older systems. Considering the 

fact that number of calculations done to perform just one of the 

Distance Transformations is a staggering 134,217,728 iterations 

( 13421772812810241024 =×× ). 

6. Conclusion 

We proposed a technique to comparing images using the 

concept of distance maps. The entire algorithm was 

implemented on the GPU in OpenGL to take maximum 

advantage of the performance advantage of the GPU has over 

traditional desktop processors. 

 The comparisons were invariant to slight rotation and offset 

as seen in the comparison results. This invariance makes the 

technique useful in the fields of template matching and character 

recognition. 
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Abstract
When developing speech recognition systems in resource-
constrained environments, careful design of the training corpus
can play an important role in compensating for data scarcity.
One of the factors to consider relates to the speaker composition
of a corpus: finding the appropriate balance between the num-
ber of speakers and number of speaker-specific utterances. We
define a model stability measure based on the Bhattacharyya
bound and apply this to analyse inter- and intra-speaker vari-
ability of a training corpus. We find that the different phone
groups exhibit significantly different behaviour across groups,
but within groups similar trends are observed. We demonstrate
that, at a predictable point, additional data from one speaker
does not contribute further to modelling accuracy and demon-
strate the trends that can be expected when additional speakers
are added. We also note that inter- and intra-speaker variabil-
ity are independent effects, with some phone groups requiring
more speaker-specific data, and others more cross-speaker data.
More complex models require more training data, but exhibit
similar overall trends to a simple Gaussian model.

1. Introduction
When building speech recognition systems for the languages of
the developing world, it is often necessary to create new speech
recognition corpora with limited resources. It is therefore im-
portant to design a speech corpus carefully in order to compen-
sate to the extent possible for the scarcity of data. For example,
even though the Lwazi corpus [1] is currently the most compre-
hensive speech recognition corpus available for South African
languages, it contains only approximately 2 hours of annotated
audio for each of the 11 languages – significantly less resources
than typically used in the construction of a speech recognition
system.

When designing a speech corpus, we are interested in the
interplay between the number of speakers and number of ut-
terances per speaker on the estimation accuracy of acoustic
models for different phone types. Adding additional utterances
from one speaker is more cost-efficient than adding additional
speakers. How should the variety of speakers and utterances
per speaker be balanced? Can we estimate whether the cost of
adding additional data will be justified?

In this paper, we address these questions in the context of
standard Gaussian Mixture Models (GMMs) as employed in a
Hidden Markov Model (HMM) based speech recognition sys-
tem. Specifically, we utilise a Monte Carlo estimation of the
Bhattacharyya bound to characterise the similarity of two mod-
els, and use the stability of this measure when estimated for
different subsets of the same data set to characterise the esti-

mation accuracy that can be obtained with a specific type of
acoustic model, using that data set. The effect of an increasing
number of speakers and utterances is then analysed using this
technique for acoustic models of different types of phones, and
some interesting trends are observed.

The similarity technique we define here also allows us to
understand the similarity between different phones, for exam-
ple, the same nominal phone across languages. This is useful
when combining training data across languages in order to com-
pensate for a lack of sufficient training data, a useful strategy
in resource-scarce environments. By evaluating model stabil-
ity we can better understand whether the measured differences
between models stem from an actual variance in the data, or
from variability introduced by estimation errors, and also es-
timate whether different models are similar enough to support
data sharing.

The paper is structured as follows: In Section 2 we dis-
cuss related work and provide some background on the Bhat-
tacharyya bound. In Section 3 we describe the general tech-
nique we use for the analysis of model similarity and stabil-
ity. In Section 4 we use this technique to analyse our data set,
specifically with regard to the effect of an increasing number of
speakers and utterances for different types of phones and types
of acoustic models, and discuss the trends observed. Section 5
contains some concluding remarks.

2. Background
Data selection strategies for speech recognition purposes typi-
cally focus on selecting informative subsets of data from large
corpora, with the smaller subset yielding comparable results [2];
or the use of active learning to improve the accuracy of existing
speech recognition systems [3]. Both techniques provide a per-
spective on the sources of variation inherent in a speech corpus,
and the effect of this variation on speech recognition accuracy.

In [2], Principle Component Analysis (PCA) is used to clus-
ter data acoustically. These clusters then serve as a starting point
for selecting the optimal utterances from a training database. As
a consequence of the clustering technique, it is possible to char-
acterise some of the acoustic properties of the data being anal-
ysed, and to obtain an understanding of the major sources of
variation, such as different speakers and genders. Interestingly,
the effect of utterance length has also been analysed as a main
source of variation [3].

Active and unsupervised learning methods can be combined
to circumvent the need for transcribing massive amounts of data
[3]. The most informative untranscribed data is selected for a
human to label, based on acoustic evidence of a partially and
iteratively trained ASR system. From such work, it soon be-
comes evident that the optimisation of the amount of variation
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inherent to training data is needed, since randomly selected ad-
ditional data does not necessarily improve recognition accuracy.
By focusing on the selection (based on existing transcriptions)
of a uniform distribution across different speech units such as
words and phonemes, improvements are obtained [4].

In the current work, the separability of two probability den-
sity functions is measured by a widely-used upper bound of the
Bayes error, namely the Bhattacharyya bound [5]. If the Bayes
error is given by

ε =

Z
min[P1p1(X), P2p2(X)]dX (1)

(with Pi and pi(X) denoting the prior probability and class-
conditional density function for class i, respectively), the upper
bound of the integrand can be determined by making use of the
fact that

min[a, b] ≤ asb1−s 0 ≤ s ≤ 1 (2)

and is called the Chernoff bound, with s a parameter to be es-
timated through optimisation (Eq. 2 states that the geometric
mean of two positive numbers is larger than the smaller one). If
the condition for selection of an optimal s is relaxed by choos-
ing s = 0.5, this simplified bound is referred to as the Bhat-
tacharyya bound:

ε =
√

P1P2

Z p
p1(X)p2(X)dX (3)

When both density functions are Gaussian with mean Mi and
covariance matrix Σi, integration of ε leads to a closed-form
expression for ε

ε =
√

P1P2e
µ(1/2) (4)

where

µ(1/2) =
1

8
(M2 −M1)

T
hΣ1 + Σ2

2

i−1

(M2 −M1)

+
1

2
ln

˛̨
Σ1+Σ2

2

˛̨
p
|Σ1||Σ2|

(5)

is referred to as the Bhattacharyya distance. For complex distri-
butions, the Bhattacharyya bound can be estimated via Monte
Carlo simulation.

3. Approach
We approach the task of analysing model estimation accuracy
by first defining an appropriate similarity measure [6] and then
defining a measure of model estimation stability based on this
similarity measure. These two techniques are described below.

3.1. Measuring model similarity

From Eq. 3 and using the sample value of the expectation of the
integral, we derive an estimator for the Bhattacharyya bound of
two Gaussian Mixture Models. In practice we calculate:

ε =
√

P1P2
1

n1 + n2

h n1X
i=1

s
p2(xi)

p1(xi)
+

n2X
i=1

s
p1(xi)

p2(xi)

i
(6)

where xi are the actual samples and both n1 and n2 are the
number of samples with regard to each of the two probability
densities respectively. For our purpose we assume that the prior

values P1 = P2 = 0.5 and utilise equal numbers of samples
drawn from each distribution. We ensure that we utilise a suffi-
cient number of samples by first selecting a set of model pairs
that cover a range of similarity values, and then evaluating the
variance observed in the estimated bound between these model
pairs over various runs (initiated with different sampling seed
values) using an increasing number of samples per run. The
number of samples is then selected where the variance across
different runs falls below an acceptable threshold.

Note that the ε error bound can easily be converted to a
distance measure using Eq. 4 but we find it more intuitive to
work with the bound directly.

3.2. Measuring model estimation stability

In order to estimate the stability of an acoustic model, we sep-
arate the training data for that model into a number of disjoint
subsets. All subsets are selected to be mutually exclusive with
respect to the speakers they contain. For each subset, a separate
acoustic model can be trained, and the Bhattacharyya bound be-
tween each pair of models is calculated. By calculating both the
mean of this bound and the standard deviation of this measure
across the various model pairs, a statistically sound measure of
model estimation stability is obtained.

4. Analysis and results
4.1. Data and experimental setup

We use the November 1992 ARPA Continuous Speech Recog-
nition Wall Street Journal Corpus as training data for our analy-
sis. The dataset consists of 102 speakers recorded over the same
channel. This enables us to experiment with up to 20 hours of
data, which is comparable to the amount of data contained in
the Lwazi corpus. In order to be able to control the number of
phone observations used to train our acoustic models, we first
train a speech recognition system and then use forced alignment
to label all of the utterances.

We perform speech recognition using standard HMMs with
three emitting states, tied across models, each containing up
to 12 GMMs trained on 39-feature MFCC-based vectors (13
MFCCs, deltas and double-deltas with cepstral mean subtrac-
tion). Similar feature vectors are utilised in our analysis.

Using the process discussed in section 3.1, we estimate
the number of samples required for our Bhattacharyya estima-
tor and find that 20,000 samples are sufficient for our purpose.
Table 1 summarises the number of samples required to keep
standard deviations below a threshold of 0.0100 for the various
model comparisons. With 20,000 samples, the standard devi-
ation among different estimations of bounds between GMMs
containing up to 6 mixtures are below 0.0020 for very similar
phones and below 0.0061 for quite dissimilar phones. (Model
pairs with Bhattacharyya bounds of approximately 0.5 and 0.1
respectively). We also find that with 20,000 samples and a sin-
gle GMM, these estimates are within 0.0002 and 0.0020 from
the corresponding analytically calculated values. We separate
our data set into 5 disjoint subsets and estimate the mean of the
10 distances obtained between the various model pairs.

4.2. Initial analysis

During our initial analysis we develop speaker-and-utterance
three-dimensional plots for acoustic models of different phone
types at two levels of model complexity: a simple single Gaus-
sian model (GMM with 1 mixture) and a complex 6-mixture
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Figure 1: Speaker-and-utterance three-dimensional plot for the phone /ah/

Num mixtures Samples required ε σs

1 5,000 0.1 0.0100
0.3 0.0073
0.5 0.0031

2 10,000 0.1 0.0062
0.3 0.0060
0.5 0.0018

4 20,000 0.1 0.0045
0.3 0.0020
0.5 0.0017

6 20,000 0.1 0.0061
0.3 0.0045
0.5 0.0020

Table 1: Number of samples required for accurate estimation of
bounds.

GMM. (The choice to utilise a 6-mixture GMM was made to
balance high speech recognition accuracy for our data set with
computational requirements during bound estimation.) Each
plot indicates the value of the Bhattacharyya mean, as described
in Section 3.2, as a function of both the number of speakers in
the training corpus and the number of phone occurrences per
speaker. As the mean value shown is an estimate of the Bhat-
tacharyya bound, this value should approach 0.5 once a model

is fully trained on an optimal set of data. An example of such a
plot for the phone /ah/ is shown in Figure 1.

From this analysis the following was observed: (1) A spe-
cific number of speakers and phone occurrences result in sig-
nificantly different results for the different phones. (2) While
phones from the different broad phone categories (such as vow-
els, plosives or fricatives) exhibit varying learning behaviour,
phones within a specific phone group follow remarkably simi-
lar trends. (3) Similar trends are observed when utilising either
the more simple or the more complex acoustic model.

