Extending DTGolog to Deal with POMDPs

Gavin Rens'?, Alexander Ferrein®, Etienne van der Poel

' School of Computing, Unisa, Pretoria, South Africa
E Knowledge Systems Group, Meraka Institute, CSIR, Pretoria, South Africa
" Knowledge-Based Systems Group, RWTH Aachen University, Aachen, Germany

grens@csir.co.za

ferrein@cs.rwth-aachen.de

evdpoel@unisa.ac.za

Abstract

For sophisticated robots, it may be best to accept and reason
vith noisy sensor data, instead of assuming complete observa-
von and then dealing with the etfects of making the assump-
ton. We shall model uncertainties with a formalism called the
partially observable Markov decision process (POMDP). The
plunner developed in this paper will be implemented in Golog:
atheoretically end practicaily “proven’ agent programming lan-
guage. There exists a working tmplementation of our POMDP-
planner,

1. Introduction

{7 arobot or agent can perceive every necessary detail of its en-
vironment, its model is said to be fully observable. In many
practical applications this assumption is good enough for the
agent to tulfill s tasks; it is nevertheless unrealistic. A more
aceurate model is a partially observable model. The agent takes
into account that its sensors are imperfect. and that it does not
know every detail of the world. That is. the agent can incorpo-
rite the probabilitics of errors associated with its sensors, and
cther uncertaimies inherent in perception in the real world, for
cxample. obscured objects. 11 an agent or robot cannot repre-
sent the uncertainties inherent in perception, it has to assume
perleet perception. This assumption either might lead to spu-
i ous conclusions or the necessity for additional methods that
keep the agent's reasoning reasonable. For sophisticated robots
oragents. 1t may be best to accept and reason with noisy sensor
data.

Onenodel for reasoning under uncertainty with partial ob-
sarvability is the partially observable Markov decision process
(POMDP). Tn s paper we present POMDP models based on
the robot programming and planning language Golog [1]. In
pasticular. we extend DTGolog {2]. a Golog dialect. DTGolog
cuiploys a notion of perfect perception; we extent it with a no-
ton of graded belief,

The rest of the paper is organised as follows. In the next
seetion we briefly introduce the sitwation caleulus and present
tae robot programming and planning language DTGolog, be-
fore we formally define POMDPs in Section 3. In Section 4
vie present somie related work. Section 5 introduces the pred-
wate BestDol?O which defines the semantics of the POMDYP
planner in Golog. Section 6 presents a simple example of how
planning under partial observability is conducted. We conclude
with Section 7.

49

2. The Situation Calculus and DTGolog

The situation calculus is a first order logic dialect for reasoning
about dynamical systems based on agent actions. The outcomes
of a bout of reasoning in the situation calculus are meant to have
cffects on the environment outside the agent. When an agent or
robot performs an action, the truth value of certain predicates
may change. Predicates whose value can change due to actions
arc called fluents. Fluents have the situation terin s as the last
argument.

A special function symbol do is defined in the situation
calculus. do(a. s) is the name of the situation (that the agent
is in) given the agent does action « in situation s. Note that
do(az, do(ay, s)) is also a situation term, where as and a; are
actions.

To reason in the situation calculus, one needs to define an
initial knowledge base (KB). The only situation term allowed
in the initial KB is the special initial situation Sy. Sy is the
situation before any action has been done.

There are two more formulas that need our attention:

I. The precondition axioms arc formulas of the form
Poss(u, s), which means action « is possible in situation
s (mPoss(a, s) means it is not possible). Precondition
axioms need to be defined for each action.

2. Successor-state axioms are formulas that define how flu-
ents’ values change due to actions. There needs to be
a successor-state axiom for each fluent, and each such
successor-state axiom mentions only the actions that
have an effect on the particular fluent.

Please refer to [3] for a detailed explication of the situation cal-
culus, including a description of the famous frame problem and
how the basic action theory is a solution to this problem. Alter-
natively, refer to [4] for a one-chapter coverage of the situation
caiculus.

Decision-theoretic Golog (DTGolog) [2] is an extension to
Golog to reason with probabilistic models of uncertain actions.
The formal underlying model is that of fully observable Markov
decision processes (MDPs).

Golog is an agent programming language (APL) developed
by [1]. It is based on the situation calculus. It has most of the
constructs of regular procedural programming languages (iter-
ation, conditionals, etc.). What makes it different from other
programming languages is that it is used to specify and control
actions that are intended to be executed in the real world or a
simulation of the real world. Thatis, Golog’s main variable type
is the action (not the number).

Complex actions can be specilied by combining atomic ac-
tions. The following are all complex actions (where « sub-
scripted s an atomic action and i is a sentence):

e while o co) (iteration of actions);

o 7w (test action);

e i, then gy else ay (conditional actions);

e iianootag (sequence of actions);

e o az (nondeterministic choice of actions);

* wa.{ay) mondeterministic finite choice of arguments—
ol vina);

150(.1, s.5") holds if and only if the complex action A can ter-
nunate legally i " when started in situation s.