These initial observations are explored further in the follow-
ing sections for a number of broad phone categories. For each
broad category, a number of representatives are selected to illus-
trate the trends observed. Specifically, the following phones are
selected: /ah/ and /ih/ (vowels), /n/ (nasals), /l/ and /r/ (liquids),
/d/ (voiced plosives), /t/ and /p/ (unvoiced plosives), /z/ (voiced
fricatives) and /s/ (unvoiced fricatives), after verifying that these
phones are indeed representative of the larger groups. Given (3)
above, the next two sections first discuss trends obtained using
the simpler model, before the effect of moving towards a more
complex model is discussed in Section 4.5

4.3. Number of phone occurrences required per speaker

In this section we aim to understand whether a saturation point
is reached after which additional examples of phones by a spe-
cific speaker no longer improve the accuracy of the speaker in-
dependent acoustic model for that phone. We therefore take a
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Figure 2: Effect of number of phone utterances per speaker on mean of Bhattacharyya bound for different phone groups using data
from 20 speakers

cross-section of the 3-D plot in Figure 1, for a specific num-
ber of speakers (20) and evaluate the effect of increasing the
phone observations per speaker. As clearly demonstrated in
Figure 2, the means all reach an asymptote quite quickly and
for 20 speakers, this asymptote does not yet approach the ideal
0.5 level for most of the phone types. When this experiment
is repeated with 50 speakers, even fewer phone observations
per speaker are required to reach the asymptote, and all the
asymptotes are also nearer to the ideal level of 0.5. Interestingly
though, the total numbers of phone observations necessary for
the model of a phone to reach the asymptote are comparable for
the 20 and 50 speaker cases. 1

For the different phone types we observe that vowels are
the slowest to reach the saturation point (at approximately 100
phone observations per speaker in the 20-speaker case) while
unvoiced plosives and fricatives stabilise the most quickly,
reaching this point at only 35 phone observations for /s/, 45
phone observations for /z/ and 25 phone observations for /p/
or /t/. There is a clear difference between the unvoiced and
voiced versions of the plosives, with voiced versions taking sig-
nificantly longer to stabilise (compare /d/ at 85 phone obser-
vations with /t/ at 25 phone observations). For most phones,
those that saturate more quickly achieve a higher bound (closer

1Note that in order to be able to evaluate the effect at 50 speakers,
only 2 models could be trained and 1 distance estimated, in comparison
to the 5 models and 10 distances possible at the 20-speaker level.

to the ideal 0.5). However for some phones, such as /d/, a large
number of phone occurrences are required per speaker, but the
higher bound indicates that fewer speakers are required to ob-
tain an accurate estimate. Similarly, the fricatives (/s/ and /z/)
reach their asymptote very quickly, but this asymptote is fairly
low, indicating low intra-speaker but high inter-speaker variabil-
ity for this phone.

4.4. Number of speakers required per phone

In this section we aim to understand the effect of adding ad-
ditional speakers to a training corpus during acoustic model
construction. We select a number of phone observations per
speaker (100) where the asymptote has already been reached for
all phones if 20 training speakers are employed. We construct
a training set where we systematically add 100 observations for
each new speaker. The results of this experiment are shown in
Figure 3.

This time, the asymptote is not reached, and it is clear that
additional speakers would improve the modelling accuracy for
all phone types. On theoretical grounds we expect that the
means should in all cases approach 0.5, and this expectation
is supported by the observed trends. Again we observe that
the unvoiced plosives and fricatives quickly achieve high val-
ues for the bound (close to the ideal 0.5). Low inter-speaker
variability for the phone /d/ is also confirmed with high bound
values. The high inter-speaker variability of the fricative phones
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Figure 3: Effect of number of speakers on mean of Bhattacharyya bound for different phone groups using 100 utterances per speaker

are apparent in the unstable behaviour they exhibit (varying be-
tween 0.4 to 0.45 up to 20 speakers). Interestingly the vowels
are not the slowest to reach large bound values as the speakers
are increased: the phones /n/ (nasals) and /r/ (liquids) converge
more slowly, signalling a higher inter-speaker variability for this
group.

These results confirm the results obtained in Section 4.3
and comparative behaviour for the different phone types is sum-
marised in Table 2.

Phone type Inter-speaker Intra-speaker
variability variability

Unvoiced plosives low low
Voiced plosives low high

Unvoiced fricatives medium low
Voiced fricatives medium low

Vowels medium high
Nasals high medium
Liquids high medium

Table 2: Comparative inter- and intra-speaker variability for
different phone types.

4.5. Effect of model complexity

The numerical values of the Bhattacharyya bound for different
model types cannot be compared directly, since factors such as
the existence of local minima during training increase the appar-
ent variability of more complex models. We therefore compare
such models by studying the observed bound values as a frac-
tion of the observed asymptotic values. While the more com-
plex model requires additional samples before the asymptote is
reached, the same trends across phone groups are observed for
more complex models. This is illustrated in Figure 4 where
this fraction is shown, as the number of phone occurrences per
speaker is increased. In these figures, data from 20 speakers is
shown for both the simple single Gaussian model as well as the
more complex 6-mixture GMM.

5. Conclusions
We have introduced a systematic approach that enables us to
study the resource requirements for speech-recognition sys-
tems, based on the mean Bhattacharyya bound between models
trained on different subsets of the data. We find that the differ-
ent broad categories of phones have significantly different data
requirements: whereas as few as 20 speakers and fewer than 50
samples per speaker are sufficient for the plosives /t/ and /d/,
even 100 samples per speaker from each of 50 speakers do not
describe the vowels, liquids or nasals adequately. Overall, the
number of speakers for even a basic speaker-independent re-
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Figure 4: Comparing the effect of model complexity on the relative distance to asymptote for two phone groups

source collection therefore needs to contain significantly more
than 50 speakers. (We are not able to suggest a reasonable lower
bound based on the data used in this study.)

We found similar trends for simple and more complex mod-
els, with the more complex models requiring somewhat more
speakers and phone occurrences to stabilise. Our work has fo-
cused on simple models, and can be extended in various direc-
tions. It would be interesting to see whether robust asymptotes
are achieved as the number of speakers is increased; other vari-
ables, such as gender or speaking style should also be studied
along with more complex models (e.g. context-specific models,
multistate models such as HMMs and more complex density es-
timators). In our current work we are also investigating how the
measurements described here relate to actual speech recognition
performance obtained.

These insights are likely to play an increasingly important
role as the reach of speech processing systems extends beyond
the major languages of the world.
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Abstract
Diphthongs typically form an integral part of the phone sets
used in English ASR systems. Because diphthongs can be rep-
resented using smaller units (that are already part of the vowel
system) this representation may be inefficient. We evaluate
the need for diphthongs in a Standard South African English
(SSAE) ASR system by replacing them with selected variants
and analysing the system results. We define a systematic pro-
cess to identify and evaluate replacement options for diphthongs
and find that removing all diphthongs completely does not have
a significant detrimental effect on the performance of the ASR
system, even though the size of the phone set is reduced signifi-
cantly. These results provide linguistic insights into the pronun-
ciation of diphthongs in SSAE and simplifies further analysis of
the acoustic properties of an SSAE ASR system.

1. Introduction
The pronunciation of a particular phoneme is influenced by vari-
ous factors, including the anatomy of the speakers, whether they
have speech impediments or disabilities, how they need to ac-
commodate their listener, their accent, the dialect they are using,
their mother tongue, the level of formality of their speech, the
amount and importance of the information they are conveying,
their environment (Lombard effect) and even their emotional
state [1].

The nativity of a person’s speech describes the combination
of the effects of their mother tongue, the dialect that they are
speaking, their accent and their proficiency in the language that
they are speaking. If an automatic speech recognition (ASR)
system uses speech and a lexicon associated with a certain na-
tivity, non-native speech causes consistently poor system per-
formance [2]. For every different dialect of a language, ad-
ditional speech recordings are typically required, and lexicon
adjustments may also be necessary.

Standard South African English (SSAE) is an English di-
alect which is influenced by three main South African English
(SAE) variants: White SAE, Black SAE, Indian SAE and Cape
Flats English. These names are ethnically motivated, but be-
cause each ethnicity is significantly related to a specific variant
of SAE, they are seen as accurately descriptive [3]. Each variety
will be made up of South African English as influenced specif-
ically by the different languages and dialects thereof spoken in
South Africa. It should be noted that these variants include ex-
treme, strongly accented English variants that are not included
in SSAE, and not referred to in this paper.

This analysis focuses on the use of diphthongs in SSAE.
This is an interesting and challenging starting point to an acous-
tic analysis of SSAE. We are specifically interested in diph-

thongs since some of these sounds (such as /OY/ and /UA/, us-
ing ARPABET notation) are fairly rare and large corpora are
required to include sufficient samples of these sounds.

A diphthong is a sound that begins with one vowel and
ends with another. Because the transition between the vowels
is smooth, it is modelled as a single phoneme. However, since
it would also have been possible to construct a diphthong using
smaller units that are already part of the vowel system, this may
be an inefficient representation.

In this paper we evaluate the need for diphthongs in a lexi-
con by systematically replacing them with selected variants and
analysing the system results. One way to analyse the phonemic
variations in a speech corpus is to use an ASR system [4]. A de-
tailed error analysis can be used to identify possible phonemic
variations [1]. Once possible variations are identified, they can
be filtered using forced alignment [4].

Some studies have found that using multiple pronunciations
in a lexicon is better for system performance [5], while others
have found that a single pronunciation lexicon outperforms a
multiple pronunciation lexicon [6]. The argument can there-
fore be made for representing the frequent pronunciations in
the data, but being careful not to over-customise the dictionary
- if acoustic models are trained on transcriptions that are too
accurate, they do not develop robustness to variation and there-
fore contribute to a decline in the recognition performance of
the system [7].

In this paper we analyse diphthong necessity systematically
in the context of an SSAE ASR system. The paper is structured
as follows: In Section 2 we describe a general approach to iden-
tify possible replacement options for a specific diphthong, and
to evaluate the effect of such replacement. In Section 3 we first
perform a systematic analysis of four frequently occurring diph-
thongs individually, before replacing all diphthongs in a single
experiment and reporting on results. Section 4 summarises our
conclusions.

2. Approach
In this section we describe a general approach to first suggest
alternatives for a specific diphthong and then to evaluate the
effectiveness of these alternatives.

2.1. Automatic suggestion of variants

In order to identify possible alternatives (or variants) for a single
diphthong, we propose the following process:

1. An ASR system is trained as described in more detail in
Section 3.1.3. The system is trained using all the data
available and a default dictionary containing the original
diphthongs.
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2. The default dictionary is expanded: variant pronunci-
ations are added to words containing the diphthong in
question by replacing the diphthong with all vowels and
combinations of two vowels. Two glides (the sounds /W/
and /Y/ ) are considered as part of the vowel set for the
purpose of this experiment.

3. The original diphthong is removed completely, so that
the dictionary only contains possible substitutions. The
order of the substitutions is randomised in every word.
This ensures that the speech that would represent the
diphthong is not consistently labelled as one of the pos-
sible substitutions and the training process therefore bi-
ased in a certain direction.

4. The ASR system is used to force align the data using the
options provided by the new dictionary. (Since the diph-
thong has been removed, the system now has to select
the best of the alternatives that remain.)

5. The forced alignment using the expanded dictionary
(alignment B) is compared to the forced alignment us-
ing the default dictionary (alignment A):

• Each time the diphthong in question is found in
alignment A, it and its surrounding phonemes are
compared to the phonemes recognised at the same
time interval in alignment B. The phonemes in
alignment B that align with the diphthong in align-
ment A are noted as possible alternatives to the
specific diphthong.

• The alternatives are counted and sorted by order of
frequency.

6. The frequency sorted list is perused and three to five
possible replacements for the diphthong are selected by
a human verifier from the top candidates. The human
verifier is required to assist the system because they
are equipped with SSAE and general linguistic knowl-
edge, and are thus able to select replacement candidates
that contain vowels or vowel combinations that are most
likely to be replacements for the diphthong in question.

Once this process is completed, a list of possible replace-
ments is produced. This list is based on a combination of system
suggestion and human selection. For example, as a diphthong
typically consists of two or more vowels linked together, it is
quite likely that the best alternative to a diphthong is a combi-
nation of two vowels (diphone). Even though an ASR system
may not initially lean towards such a double vowel replacement,
including such an alternative may be forced by the human ver-
ifier. Also, knowledge-based linguistically motivated choices
may be introduced at this stage. These choices are motivated by
linguistic definitions of diphthongs as well as SAE variant defi-
nitions supplied in [3]. This process is described in more detail
when discussing the process with regard to specific diphthongs
below.

2.2. Evaluating replacement options

Once a list of three to five possible replacements has been se-
lected for each diphthong, these replacements can be evaluated
for their ability to replace the diphthong in question. Per diph-
thong, the following process is followed:

1. The default dictionary is expanded to include the se-
lected alternatives as variants for the diphthong in ques-
tion. The pronunciation with the diphthong is removed

and the alternative pronunciations are randomised in or-
der not to bias the system towards one pronunciation (as
again, the system initially trains on the first occurring
pronunciation of every word).

2. Each time the diphthong is replaced by an alternative, a
list is kept of all words and pronunciations added.

3. An ASR system is trained on all the data using the ex-
panded dictionary, and the alignments produced during
training are analysed.

4. The pronunciations in the forced alignment are com-
pared to each of the lists of added alternatives in turn,
calculating the number of times the predicted pronun-
ciation is used in the forced alignment, resulting in an
occurrence percentage for each possible replacement.

5. Using these occurrence percentages, the top performing
alternatives are selected. The number of selections is not
specified, but rather, the ratio between the occurrence
percentages of the alternatives is used to select the most
appropriate candidates for the next round.

6. This process is repeated until only a single alternative re-
mains, or no significant distinction can be made between
two alternatives.

7. After each iteration of this process, the ASR phoneme
and word accuracies are monitored.

3. Experimental Results
3.1. The baseline ASR system

In this section we define the baseline ASR system used in our
experiments. We describe the dictionary used, the speech cor-
pus and provide details with regard to system implementation.

3.1.1. Pronunciation Dictionary

The pronunciation dictionary consists of a combination of the
British English Example Dictionary (BEEP) [8] and a supple-
mentary pronunciation dictionary that has words contained in
the speech corpus but not transcribed in BEEP. (This includes
SAE specific words and names of places). The 44-phoneme
BEEP ARPABET set is used. The dictionary was put through a
verification process [9] but also manually verified to eliminate
highly irregular pronunciations. The dictionary has 1 500 en-
tries, 1 319 of which are unique words. The average number of
pronunciations per word is 1.14 and the number of words with
more than one pronunciation is 181. In further experimentation,
this dictionary is referred to as the default dictionary.

3.1.2. Speech Corpus

The speech corpus consists of speech recorded using existing
interactive voice response systems. The recordings consist of
single words and short sentences. There are 19 259 recordings
made from 7 329 telephone calls, each of which is expected
to contain a different speaker. The sampling rate is 8 kHz and
the total length of the calls is 9 hours and 2 minutes. It total,
1319 words are present in the corpus, but the corpus is rather
specialised, with the top 20% of words making up over 90% of
the corpus. For cross validation of the data, all the utterances of
a single speaker were grouped in either the training or the test
data, and not allowed to appear in both. The relevant phoneme
counts are given in Table 1.
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Table 1: Selected phoneme counts for the speech corpus.
Counts are calculated using forced alignment with the speech
corpus and default dictionary. Diphthongs are shown in bold.

Phoneme Occurrences Phoneme Occurrences
/AX/ 14 282 /UW/ 3 151
/IY/ 9 634 /AO/ 3 106
/IH/ 9 084 /Y/ 2 743
/AY/ 6 561 /EA/ 2 566
/EH/ 6 158 /ER/ 2 499
/AE/ 5 470 /AA/ 2 097
/EY/ 4 509 /AW/ 2 037
/W/ 4 293 /UH/ 1 324
/AH/ 3 883 /IA/ 1 014
/OW/ 3 442 /UA/ 455
/OH/ 3 232 /OY/ 39

3.1.3. System Particulars

A fairly standard ASR implementation is used: context de-
pendent triphone acoustic models, trained using Cepstral Mean
Normalised 39-dimensional MFCCs. The optimal number of
Gaussian Mixtures per state in the acoustic models was ex-
perimentally determined to be 8. The system makes use of a
flat word based language model and was optimised to achieve
a baseline phoneme accuracy of 79.57% and a corresponding
word accuracy of 64.50%. As a measure of statistical signifi-
cance, the standard deviation of the mean is calculated across
the 10 cross-validations, resulting in 0.07% and 0.13% for
phoneme and word accuracy respectively. The system was im-
plemented using the ASR-Builder software [10].

3.2. Systematic replacement of individual diphthongs

In this section we provide results when analysing a number of
diphthongs individually according to the process described in
the previous section (Section 2).

Since training the full system outlined in Section 3.1.3 is
highly time consuming, a first experiment was performed to de-
termine whether a monophone-based system is sufficient to use
during the process to identify and evaluate replacement options.
For each diphthong investigated, a dictionary was compiled as
described in Section 2.1, a full system was trained using this
dictionary, and its forced alignment output when using mono-
phone models was compared with its forced alignment output
when using triphone models with 8 mixtures. This comparison
always resulted in an equivalence of more than 95%. There-
fore, from here onwards, only monophone alignment is used
for decision making, while final accuracies, or selection rates,
are reported on using the full triphone system.

3.2.1. Diphthong Analysis: /AY/

The AY diphthong was first to be analysed. The results of the
analysis are summarised in Table 2. Each line represents one
experiment. For each experiment, the accuracies of each of the
included alternatives are noted, as well as the cross validated
phoneme and word accuracies of the full ASR system.

The progression of this experiment is outlined below:

• In the first iteration, the alternatives /AH/, /AH IH/ and
/AA/ achieve the highest accuracies and are selected for
the next round. /AH/ achieves the highest selection rate
overall.

• In the second iteration, the alternatives /AH/ and /AA/
achieve the highest accuracies and are selected for the
next round. Again, /AH/ has the highest selection rate.
All diphones have now been eliminated.

• In the third iteration, /AH/ has the highest selection rate
and is therefore selected as the final and best alternative
for /AY/.

• In the fourth iteration, /AH/ is tested as a replacement
of /AY/. Phoneme accuracy rises to its highest, however,
word accuracy suffers. As phoneme accuracy in influ-
enced by the change in number of phonemes (from one
experiment to another), word accuracy is the more reli-
able measure for this experiment.

• The diphone theory, detailed in Section 2.1, suggests
that, because diphthongs are made up of two sounds,
their replacement must also consist of two sounds in or-
der to have the capacity to model them accurately. In
order to test this theory, an iteration is run with /AH/
and /AH IH/ as the alternatives for /AY/. The ASR sys-
tem still selects the /AH/ alternative over the /AH IH/
alternative. However, the word accuracy increases at this
iteration, implying that perhaps having /AH IH/ as an
alternative pronunciation for /AY/ fits the acoustic data
better than only having /AH/.

• A final iteration is run with the knowledge-based linguis-
tically motivated choice ”/AH IH/” as the replacement of
/AY/. Both the phoneme and word accuracy rise to their
highest values with this replacement. This shows that
the linguistically predicted /AH IH/ is indeed the best re-
placement for /AY/.

3.2.2. Diphthong Analysis: /EY/

The /EY/ diphthong is analysed using the technique outlined in
Section 2. The results are summarised in Table 3. In the first
iteration, /AE/ and /EH/ are clearly the better candidates, but
the diphone (double vowel) scores were lower and very similar.
Thus, for the second iteration, all diphones are cut and only /AE/
and /EH/ are tested. But for the third iteration, testing the neces-
sity of including a diphone, two of the diphones were brought
back to be tested again. It should be noted that the highest word
accuracy achieved for the suggested variants was achieved in
the third iteration, suggesting that diphones are indeed neces-
sary when attempting to replace a diphthong. Again, the highest
accuracy achieved overall is for the knowledge-based linguisti-
cally suggested alternative /EH IH/.

3.2.3. Diphthong Analysis: /EA/

The /EA/ diphthong is now analysed. The results of the exper-
iment are summarised in Table 5. These results behave quite
differently compared to the other diphthong experiments. The
first iteration, where all 3 of the variant options are included,
achieves the highest word accuracy, even higher than the iter-
ation which makes use of linguistic knowledge. The phoneme
accuracy however, increases with every iteration, reaching its
peak with the use of the linguistic replacement. Again, this may
be related to the change in number of phones (in words caus-
ing errors) which makes word accuracy a more reliable mea-
sure. The knowledge-based linguistic replacement performs
very well, achieving the second highest word accuracy overall.
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Table 2: Results of the experiments for the diphthong /AY/

/AH/ /AA/ /AH IH/ /AE IY/ /AH IY/ P Acc W Acc
1 0.46 0.20 0.18 0.08 0.07 78.51% 63.88%
2 0.46 0.36 0.17 N/A N/A 78.75% 64.06%
3 0.56 0.43 N/A N/A N/A 79.14% 64.17%
4 1 N/A N/A N/A N/A 79.56% 64.03%
5 0.62 N/A 0.38 N/A N/A 79.19% 64.13%
6 N/A N/A 1 N/A N/A 79.77% 64.30%

Table 3: Results of the experiments for the diphthong /EY/

/AE/ /EH/ /AE IY/ /AE IH/ /EH IY/ /EH IH/ P Acc W Acc
1 0.24 0.25 0.17 0.17 0.16 N/A 78.97% 64.27%
2 0.59 0.41 N/A N/A N/A N/A 79.30% 64.03%
3 0.48 N/A 0.26 0.27 N/A N/A 79.36% 64.41%
4 1 N/A N/A N/A N/A N/A 79.64% 64.04%
5 N/A N/A N/A N/A N/A 1 79.78% 64.43%

Table 4: Results of the experiments for the diphthong /OW/

/OH/ /ER/ /ER UW/ /AE/ /AE UW/ /AX UH/ P Acc W Acc
1 0.29 0.36 0.14 0.13 0.08 N/A 79.53% 64.33%
2 0.52 0.48 N/A N/A N/A N/A 79.57% 64.41%
3 0.59 N/A 0.41 N/A N/A N/A 79.53% 64.48%
4 1 N/A N/A N/A N/A N/A 79.60% 64.45%
5 N/A N/A N/A N/A N/A 1 79.63% 64.48%

Table 5: Results of the experiments for the diphthong /EA/

/EH/ /IH EH/ /AE/ /EH AX/ P Acc W Acc
1 0.51 0.34 0.15 N/A 79.22% 64.49%
2 0.72 0.28 N/A N/A 79.51% 64.43%
3 1 N/A N/A N/A 79.65% 64.21%
4 N/A N/A N/A 1 79.73% 64.30%

3.2.4. Diphthong Analysis: /OW/

The experiment is repeated for the diphthong /OW/. The results
for the experiment are outlined in Table 4. The phoneme accu-
racy follows a similar pattern to the earlier experiments. The
word accuracy is highest at both iteration 3, where a diphone is
included and iteration 5, where the linguistic knowledge-based
replacement is implemented. The knowledge-based linguistic
replacement once again achieves the highest phoneme and word
accuracies.

3.3. Systematic replacement of all diphthongs

Given the results achieved in the earlier experiments, a final
experiment is run where all the diphthongs are replaced using
a systematic system based on the linguistic definitions of the
individual diphthongs.

Two ASR systems are used, designed as described in Sec-
tion 3.1.3. These two systems differ only with regard to their
dictionary. One system (system A) uses the baseline dictio-
nary, in the other (system B), the diphthongs in the baseline
dictionary are all replaced with their diphone definitions, using
British English definitions defined in Table 6.

Table 6: IPA based diphthong replacements

Diphthong Diphone Diphthong Diphone
/AY/ /AH IH/ /OY/ /OH IH/
/EY/ /EH IH/ /AW/ /AH UH/
/EA/ /EH AX/ /IA/ /IH AX/
/OW/ /AX UH/ /UA/ /UH AX/

All results are cross-validated and the two systems are com-
pared using their word accuracies. Interestingly word accu-
racy decreases only very slightly: from 64.53% for system A to
64.35% for system B. The removal of 8 diphthongs is therefore
not harmful to the accuracy of the system. This is an interesting
result, especially as the detailed analysis was only performed
for 4 of the diphthongs and further optimisation may be possi-
ble.

4. Discussion
The aim of this study was to gain insight into the use of diph-
thongs in SSAE. We defined a data-driven process through
which diphthongs could automatically be replaced with optimal
phonemes or phoneme combinations. To complement this pro-
cess, a knowledge-based experiment was set up using linguistic
data for British English. Although the data-driven method was
partially successful in finding the best replacement for diph-
thongs, the knowledge-based method was superior. However,
the increase in accuracy from the knowledge-based method is
small enough that if knowledge is not available, the data-driven
technique can be used quite effectively.
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It is interesting to consider the South African English vari-
ants that are described in [3]. The variants described here or
ones close to them always appear on the list of the top candi-
dates of the data-driven selection. This in itself is an interesting
observation from a linguistic perspective.

From a linguistic perspective, the fact that a diphthong can
successfully be modelled as separate phonemes provides an in-
sight into SSAE pronunciation.

From a technical perspective, the removal of diphthongs
simplifies further analysis of SSAE vowels. Our initial inves-
tigations were complicated by the confusability between diph-
thongs and vowel pairs, and this effect can now be circumvented
without compromising the precision of the results.

Ongoing research includes further analysis of SSAE
phonemes with the aim to craft a pronunciation lexicon better
suited to South African English (in comparison with the British
or American versions commonly available). In addition, simi-
lar techniques will be used to evaluate the importance of other
types of phonemes, for example the large number of affricates
in Bantu language.
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Abstract
This paper aims to find the origin of the Afrikaans pronuncia-
tion with the use of dialectometry. First, Afrikaans was com-
pared to Standard Dutch, Standard Frisian and Standard Ger-
man. Pronunciation distances were measured by means of Lev-
enshtein distances. Afrikaans was found to be closest to Stan-
dard Dutch. Second, the Afrikaans pronunciation was com-
pared to 361 Dutch dialect varieties in the Netherlands and
North-Belgium. Material from the Reeks Nederlandse Dialec-
tatlassen was used. Afrikaans was found to be closest to the
South Holland variety of Zoetermeer, which largely agrees with
Kloeke (1950, Herkomst en Groei van het Afrikaans).

1. Introduction
Afrikaans is a daughter language of Dutch and is mainly spoken
in South Africa and Namibia. Reenen & Coetzee [1] briefly de-
scribe the origin of Afrikaans. Nearly 350 years ago, in 1652,
Jan van Riebeeck founded a refreshment station at the Cape of
Good Hope on the way to the Indies and introduced a Dutch
variety. He and the group around him came from the southern
part of the Dutch province of South-Holland. Van Reenen &
Coetzee refer to Kloeke [2] who claims that Jan van Riebeeck’s
group is the most important source of today’s Afrikaans lan-
guage. Kloeke writes extensively about the origin of Afrikaans
in his Herkomst en Groei van het Afrikaans ‘Origin and growth
of Afrikaans’. Van Reenen & Coetzee also refer to Scholtz [3,
p. 254] who does not agree with Kloeke but wonders whether
Afrikaans is derived from a common Hollandish language, the
Hollandish norm of the second half of the 17th century. How-
ever, Van Reenen & Coetzee doubt whether a common Hollan-
dish language already existed in that period.

The South African constitution recognizes 11 official lan-
guages. According to the 2001 census data, Zulu is the most
widely spoken mother-tongue in South Africa, followed by
Xhosa and Afrikaans, with the latter constituting 13.3% of the
population. This percentage is lower than the value reported
in the 1996 census, when 14.4% of the population indicated
that Afrikaans was their first language [4]. This observation can
probably be explained by a decline in population growth as well
as the fact that many Afrikaans people emigrated during that pe-
riod. Although English is most often used as the lingua franca
in the country, Afrikaans is more frequently used than English
in some provinces of South Africa and Namibia.

As explained above, Afrikaans is seen historically as a
daughter of Dutch. This paper shows that Afrikaans is linguis-
tically still a daughter of Dutch. In order to prove this, the
Afrikaans pronunciation is compared to the pronunciation of

the languages in the west Germanic language group: Standard
Dutch, Standard Frisian and Standard German. Pronunciation
distances are measured with Levenshtein distance, a string edit
distance measure. Kessler [5] was the first to use Levenshtein
distance for measuring linguistic distances. He applied Leven-
shtein distance to transcriptions of Irish Gaelic dialect varieties.
Later Levenshtein distances was applied to Dutch dialects by
Nerbonne et al. [6] (more detailed results are given by Heeringa
[7], to Norwegian by Gooskens & Heeringa [8] and to several
other dialect families.

The Levenshtein distance corresponds to the distance be-
tween the transcriptions of two pronunciations of the same con-
cept corresponding to two different varieties. The distance is
equal to the minimum number of insertions, deletions and sub-
stitutions of phonetic segments needed to transform one tran-
scription into another. The distance between two varieties is
based on several pronunciation pairs, in our case 125. The
corresponding Levenshtein distances are averaged. This paper
aims to answer the following question: which of these standard
languages is closest to Afrikaans? Afrikaans is also compared
to 361 Dutch varieties, found in the Dutch dialect area. This
area comprises the Netherlands and North-Belgium. Material
from the Reeks Nederlandse Dialectatlassen is used. We de-
termine which dialect variety (or dialect region) is closest to
Afrikaans. Again pronunciation differences are measured with
Levenshtein distance. We also distinguish between vowel and
consonant differences.

The aim of this study is twofold. Firstly, this investigation
sheds light on the linguistic relationship between Afrikaans and
the west Germanic languages, and between Afrikaans and the
Dutch dialects in particular. Secondly, the results of this study
will provide useful guidelines for the development of speech
technology applications for Afrikaans. Human language tech-
nology (HLT) is still a relatively new field in South Africa
and most of the South African languages are severely under-
resourced in terms of the data and software required to develop
HLT applications such as automatic speech recognition engines,
speech synthesis systems, etc. Development can be accelerated
if existing resources from closely related languages can be used.
We are specifically interested in constructing a large vocabulary
continuous speech recognition system for Afrikaans. This re-
quires large quantities of annotated audio data. Given that very
little Afrikaans data is currently available, we would like to in-
vestigate the possibility of using data from closely related lan-
guages.
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2. Data source
2.1. Dutch dialects

In order to study the relationship between Afrikaans and Dutch
dialect varieties, it would be preferable to use data from about
1652, because that time period would coincide with Jan van
Riebeeck’s influence on the Afrikaans language. Of course, we
do not have phonetic transcriptions from that time. The oldest
available source containing phonetic transcriptions of a dense
sample of dialect locations is the Reeks Nederlandse Dialec-
tatlassen (RND), a series of Dutch dialect atlases which were
edited by Blancquaert and Pée [9] in the period 1925–1982.
The atlases cover the Dutch dialect area, which comprises the
Netherlands, the northern part of Belgium, a smaller northwest-
ern part of France and the German county Bentheim.

In the RND, the same 141 sentences are translated and tran-
scribed in phonetic script for each dialect. Blancquaert men-
tions that the questionnaire was conceived as a range of sen-
tences with words that illustrate particular sounds. The design
saw to it that, for example, possible changes of old-Germanic
vowels, diphthongs and consonants are represented in the ques-
tionnaire. Since digitizing the phonetic texts is time-consuming
and the material was intended to be processed by the word-
based Levenshtein distance, a set of only 125 words was se-
lected from the text (Heeringa [10]). The words are selected
more or less randomly and may be considered as a random sam-
ple. The transcriptions of the 125 word pronunciations were
digitized for each dialect. The words represent (nearly) all
vowels (monophthongs and diphthongs) and consonants. The
consonant combination [sx] is also represented, which is pro-
nounced as [sk] in some dialects and as [S] in some other di-
alects.

The RND contains transcriptions of 1956 Dutch varieties.
Since it would be very time-consuming to digitize all transcrip-
tions, a selection of 361 dialects has been made (see Heeringa
[10]). When selecting the dialects, the goal was to get a net
of evenly scattered dialect locations. A denser sampling re-
sulted in the areas of Friesland and Groningen, and in the area
in and around Bentheim. In Friesland the town Frisian dialect
islands were added to the set of varieties which belong to the
(rural) Frisian dialect continuum. In Groningen, some extra lo-
calities were added because of personal interest. In the area in
and around Bentheim extra varieties were added because of a
detailed investigation in which the relationship among dialects
at both sides of the border was studied. Besides the relation-
ship to Standard Dutch and Standard German was studied (see
Heeringa et al. [10]).

In the RND, the transcriptions are noted in some predeces-
sor of IPA. The transcriptions were digitized using a computer
phonetic alphabet which might be considered as a dialect of X-
SAMPA. The data is freely available at http://www.let.
rug.nl/˜heeringa/dialectology/atlas/rnd/.

2.2. Languages

In this paper, Dutch dialects are compared to Afrikaans. The
125 words, selected from the RND sentences, were therefore
translated into Afrikaans and pronounced by an old male and
a young female, both native speakers of Afrikaans. Old males
are known to be conservative speakers while young females are
usually innovative speakers [11]. In our measurements below
we always take the average of the two speakers when we com-
pare Dutch dialects to Afrikaans. The pronunciations of the two
speakers were transcribed consistently with the RND transcrip-

tions.
Afrikaans is also compared to Standard Dutch, Standard

Frisian and Standard German. To ensure consistency with
the existing RND transcriptions, the Standard Dutch transcrip-
tion is based on the Tekstboekje of Blancquaert [12]. How-
ever, words such as komen, rozen and open are transcribed as
[ko;m@], [ro:z@] and [o;p@]. In the Tekstboekje of Blancquaert
these words would end on an [n], as suggested by the spelling.
For more details see Heeringa [10].

The RND transcription of the Frisian variety of Grouw is
used as Standard Frisian. Standard Frisian is known to be close
to the variety of Grouw.

The Standard German word transcriptions are based on
Wörterbuch der deutschen Aussprache [13]. However, the tran-
scriptions were adapted so that they are consistent with the RND
data. In the dictionary the <r> is always noted as [r], never as
[ö]. Because in German both realizations are allowed, for each
pronunciation containing one or more <r>’s two variants are
noted, one in which the [r] is pronounced, and another in which
the [ö] is pronounced. More details are given by Heeringa et
al. [14]. In the measurements below, both realizations will be
taken into account.

3. Measuring pronunciation distances
Pronunciation differences are measured with Levenshtein dis-
tance. Pronunciation variation includes variation in sound com-
ponents and morphology. The items to be compared should
have the same meaning and they should be cognates.

3.1. Algorithm

Using the Levenshtein distance, two varieties are compared by
measuring the pronunciation of words in the first variety against
the pronunciation of the same words in the second [15]. We de-
termine how one pronunciation might be transformed into the
other by inserting, deleting or substituting sounds. In this way
distances between the transcriptions of the pronunciations are
calculated. Weights are assigned to these three operations. In
the simplest form of the algorithm, all operations have the same
cost, e.g., 1. Assume the Standard Dutch word hart ‘heart’
is pronounced as [hArt] in Afrikaans and as [ært@] in the East
Flemish dialect of Nazareth (Belgium). Changing one pronun-
ciation into the other can be done as follows:

hArt delete h 1
Art replace A by æ 1
ært insert @ 1
ært@

3

In fact many string operations map [hArt] to [ært@]. The
power of the Levenshtein algorithm is that it always finds the
least costly mapping. To deal with syllabification in words,
the Levenshtein algorithm is adapted so that only a vowel may
match with a vowel, a consonant with a consonant, the [j] or
[w] with a vowel (and vice versa), the [i] or [u] with a con-
sonant (and vice versa), and a central vowel (in our research
only the schwa) with a sonorant (and vice versa). In this way
unlikely matches (e.g. a [p] with an [a]) are prevented. The
longest alignment has the greatest number of matches. In our
example we thus have the following alignment:

h A r t
æ r t @

1 1 1
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3.2. Operations weights

The simplest versions of this method are based on a notion of
phonetic distance in which phonetic overlap is binary: non-
identical phones contribute to phonetic distance, identical ones
do not. Thus the pair [i,6] counts as different to the same degree
as [i,I]. The version of the Levenshtein algorithm used in this pa-
per is based on the comparison of spectrograms of the sounds.
Since a spectrogram is the visual representation of the acousti-
cal signal, the visual differences between the spectrograms are
reflections of the acoustical differences. The spectrograms were
made on the basis of recordings of the sounds of the Interna-
tional Phonetic Alphabet as pronounced by John Wells and Jill
House on the cassette The Sounds of the International Phonetic
Alphabet from 1995 [16]. The different sounds were isolated
from the recordings and monotonized at the mean pitch of each
of the two speakers with the program PRAAT [17]. Next, for
each sound a spectrogram was made with PRAAT using the so-
called Barkfilter, a perceptually oriented model. On the basis
of the Barkfilter representation, segment distances were calcu-
lated. Inserted or deleted segments are compared to silence, and
silence is represented as a spectrogram in which all intensities
of all frequencies are equal to 0. The [P] was found closest to
silence and the [a] was found most distant. This approach is de-
scribed extensively in Heeringa [7, pp. 79–119]. In perception,
small differences in pronunciation may play a relatively strong
role in comparison to larger differences. Therefore logarithmic
segment distances are used. The effect of using logarithmic dis-
tances is that small distances are weighted relatively more heav-
ily than large distances. The weights will vary between 0 and
1. In a validation study, Heeringa [7, pp. 178–195] found that
among several alternative distances obtained with the Leven-
shtein distance measure, using logarithmic Bark filter segment
distances gives results which most closely approximates dialect
distances as perceived by the speakers themselves.

3.3. Vowels and consonants

Besides calculating Levenshtein distances on the basis of all
segments (full pronunciation distance) we also calculated dis-
tances on the basis of only vowel and consonant substitutions.
If distances are calculated solely on the basis of vowels, ini-
tially the full phonetic strings are compared to each other us-
ing Levenshtein distance. Once the optimal alignment is found,
the distances are based on the alignment slots which represent
vowel substitutions. Consonant substitutions are calculated mu-
tatis mutandis.

3.4. Processing RND data

The RND transcribers use slightly different notations. In order
to minimize the effect of these differences, we normalized their
data. The consistency problems and the way we solved them are
extensively discussed by Heeringa [10][7]. For the same reason
only a part of the diacritics found in the RND is used.

As in earlier studies, we processed diacritics for length (ex-
tra short, half long, long), syllabicity (syllabic), voice (voiced,
voiceless) and nasality (nasal) (see Heeringa [7, pp. 109–111]).
In this study the diacritic for rounding (rounded, partly rounded,
unrounded, partly unrounded) is used. The distance between
for example [a] and rounded [i] is calculated as the distance be-
tween [a] and [y]. The distance between [a] and partly rounded
[i] is equal to the average of the distance between [a] and [i] and
the distance between [a] and [y]. The diacritic for rounding is
important in our analysis since the [W] and [7] are not included

Afrikaans Dutch Frisian German
Afrikaans 3.2 4.1 5.1
Dutch 3.8 4.2
Frisian 4.8
German

Table 1: Average Levenshtein distances between four standard
languages

in the phonetic transcription system of the RND, but transcribed
as unrounded [u] and [o] respectively.

The distance between a monophthong and a diphthong is
calculated as the mean of the distance between the monoph-
thong and the first element of the diphthong and the distance
between the monophthong and the second element of the diph-
thong. The distance between two diphthongs is calculated as the
mean of the distance between the first elements and the distance
between the second elements. Details are given by Heeringa [7,
p. 108].

4. Results
4.1. Afrikaans versus Dutch, Frisian and German

The Levenshtein distance enables us to compare Afrikaans to
other language varieties. Since we selected 125 words, the dis-
tance between a variety and Afrikaans is equal to the average of
the distances of 125 word pairs. In Table 1 the average Leven-
shtein distances between Standard Afrikaans, Standard Dutch,
Standard Frisian and Standard German are given. The distances
represent the average Levenshtein distances, regardless of the
length of the alignments the distances are based on. The table
shows that Afrikaans is most closely related to Standard Dutch.
This confirms that Afrikaans is a daughter of Dutch, as sug-
gested by Kloeke[2], Van Reenen[1] and others. Furthermore,
we found Afrikaans closer to Standard Frisian than to Standard
German.

4.2. Afrikaans versus Dutch dialects

With the use of Levenshtein pronunciation distances between
Afrikaans and 361 Dutch dialect varieties are calculated. The
results are shown in Figure 1. In the map the varieties are repre-
sented by polygons, geographic dialect islands are represented
by colored dots, and linguistic dialect islands are represented
by diamonds. Lighter polygons, dots or diamonds represent di-
alects which are close to Afrikaans and darker ones represent
the varieties which are more distant. The distances in the leg-
end represent the average Levenshtein distances.

The closest varieties are found in the province of South-
Holland. Some close varieties are also found in the provinces
of North-Holland and Utrecht. The dialect variety of Zoeter-
meer is closest to Afrikaans. Kloeke[2] claimed that the dialect
of the first settlers was the main source of Afrikaans. These set-
tlers came from southern part of the Dutch province of South-
Holland, the area around Rotterdam and Schiedam. Zoetermeer
is slightly north of these two locations. The Limburg variety of
Raeren is furthest away.

4.2.1. Vowels

Distances between Dutch dialects and Afrikaans based solely
on vowel substitutions are shown in Figure 2. The map is
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Zoetermeer

Raeren

Distance compared to
Standard Afrikaans:

2.8 Zoetermeer

3.2 Standard Dutch

4.1 Standard Frisian

4.8 Raeren

5.1 Standard German

Figure 1: Distances of 361 Dutch dialect varieties compared to Afrikaans. The varieties are represented by polygons, geographic dialect
islands are represented by colored dots, and linguistic dialect islands are represented by diamonds. Lighter polygons, dots or diamonds
represent dialects which are closest to Afrikaans and darker ones represent the varieties which are most distant. Note that the variety
of Zoetermeer is closest to Afrikaans. The IJsselmeer polders (Wieringermeerpolder, Noordoostpolder and Flevopolder) are not under
consideration, so they are left white.
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Wateringen

Raeren

Figure 2: Vowel substitution distances of 361 Dutch dialect va-
rieties compared to Afrikaans. Note that the variety of Waterin-
gen is closest to Afrikaans, and the variety of Raeren is most
distant.

relatively similar to the map in Figure 1. Again the South-
Hollandish varieties are close and the southern Limburg vari-
eties are distant. The dialect of Wateringen is closest, and the
dialect of Raeren is the most distant. The Frisian varieties and
the core Low Saxon varieties found in Groningen and Twente
are more distant than in Figure 1. The varieties close to the
Dutch/French border in the Belgian province of Brabant are also
relatively distant.

Our findings agree with Kloeke [2]. In the summary of his
book (p. 262–263) he writes:

The two chief sources of Afrikaans, the old di-
alects of South Holland on the one hand and the
“High” Dutch on the other, are reflected in the vo-
cal system. In some respect Afrikaans is of a pro-
nounced conservative “Holland” dialectal charac-
ter, still more conservative than the dialects of
Holland itself, which are gradually disappearing.

Although the Holland dialects are disappearing, the rela-
tionship with the South-Holland varieties is still found when we
use the RND data.

4.2.2. Consonants

When consonant substitution distances between the Dutch di-
alects and Afrikaans are calculated, a completely different pic-
ture is obtained, as can be seen in Figure 3. Closest is the
town Frisian variety of Heerenveen. Other Town Frisian vari-
eties (Harlingen, Staveren, Bolsward, Midsland and Dokkum),
the dialect of Oost-Vlieland and the dialect of Amsterdam are
also found among the eight closest varieties. The map shows
that the Limburg varieties are again distant.

The strong relationship with the Town Frisian dialects may
be explained by the fact that both in Afrikaans and in Town
Frisian the initial consonant cluster in words like schip ‘ship’
and school ‘school’ is pronounced as [sk], while most other di-
alects and Standard Dutch have [sx]. Another shared feature is

Heerenveen

Vaals

Figure 3: Consonant substitution distances of 361 Dutch di-
alect varieties compared to Afrikaans. Note that the variety of
Heerenveen is closest to Afrikaans, and the variety of Vaals is
most distant.

that the initial consonant in words like vinger ‘finger’ and vijf
‘five’ is a voiceless [f] and the initial consonant in words like
zee ‘sea’ and zes ‘six’ is a voiceless [s]. Most other dialects and
Standard Dutch have initial [v] and [z] respectively, although
there may be a current tendency to increasingly unvoice these
fricatives.

The relationship of Afrikaans with Town Frisian may be
an unexpected outcome at first glance. According to Kloeke,
Frisian did not have any significant influence on Afrikaans.
But he stresses the assumption that once the [sk] pronunci-
ation was used in the whole Dutch dialect area. Relics are
presently still found in Frisia, the islands, North-Holland, Over-
ijssel and Gelderland, but also in Noordwijk and Katwijk in
South-Holland. He also suggests the possibility that, in the 17th
century, there may have been large relic areas in South-Holland
(see p. 225–226).

As to the unvoiced fricatives, this phenomenon is partly
found in the RND transcription of the South-Hollandish variety
of Zoetermeer, but not to the same extent as in the Heerenveen
transcription. A similar reasoning as for the [sk] pronunciation
may also apply here.

5. Conclusions
In this paper, Afrikaans was compared to the west Germanic
standard languages (Dutch, Frisian and German). Afrikaans
was found to be most related to Dutch. Van Reenen and
Coetzee[1] rightly refer to Afrikaans as a daughter of Dutch.
When Afrikaans is compared to 361 Dutch dialects, the South-
Hollandish varieties were found to be closest to Afrikaans.
According to Kloeke[2] the southern varieties in the province
of South Holland are the main source of Afrikaans. How-
ever, our closest variety – the dialect of Zoetermeer – is found
in the center of the province. We did not specifically find
the southern South-Hollandish varieties to be closest. It is
likely that the South-Hollandish dialect area has changed since
1652. The strong relationship between Afrikaans and the South-
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Hollandish varieties can be explained by their vowels. As
regards the consonants, the Town Frisian varieties are most
closely related to Afrikaans, probably since they still maintain
features which were lost in the South-Hollandish dialects. The
southern Limburg varieties are most distant to Afrikaans, both
when looking at vowel differences and when considering con-
sonant differences.

The results of this study indicate that, for the development
of automatic speech recognition systems for Afrikaans, Stan-
dard Dutch is probably the best language to “borrow” acoustic
data from. The use of acoustic data of the South-Hollandish di-
alects would be even better, but will probably not be available,
since developers of automatic speech systems focus on (accents
of) standard languages rather than on dialects.
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[9] E. Blancquaert and W. Peé, Eds., Reeks Nederlands(ch)e
Dialectatlassen, De Sikkel, Antwerpen, 1925–1982.

[10] W. Heeringa, “De selectie en digitalisatie van dialecten
en woorden uit de Reeks Nederlandse Dialectatlassen,”
TABU: Bulletin voor taalwetenschap, vol. 31, no. 1/2, pp.
61–103, 2001.

[11] F. Hinskens, P. Auer, and P. Kerswill, “The study of dialect
convergence and divergence: conceptual and method-
ological considerations,” in Dialect change. The conver-
gence and divergence of dialects in contemporary soci-
eties, P. Auer, F. Hinskens, and P. Kerswill, Eds., pp. 1–48.
Cambridge University Press, Cambridge, 2005.

[12] E. Blancquaert, Tekstboekje, De Sikkel, Antwerpen, 2nd
edition, 1939, Nederlandse Fonoplaten van Blancquaert
en van der Plaetse, Eerste Reeks.

[13] H. Krech and U. Stötzer, Wörterbuch der deutschen
Aussprache, Max Hueber Verlag, München, 1969.

[14] W. Heeringa, J. Nerbonne, H. Niebaum, R. Nieuweboer,
and P. Kleiweg, “Dutch-German contact in and around
Bentheim,” in Languages in Contact. Studies in Slavic
and General Linguistics, D. Gilbers, J. Nerbonne, and
J. Schaeken, Eds., vol. 28, pp. 145–156. Rodopi, Ams-
terdam and Atlanta GA, 2000.

[15] J. B. Kruskal, “An overview of sequence comparison,” in
Time Warps, String edits, and Macromolecules. The The-
ory and Practice of Sequence Comparison, D. Sankoff and
J. Kruskal, Eds., pp. 1–44. CSLI, Stanford, 2nd edition,
1999, 1st edition appeared in 1983.

[16] IPA, The Sounds of the International Phonetic Alphabet,
Department of Phonetics and Linguistics, University Col-
lege London, London, 1995, Available as audio cassette
or CD.

[17] P. Boersma and D. Weenink, Praat: doing phonetics by
computer, Institute of Phonetic Sciences, Amsterdam,
2002, Available at: http://www.praat.org.

164



Speect: a multilingual text-to-speech system

J.A.Louw

Human Language Technologies Research Group
Meraka Institute, Pretoria, South Africa

jalouw@csir.co.za

Abstract
This paper introduces a new multilingual text-to-speech sys-
tem, which we callSpeect (Speech synthesis withextensible
architecture), aiming to address the shortcomings of using Fes-
tival as a research system and Flite as a deployment system ina
multilingual development environment. Speect is implemented
in C with a modular object oriented approach and a plugin ar-
chitecture, aiming to separate the linguistic and acousticdepen-
dencies from the run-time environment. A scripting language
interface is provided for research and rapid development ofnew
languages and voices. This paper discusses the motivation for
a new text-to-speech system as well as the design architecture
and implementation of the system. We also discuss what is still
required in the development to make the new system a viable
alternative to the Festival - Flite tool-chain.

1. Introduction
Text-to-speech (TTS) synthesis introduces a multitude of
communication possibilities, which are especially important
in developing countries for cheap and effective conveyance
of information. Multilingual text-to-speech is especially
important in countries with more than one official language
as is the case in South Africa. Multilingual text-to-speech,
as used in this paper, refers tosimple multilingual speech
synthesis [1] where language switching is usually accom-
panied by voice switching. There are many high-quality
commercial text-to-speech systems available for the major
spoken languages, but not so for languages with a small
geographical distribution or a small number of speakers relative
to the major languages. Development of these technologies is
a daunting task, and in multilingual environments even moreso.

Text-to-speech synthesis is the automated process of map-
ping a textual representation of an utterance into a sequence
of numbers representing the samples of synthesized speech [2].
This conversion is achieved in two stages as depicted in figure
1.

• Natural Language Processing (NLP): Converting the
textual representation of an utterance into symbolic lin-
guistic units.

• Digital Signal Processing (DSP): Mapping the symbolic
linguistic units into samples of synthesized speech.

TheNatural Language Processing stage consists of the fol-
lowing major modules:

• Text pre-processing involves the transformation of the
textual input into a format suitable for the phonetization
module. The specifics of this task is dependent on the

Natural Language Processing

Digital Signal Processing

Textual

 utterance

 representation

Synthesized

Speech

Symbolic

linguistic

units

Waveform generation

Prosody

 generation
PhonetizationPre-processing

Figure 1: Functional blocks of a text-to-speech synthesizer.

type of textual input given to the system and includes
utterance chunking and text normalization.

• The normalized text of the pre-processing module is con-
verted into a phonetic representation by thephonetiza-
tion block.

• Prosody generation involves the generation of intonation
and duration targets through some form of prosody mod-
els.

The data generated by the NLP stage represents thesymbolic
linguistic units, which are then converted into synthetic speech
by theDigital Signal Processing stage. The DSP stage can be
realized by means of unit selection [3], statistical parametric
synthesis [4], formant synthesis [5], or some other type of syn-
thesizer technology. Each of the modules in the two stages adds
some type of information to the initial given utterance which
enables the final module,waveform generation, to generate syn-
thetic speech based on this information.

The NLP stage is language dependent, whereas the DSP
stage is dependent on the synthesizer technology of the im-
plemented synthetic voice. Therefore, a multilingual text-to-
speech system must be able to apply different NLP and DSP
modules for different synthetic voices based on the language
and synthesizer technology of the specific voice.

The next section discusses the motivation behind the need
for a new speech synthesizer, followed by the design and imple-
mentation. We then conclude with a discussion.

2. Motivation
Over the last decade, the Festival speech synthesis system [6]
has become the de facto standard free toolkit for speech syn-
thesis research [7]. Festival provides a modular architecture
whereby it is possible to modify each of the sub-tasks in-
volved in the NLP and DSP stages in a text-to-speech conver-
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sion process. Festival is implemented in two languages, C++
and Scheme (a lisp dialect), providing an integrated interpreted
language for run-time manipulation. Festival, together with the
Festvox project [8], aims to make the building of text-to-speech
voices a structured and well defined task.

While being a fine example of a research system there are
drawbacks to using Festival as a component within a speech en-
abled technology solution such as anintegrated voice response
(IVR). Festival has a large memory footprint and is relatively
slow as a result of having a self contained interpreted language.
A Festival compatible alternative is the Flite [9] synthesis en-
gine, and while having a similar modular architecture and ut-
terance structure representation, it provides improvements with
regards to [9];

• speed,

• portability,

• maintenance,

• code size,

• data size, and

• thread safety.

Flite was written in ANSI C and has no interpreted language. In
Festival a synthetic voice is loaded into internal data structures
into memory, while in Flite all voice data is represented in
C code. Therefore one still needs to use Festival and the
Festvox toolkit for research and development of new voices,
and then convert these voices with appropriate scripts intoa
Flite compatible version. The process of building a new voice
in a new language (a language where the NLP modules do not
exists in either Festival or Flite) will require one to first develop
the NLP modules in C++ and/or Scheme in Festival and then
rewrite these modules in C code for use in Flite. This is time
consuming and requires expert knowledge of the Festival and
Flite code base.

As a result of our experience with multilingual text-to-
speech development we decided to design and implement a new
text-to-speech system that combines the best features of the ex-
isting Festival and Flite synthesis engines while also address-
ing the shortcomings of these systems with regards to our re-
quirements. The most important requirements for the new sys-
tem, which we callSpeect (Speech synthesis withextensible
architecture), can be summarized as follows:

• A single synthesis engine: Having one synthesis engine
reduces the code base and will eliminate any discrepan-
cies between a development system and deployment sys-
tem. This also leads to less maintenance.

• Extensible architecture: It should be easy to extend and
modify the system with regards to the NLP as well as
DSP stages of the text-to-speech conversion process.

3. Design
A synthetic voice in a TTS system can be seen as a combination
of two parts

• linguistic component: providing language models and
data for the NLP stage of the synthesis process.

• acoustic component: the acoustic models and data re-
quired by the DSP stage for waveform generation.

t w eh n t iy
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syl syl syl
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up

down

next

prev

1 0 1

Figure 2: An example representation of an utterance structure
using a heterogeneous relation graph.

The linguistic component is language dependent and can be
shared by voices of the same language while the acoustic
component is unique to a specific voice. Speect aims to provide
control of the synthesis process and its design is intended to
be independent of the underlying linguistic or acoustic models
and data. Speect is not meant to replace speech processing
tool-kits, the linguistic and acoustic models and data still needs
to be generated by packages such as Edinburgh Speech Tools
[10], Festvox and the Speech Signal Processing Toolkit [11].

To allow existing linguistic and acoustic Festival models
and data to be reused, the internal representation of an utterance
follows the same formalism as used in Festival and Flite. The
utterance structure is represented internally as aHeterogeneous
Relation Graph [12] (HRG), which consists of a set of relations,
where each relation contains some items (the items need not be
unique to a relation). The relations represent structures such
as words, syllables, phonemes or even duration targets and the
items are the content of these structures. Figure 2 shows an
example representation of an utterance structure using a HRG
with three relations and their items.

The individual NLP and DSP modules of figure 1 are called
utterance processors. Utterance processors create relations
in the utterance structure and add information (items with
features) to the relations based on the linguistic and acoustics
models and data. For example in figure 2 thesyllable relation
of the utterance has three items, with syllable stress as a feature
of the items.

Speect has an object oriented design which allows the same
modular approach to text-to-speech as Festival and Flite. Aplu-
gin architecture is used for the utterance processors, thereby
restricting the language dependencies within the data and re-
sources of the specific voice implementation and not in the syn-
thesis platform. This plugin architecture allows different imple-
mentations of the same voice and/or language to be used during
run-time, as the voice and language specifications load the re-
quired plugins.

4. Implementation
Speect is implemented in ANSI C to provide maximum porta-
bility and speed. The implementation of an object oriented
paradigm in C requires more discipline from the programmer,
but allows for code reuse and a modular design. Figure 3 shows
the implementation architecture of Speect.
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Figure 3: The Speect architecture.

The Speect architecture is divided into 4 major sections

• The base systemprovides a library of basic functions
that are used by the upper levels of the system.

– object system: the objects system implements a
object oriented paradigm in C, whereby an object
is described by two structures, one for it’s data
members and one for it’s methods. The object sys-
tem provides basic encapsulation, polymorphism,
and inheritance.

– math routines: basic mathematical routines.

– utility functions: memory allocation and logging
utilities.

– string functions: basic string functions and UTF 8
support.

– basic containers: doubly-linked lists and a hash
table as basic data containers.

• Speech and Data Objectsoffer higher level objects spe-
cific to speech synthesis and data handling.

– acoustic objects: provides interfaces to wave-
forms, data tracks, etc. Interfaces are implemented
by plugins, therefore removing data dependencies
from the synthesis system.

– linguistic objects: providesinterfaces to phoneset,
lexicon, etc. Plugins implement the linguistic in-
terfaces.

– HRG objects: the utterance structure implementa-
tion. Follows the implementation of Festival and
Flite for representing utterances.

– data sources: objects and interfaces for reading
and writing data from/to files and memory. An
Extensible Binary Meta Language [13] protocol
is implemented as the standard format for read-
ing/writing to files.

– data containers: Abstract objects that encapsulate
the use of the base system containers.

– data utilities: the basic data object used in the
HRG system. All objects that inherit from this ob-
ject can be used as a feature in the utterance struc-
ture.

• Synthesis Control is provides the top level control of
voices.

– plugin manager: handles requests for specific plu-
gin implementations. Dynamically loads and un-
loads plugins as required by the system.

– voice manager: loads and unloads voices and han-
dles synthesis requests.

• Scripting language interface connects interpreted
scripting languages to the Speect library.

– wrapper functions: the connection between the
Speect library and scripting languages through
SWIG (Simplified Wrapper and Interface Gener-
ator) [14].

The scripting language interface enables one to use Speect in
an interpreted language setting, therefore speeding up research
and development of new voices and languages. The speed of
the Speect library is not influenced by the scripting language as
it is external to the library implementation.

The work-flow of Speect is as follows: a synthesis request
must be accompanied by the desired voice. The voice specifica-
tion, which consists of a list of linguistic and acoustic utterance
processors and associated data, is loaded by thevoice manager.
The desired utterance processor plugins are loaded dynamically
by theplugin manager on request from the voice manager. The
voice manager then proceeds to execute each of the utterance
processors on the textual utterance representation, building an
utterance structure. The utterance structure is synthesized and
the synthetic speech returned.

5. Discussion
The Festival speech synthesis system provides a research and
development platform for building synthetic voices in different
languages. However, it is challenging to use in a real world
deployment environment because of it’s size and speed. Flite
aims to correct these deficiencies with a much smaller and
more efficient implementation, but lacks the development
environment and suffers from language dependencies in the
data and resources. Therefore, to develop synthetic voices
for deployment one needs to create the voice in Festival and

167



convert it to a Flite suitable format. This is a complicated task,
especially for new languages and requires extensive knowledge
of the Festival and Flite code base.

Speect aims to be an alternative to the Festival - Flite tool-
chain by providing a single speech synthesis engine for re-
search, development and deployment in multilingual environ-
ments. This is achieved by a modular object oriented design
with a plugin architecture, thereby separating the synthesis en-
gine from the linguistic and acoustic dependencies. The im-
provements of the proposed Speect synthesis system with re-
gards to the Festival - Flite tool-chain can be summarized as
follows:

• The research, development and deployment cycle is done
with one synthesis engine, reducing the size of the code
base as well as the required maintenance. Therefore, im-
plementation of new NLP or DSP plugins requires expert
knowledge of just one synthesis engine.

• Run-time performance comparable with that of Flite,
while retaining the research and development advantages
of the Festival design, without the speed and size penal-
ties associated with the integrated interpreted language
because of the separation of the core library and the in-
terpreted language.

• Footprint size comparable to Flite due to plugin architec-
ture, therefore only the required modules for a particular
voice are loaded.

The modular object oriented design combined with the SWIG
interface enables the use of the Speect library through native
calls from multiple scripting languages, and other languages
such as Java, C#, Scheme and Ocaml, while encapsulating
the underlying implementation through the use of the plugin
architecture.

The Speect system has been completed up to a stage where
utterance processor plugins can be loaded and run on basic in-
put text and a concatenative unit selection method as described
in [7], but to be a viable alternative to the current system the
following still needs to be addressed:

• SWIG interface files for Python,

• Python scripts for the creation of unit selection voices,

• NLP modules for different languages,

• complete documentation on the implementation,

• manual for writing and extending plugins,

• documentation for building voices, and

• scripts for converting existing Festival voices into a
Speect format.
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Abstract

Homophone disambiguation is a very important natural lan-
guage processing task in any language. It is for example an
essential prerequisite for effective machine translation and an
important component of a grammar checker. In this paper we
describe two different approaches to homophone disambigua-
tion in Afrikaans, namely a frequency-based and a decision tree-
based approach. We describe the data requirements and opera-
tion of the two methods. We also compare the two methods on
the basis of the results obtained from evaluation on the same
evaluation data set. We conclude that the frequency-based ap-
proach is currently more suitable for implementation in a gram-
mar checker, despite the fact that the decision tree-based ap-
proach obtains a higher recall figure.

1. Introduction
”Waterkloof se eerste span het die lood [sic] gewen en eerste
gekolf. (Waterkloof’s first team won the lead [sic] and batted
first.) The above sentence was obtained from the Afrikaans
Newspaper,”Beeld” , of 16 September 2008 [1]. This is an
example of a sentence that contains a homophone that has been
used incorrectly, since the word”lood” (lead) has not been used
in the correct context. The correct word choice would have been
to use the word”loot” (toss) which means to flip coins in order
to decide about an issue [2].

Incorrect usage of homophones is unfortunately a very
common problem in written work and is not only restricted to
Afrikaans. The origin of the problem is that homophone words
like ”loot” and ”lood” sound very similar when pronounced
and have similar spelling, although the meanings and origin of
the two words are completely different.

A spelling checker for Afrikaans, like that of CTexT [3],
will however not be able to detect homophone errors. The rea-
son for this is that all the words in the sentence are spelt cor-
rectly, despite the fact that the homophone word is not used in
the correct context. The spelling checker only evaluates surface
forms of words and cannot flag grammatical errors [4].

CTexT is currently developing a grammar checker for
Afrikaans that will attempt to address this problem. Incorrect
usage of homophones is just one of the many grammatical er-
rors that we want the grammar checker to identify and correct.
Obtaining an accurate method for Afrikaans homophone dis-
ambiguation for purposes of implementation in the grammar
checker motivated this research. This is also a first step in the
process of constructing a fully-fledged word sense disambigua-
tor and a context-sensitive spelling checker for Afrikaans.

The remainder of this paper is structured as follows: Sec-
tion 2 introduces the frequency-based approach to homophone
disambiguation and further provides detailed information about

the implementation and evaluation of the method. Section 3 fo-
cuses on an alternative decision tree-based approach. We con-
clude with a comparison of the two approaches and some direc-
tions for future work in Section 4.

2. Method 1: Frequency-Based
2.1. Background

The frequency-based approach is based on the assumption that
the existence of certain words that co-occur with homophone
words in a sentence contributes to the process of homophone
disambiguation [5]. It is for example highly unlikely that a
sentence containing the word”lood” (lead) will also contain
the words ”win”, ”lose”, ”heads”, ”tails” and ”referee”, since
all these words refer to entities or concepts that are associated
with tossing before a sporting game. For the same reason it
is also unlikely that the word”loot” (toss) will co-occur with
the words ”ammunition”, ”weapons”, ”poison”, ”element” etc.
This approach is also revered to as a bag-of-words approach.

2.2. Approach

The first step of this approach was to compile a list of the ho-
mophone pairs that exist in Afrikaans. This resulted in a list of
469 homophone pairs. The next step was to extract all sentences
containing homophones in our list of homophone pairs from the
Media24 Corpus [6]. For some of the homophone pairs we ex-
perienced large differences between the numbers of sentences
that were extracted for each homophone word. This can be at-
tributed to the vast differences in frequency of use of some of
the homophone words. The homophone”dit” (this) has for ex-
ample a frequency of 577,864 in the Media24 Corpus [6], while
”dut” (nap or snooze) has a significantly lower frequency of 50.
For purposes of this research we only considered 50 homophone
pairs in total. 25 of the homophone pairs were selected where
the homophone words have more or less the same frequency,
while the remaining 25 were selected from pairs where large
differences between the frequencies of the homophone words
exist.

These extracted sentences were used to create a word list
of all the words (together with their frequency counts) that co-
occur with each of the 100 homophones (50 pairs). These word
lists are the so-called constraint words, words that are not likely
to occur with the other homophone in the pair.

All function words were removed from these word lists,
since function words have little ambiguous meaning and would
therefore not contribute to the disambiguation process. For the
same reason we also removed all named entities, abbreviations,
foreign words and words that contain spelling errors with the
aid of the”Afrikaanse Speltoetser”[3].

The next step was to normalise the frequency counts of all

169



the constraint words in the different word lists. This was calcu-
lated by dividing the frequency count of the word, by the sum of
the frequency counts of all the words in the list. The constraint
lists with the normalised frequencies form the basis of our im-
plementation of the frequency-based disambiguation algorithm.

2.3. Process

The process of homophone disambiguation with the frequency
based approach starts with a document that needs to be checked
for homophones that have been used in the wrong context. The
document is firstly sentencised and the process continues on a
per-sentence basis. The sentence is then checked to determine
if it contains a homophone word. If it does not, the process con-
tinues with the next sentence. If a sentence does contain a ho-
mophone, the sentence is passed to the summation module. The
summation module compares the words in the sentence with the
constraint words of the involved homophone. The normalised
frequency value of all the constraint words that are found in the
sentence is summed. If the value of the sum is above a certain
threshold value, the homophone is flagged and the other homo-
phone in the pair is suggested. The process ends when all the
sentences in the document have been checked. Figure 1 shows
a flow diagram of the entire process.

2.4. Evaluation

The evaluation of both methods was performed on a separate
evaluation set from the test set, originating from the PUKPro-
tea Corpus. The evaluation data was created by extracting sen-
tences containing the 50 homophone pairs. 25 of these pairs
had similar amounts of data and 25 showed large differences, as
discussed in Section 2.2. The results for these two groups are
given separately in Table 1 and 2 to indicate the influence of the
amount of data collected on the different metrics.

The evaluation data consisted of 150 sentences containing
homophone words that were used in the correct context and 150
sentences containing homophone words that were incorrectly
used. These sentences were created artificially to contain either
the correct or incorrect homophone. The reason for evaluating
with data containing no errors is that we are (for purposes of the
grammar checker) not only interested in detecting homophone
errors, we also want to make sure that we do not flag correct
words as incorrect. Table 1 indicates the results obtained with
the frequency-based approach.

Table 1:Results obtained with Method 1.

Recall Precsion F-Score

Equal 0.355 0.862 0.503
Unequal 0.205 0.914 0.335
Average 0.28 0.888 0.419

Table 1 indicates that Method 1 has a relatively low recall
figure, but high precision. The system performs better on homo-
phone pairs that have equal frequencies in the Media24 Corpus
[6]. The low recall figures are not ideal for implementation in a
grammar checker.

The threshold value can however be adjusted to improve
the recall figure, but this will be at the expense of precision. We
decided against adjusting the threshold value for increased re-
call, since we believe that in the context of a grammar checker
it is better to flag a low number of errors (low recall) with high
precision. The disappointing results obtained with Method 1

Figure 1:Flow Diagram of Method 1.

prompted us to consider alternative methods for homophone
disambiguation. Method 1 thus serves as benchmark for all fu-
ture work on the subject in Afrikaans, particularly at CTexT.

3. Method 2: Desicion Tree-Based
3.1. Background

The second part of this study is based on a similar experiment by
Daelemans and Van Den Bosch - they studied the effect of part
of speech tags and word frequencies on word sense disambigua-
tion for Dutch [7]. According to their study a human makes the
choice between two homophones based on one of two criteria:
Firstly, a person explicitly learns when to use which form from
an early age. This knowledge builds in a trial and error fashion;
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a person uses whatever form comes naturally until a teacher or
parent corrects him/her. From this the person learns that certain
words are only used in restricted contexts (the basis for the first
module discussed). If a person has never encountered a certain
form, he/she reverts to the second method: using the most fre-
quent word. For most pairs of homophones, one is used much
more often than the other, as can be seen from the differences
in the frequency of use of some homophone words discussed
earlier. The most frequent form is thus considered the most pro-
totypical. According to Daelemans and Van den Bosch [7], this
second method is 98% accurate. Such a one-sided approach is
however not suitable for implementation in a grammar checker.

Using this knowledge, and the first method as baseline,
we constructed a second module an adaptation of Daelemans
and Van Den Boschs work [7], while incorporating ideas from
Wilkss earlier work in the field [8]. This method uses deci-
sion trees instead of the frequency-based method to construct a
classifier that can indicate whether or not a sentence contains a
homophone that has been used in the wrong context.

3.2. Approach

The machine learning algorithm that was used to create the
classifier is a decision tree algorithm called IGTree. IGTree
is one of the algorithms contained in the Tilburg Memory-
Based Learner (TIMBL) [9], a program that implements several
memory-based machine learning techniques and algorithms.
IGTree was chosen because of its fast speed of classification
and relative high accuracy. We decided to construct a separate
decision tree for each homophone pair, since we want to prevent
the construction of large, complicated decision trees that slows
down the classification process.

The high precision obtained by Method 1 proved that the
context words are indeed a good indicator of the meaning and
usage of a homophone. The features in the training data consist
of five context words to the left of the homophone, and five to
the right. In an attempt to improve the low recall of Method
1, we decided to add part-of-speech tags to this experiment.
Daelemans and Van den Bosch [7] also obtained very good re-
sults with the use of part-of-speech tags, since they obtained a
5% increase in accuracy. The TnT Tagger [10] was used for this
part of the experiment, with a tag set developed for Afrikaans
at CTexT [11]. The purpose of the classifier is to classify a sen-
tence by explicitly indicating the correct homophone word.

A flow diagram of the resulting module is shown in Figure
2. The process once again starts with a document that needs to
be checked for homophones that have been used in the wrong
context. The document is also sentencised and the process con-
tinues on a per-sentence basis. The sentence is then checked to
determine if it contains a homophone word. If the sentence does
contain a homophone, it is tagged and then windowed. This step
is necessary to ensure that the sentence conforms to the format
of the training data. The windowed sentence is then classified.
If the awarded class is the same as the original homophone,
the process continues with the next sentence. If the awarded
class does not match the original homophone, the homophone
is flagged and the other homophone in the pair is suggested.

3.3. Process

The steps for compilation of this second module are as follows:

1. Compile a list of homophones to be used (in this case,
50 pairs were selected manually for their usage in
Afrikaans, and the amount of data available).

Figure 2:Flow Diagram of Method 2.

2. Extract sentences containing these homophones. The
sentences are then tokenised for the next step.

3. Add POS-tags to all words in the sentence.

4. Add all components to each other and window the input
for IGTree. A line will then contain 10 context words
and their tags. If there are not enough words to either
side of the homophone, empty features were added so
that each instance held 20 features.

5. Train the trees with IGTree in TiMBL (no special
weights or other parameters were added or adjusted).

6. Evaluate the module using TiMBL and data extracted
from the PUKProtea Corpus in the same way as the train-
ing data.

7. Calculate the recall, precision and F-score for each tree
separately, as well as a mean for the entire set.

3.4. Evaluation

Table 2 displays the results obtained with Method 2 by using
the same evaluation data as Method 1:
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Table 2:Results obtained with Method 2.

Recall Precsion F-Score

Equal 0.724 0.753 0.738
Unequal 0.608 0.757 0.674
Average 0.665 0.755 0.708

The above results were derived from a very limited amount
of training data. For some pairs as little as 500 kb of data could
be extracted from the Media24 Corpus [5].

For a number of pairs, a recall and precision figure of 100%
was obtained. This was very often the case for pairs with rel-
atively large data sets for both words in the pair and very di-
verse meanings (e.g.”buur” (neighbour) vs.”bier” (alcoholic
drink). From Table 2 it is also clear that the precision stayed
roughly the same for equal or unequal amounts of data. It is
only in recall that the module suffers. This can be adjusted by
adding more data for the scarcer form. Another interesting phe-
nomenon is that the decision tree chose the more frequent form
rather than the other in ambiguous cases, just as a human would.
This happened in all of the relevant instances.

4. Conclusion

A comparison of the results of the two methods shows that the
second method obtains a higher overall recall figure than the
frequency-based method. The higher recall can be attributed
to the use of part-of-speech tags. Unfortunately, the decision
tree-based methods obtains lower precision than that of the first
method. This lower precision figure currently makes the de-
cision tree-based approach unsuitable for implementation in a
grammar checker for Afrikaans. Such a low precision figure
will result in a large number of false positive classifications that
might be very frustrating to the user of the grammar checker.

Our future work will however focus on improving the preci-
sion of the decision tree-based approach, since we believe that
this approach is more likely to deliver better results than the
frequency-based approach. It is a well-known fact that deci-
sion tree-based algorithms like IGTree, require large amounts of
training data. This was also evident from the very good results
obtained with the decision tree-based approach for the homo-
phone pairs where both homophone words had high frequencies
in the Media24 Corpus [6]. We should therefore try to increase
the training data of the homophones with a low frequency. This
can be done by using larger corpora for the extraction of the
training data. Another possible solution might be to use a web
crawler to automatically obtain more corpora from the web.

Another option that might also have a positive effect on the
precision of the decision tree-based approach is to add more ad-
ditional information than only part-of-speech tags to the train-
ing data. An example of such information that can be included
is the lemmas of the context words. Improving the accuracy of
the part-of-speech tagger may also improve the accuracy of the
classifier.
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Improving Iris-based Personal Identification using Maximum Rectangular Region 
Detection 
Serestina Viriri and Jules-R Tapamo  
 
Iris recognition is proving to be one of the most reliable biometric traits for personal 
identification. In fact, iris patterns have stable, invariant and distinctive features for 
personal identification.  In this paper, we propose a new algorithm that detects the largest 
non-occluded rectangular part of the iris as region of interest (ROI). Thereafter, a 
cumulative-sum-based grey change analysis algorithm is applied to the ROI to extract 
features for recognition. 
 
This method could possibly be utilized for partial iris recognition since it relaxes the 
requirement of using the whole part of the iris to produce an iris template. Preliminary 
experimental results carried on a CASIA iris database, show that the approach is 
promisingly effective and efficient. 
  
  
Impact Assessment for Data Imputation using Computational Intelligence 
Techniques 
F. A. Netshiongolwe, J. Mistry, F. V. Nelwamondo, and T. Marwala 
 
In this paper, the statistical properties and accuracy levels of estimating missing data 
using computational intelligence techniques are evaluated. Autoencouders and 
conventional feedforward neural network architectures that use genetic algorithm 
optimization have been implemented in imputing missing features from an antenatal 
survey conducted in South Africa in 2001. The use of autoencoders results in outcomes 
that have considerably high accuracies and this also results in outcomes that preserve the 
variability of the data. The developed models show that the computationally predicted 
values preserve the mean of the original data to within 5% and 15% of its value during 
single feature imputation and simultaneous imputation of three missing features 
respectively. 
 
 
The Kernel Fisher Discriminant for learning bioinformatic data sets 
Hugh Murrell  
 
Support Vector Machines have long been used as machine learning tools for 
bioinformatic data sets. The trick is to make use of a string based kernel. In this article we 
introduce a simpler kernel machine, the Kernel Fisher Discriminant. A Mathematica 
package MathKFD is described for carrying out Kernel Fisher Discrimination on 
bioinformatic data sets. 
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Evaluating techniques to binarize historic cosmic-ray data 
Tjaard Du Plessis and Gunther Drevin 
 
Two adaptive image binarization techniques are evaluated to find the algorithm best 
suited for the binarization of historic cosmic-ray data.  The two techniques are 
implemented and their parameters are manipulated to find an optimal binarization for 
each of them.  They are then compared to each other in order to choose the best suited 
technique. 
 
 
Inductive Reasoning in Description Logics 
Ken Halland and Katarina Britz 
 
Inductive reasoning is a form of inconclusive reasoning for making generalisations based 
on observations. In the field of pattern recognition, inductive reasoning is often called 
learning[4], where general rules are derived from empirical data in the context of some 
background knowledge. 
 
We restrict our attention to what we call qualitative inductive generalisations. In other 
words, we attach no statistical or probabilistic values to observations or inferences from 
them. For example, we consider arguments of the form “All observed Fs are Gs, therefore 
all Fs are Gs” rather than “X percent of all observed Fs are Gs, therefore X percent of all 
Fs are Gs”. 
 
Inductive generalisations are by their nature ampliative and defeasible. They are 
ampliative in that they allow the inference of knowledge beyond what is observed. They 
are defeasible in that they are vulnerable to counter-examples, in which case they may 
need to be retracted or refined in some way. 
 
Description logics (DLs) are a family of logics for knowledge representation. DLs are 
used for specifying classes of objects (or concepts) and the relationships between them 
[1]. 
 
The observations involved in inductive reasoning typically consist of examples, and the 
generalizations capture the commonalities between the examples. Description logics, 
with their division of a knowledge base into an ABox consisting of assertional knowledge 
about individuals and a TBox consisting of axiomatic knowledge about groups or classes 
(of individuals), provide an ideal formalism for specifying generalisations over examples. 
in other words, from the assertional knowledge about individuals we can make inductive 
generalisations in the form of axiomatic statements about groups. 
 
In this paper we identify four different kinds of inductive reasoning that can be performed 
in description logics: Concept induction (or concept learning [7]) involves giving a 
definition of a new concept in terms of existing concepts in the knowledge base, based on 
the characteristics of a sample of individuals.  
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ABox induction involves the inference of relationships between existing classes based on 
the knowledge about all individuals that belong to some class. 
 
TBox induction involves the inference of a TBox axiom which summarises or generalises 
a number of other TBox axioms.  For example, if the TBox contains a number of axioms 
stating that various concepts are subclasses of a particular concept, but are also disjoint 
from some other particular concept.  Then we can inductively infer that the two 
(particular) concepts are disjoint. 
 
Finally, knowledge base induction is an abstraction of the other three forms of induction, 
allowing the inference of a generalization over a combination of ABox and TBox 
statements. 
 
 
An optimised parametric speech synthesis model based on Linear prediction (LP) 
and the Harmonic plus noise model (HNM) 
Allen Mamombe, Beatrys Lacquet, and Ms Shuma-Iwisi 
 
Linear predictive speech synthesis plays an important role in acoustic verification and 
analysis. This is because system parameters can be tuned to account for prosody and 
intonation. The quality and intelligence of speech produced from such parametric 
synthesisers however falls short of many people expectations. In this paper we discuss a 
parametric speech model based on Linear Prediction (LP) and Harmonic plus Noise 
Model (HNM). We investigate ways of optimising our LP parameters and window 
lengths. We describe a mathematical model for LP and HNM speech synthesis. Mean 
opinion score (MOS) and transcription tests were then carried out on English phonemes 
and words synthesised using our model and renowned LP models i.e Rosenburg-Klatt (R-
K) and Unit impulse. The test sample was composed of 20 native South African English 
listeners. The results of both tests favoured speech synthesised with our LP/HNM model 
when compared with renowned LP models based on the R-K and Unit impulse. 
 
 
Segmentation of Candidate Bacillus Objects in Ziehl Neelsen Stained Sputum 
Images Using Deformable Models 
Ronald Dendere, Sriram Krishnan, Andrew Whitelaw, Konstantinos Veropoulos, 
Genevieve Learmonth, and Tania S. Douglas 
 
The process of automating the detection of tuberculosis (TB) in Ziehl-Neelsen (ZN) 
stained sputum samples seeks to address the issue of physical demand on technicians and 
to achieve faster diagnosis to cope with the rising number of TB cases. We explore the 
use of parametric and geometric deformable models for segmentation of TB bacilli in ZN 
stained sputum images for an automated TB diagnostic method. 
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A GPU-customized visual hull reconstruction algorithm for real-time applications 
Yuko Roodt and Willem A. Clark 
 
In this paper we present a Graphics Processing Unit (GPU)-based method for 
reconstruction of a volumetric scene taken from known but arbitrarily distributed camera 
views-points.  This novel approach allows for efficient parallelization and distributed 
processing of the reconstruction algorithm. We further extend this implementation by 
calculating the reconstructed hull’s volume. The Space carving algorithm is evaluated for 
accuracy and speed. 
 
 
A Shader-based GPU Implementation of the Fast Fourier Transform 
Philip E Robinson and Willem A Clarke 
 
Image processing technology is maturing at a rapid rate, but the classic processing 
platforms available on which to perform image processing are still not powerful enough 
to allow for the real-world implementation of many of these techniques. Technologies 
like the Field-Programmable Gate Arrays (FPGA) are expensive and difficult to develop 
for and as such do not provide a practical solution to this problem as yet. GPU’s however 
are quickly outstripping the more standard CPU architecture as powerful parallel 
processors which are well suited to image processing techniques. This paper describes the 
implementation of the Fast Fourier Transform, a fundamental building block of many 
image processing algorithms, on the GPU by making use of shader technology. A 
performance comparison between various GPU’s and CPU implementations of the Fast 
Fourier Transforms is also provided. 
 
 
A Readability Formula for Afrikaans 
Cindy A. McKellar 
 
This paper is about the development of a Readability formula for Afrikaans. It discusses 
the collection and processing of the data needed to calculate the formula coefficients. A 
number of different formulas were developed to see which of the variables gave the best 
indication of the readability of a document. It was found that sentence length, word 
length measured in syllables, the number of familiar words (words found in a wordlist), 
the number of brackets and the amount of symbols and numbers gave the best formula. 
This formula was then evaluated and compared to two existing readability formulas for 
Afrikaans. 
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Assessing the impact of missing data using computational intelligence and decision 
forest 
Donghyun Moon and Tshilidzi Marwala 
 
Autoencoder Neural Network is implemented to estimate the missing data. Genetic 
Algorithm (GA) is implemented for network optimization and estimating the missing 
data. Missing data is treated as Missing At Random (MAR) by implementing maximum 
likelihood algorithm. The network performance is determined by calculating the 
network’s Mean Square Error (MSE). The network is further optimized by implementing 
Decision Forest (DF). The impact of missing data is then investigated on both ANN-GA 
and ANN-GA-DF network. 
 
 
Effects of the Type of Missingness of Data on Artifical Intelligence Predition 
D. A. Braude 
 
In surveys data often goes missing. While many techniques exist to combat this problem, 
a recent proposal was for a system that is composed of a neural network and a genetic 
algorithm has been suggested. A design example for a prediction based on this system is 
given. It uses the results of an HIV survey. The effect of the choice of activation function 
and the type of missing data was examined. The tests show that Gaussian activation 
functions are the best choice for radial basis function neural networks. The type of 
missing data has little impact on the accuracy of the prediction. 
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