The DTGolog algorithm is defined with BestDo predi-
cates. taking on the role of Golog's Do. The DTGolog inter-
preter however. does not simply ‘perform’ the program (com-
plex action) given i, but calculates an optimal policy based
or an optimization theory: the forward search value iteration
alporithm for fully observable MDPs. [1] capture the nonde-
twerministic aspect of MDPs with predicates stochastic, and
prob. prob(i, pos) determines the probability p with which
action 11 is the outcome in some situation s. (In this sec-
ten we deline prob as a function that retirns the probability.)
Letehored (ay == {ny, ..., mi} (derived from stochastic) be
the A actions that nature could "choose’ (the actual action per-
formed) for the sgent’s intended action a. For stochastic action
il

SestDotare b o) =
v Best DoAux(choice'(a), u.rest. s, hy7', o), pr)A
= senscliffect{a), 7" A v = reward(s) + v’
vy is the inout program, with a the first action in the pro-
gram and + the rest of the program; s is the situation term; the
agent designer needs to set the number of steps (actions) i for
which a policy is sought—the planning horizon; 7 returns the
policy; v is the expected reward for executing 7; pr returns
the probability with which the input program will be exccuted
as specified. given the policy and given the effects of the en-
vitonment. senscFffect{a) is a pseudo-action included in the
formalism 1o ensure that the formalism stays in the fully observ-
ab ¢ MDP model. BestlDoAux deals with each of the possible
rechzations of a stochastic action:
BestDoAux({n,, ..., neboaoros, homuopr) =
=Poss{n) A BestDoAux({na, ..
s

Foss(ny,

ErT ‘H/"/‘I)’".\'I‘I)()All,.r;{7)3. .

v pre BestDo(r do(ing, s), h— 1 moe, pri)A

senseClond(r o) A o= if) then 7y else 7 endif A
v

Forany action n, senseCond(n.) supplies a sentence i
thatis placed in tae policy being generated. 2 holds if and only
i the value returned by the sensor can verify that action 7 was
performed.

When either of two actions 4; and 8, can be performed. the
policy associated with the action that produces the greater value
feurrent sum of rewards) is preferred and that action is included
1 the determination of the final policy 7. This formula captures
the idea that is at the heart of the expected value maximization

7 ! ’
cngtoasr s howl o prin

Sorob(ng, e,) A pr = pr’ +pry-prob(ng, a, s).
S r

Sonkbar s homovopr)V

of decision theory:
BestDo([81]62]; 7, s, by w0, pr) =
dm, v, pri.BestDo(dy;r, s, hywo, v, pri) A
dmo, v2, pra. BestDo(da; 7, 8, b, 72, va. pra) A
((01,81) 2 (w2, 8) AT =1 Av =01 Apr=pri)V
((v1,61) < (v2,82) AT =mo Av =y Apr = pra)).

3. POMDP defined
3.1. The model

In partially observable Markov decision processes (POMDPs)
actions have nondeterministic results and observations are un-
certain. In other words, the effect of some chosen action is
somewhat unpredictable, yet may be predicted with a proba-
bility of occurrence. And the world is not directly observable;
some data are observable, and the agent infers how likely it is
that the state of the world is in some specific state. The agent
thus believes to some degree—for each possible state—that it
is in that state, but it is never certain exactly which state it is
in. Furthermore, a POMDP is a decision process and thus fa-
cilitales making decisions as to which actions to take, given its
previous observations and actions.

Formally, a POMDP is a tuple (S, 4, 7, R, Q, O, by) with
the following seven components (see e.g., [5, 6]): (1) S =
{s0,51,...,8,} is a finite set of states of the world; the state at
time ¢ is denoted 5% (2) A = {a1, az.. .., ax} is a finite set of
actions; (3) 7 : S x A — II(S) is the state-transition function,
giving for each world state and agent action, a probability dis-
tribution over world states; (4) R : S x A — R is the reward

Junction, giving the immediate reward that the agent can gain

for any world state and agent action; (5) Q@ = {0y.01,..., Om}
is a finite set of observations the agent can experience of its
world: (6) O : S x A — 11(Q) is the observation function, giv-
ing for each agent action and the resulting world state, a prob-
ability distribution over observations; and (7) by is the initial
probability distribution over all world states in S.

An important function is the function that updates the
agent’s belief: [5] call this function the state estimation func-
tion SE(b,a,0). bis a set of pairs (s, p) where each state s is
associated with a probability p, that is, b is a probability distri-
bution over the set S of all states. b can be called a belief state.
SF is delined as

b)) = O(s',a,0) Poses T{s,a, 800" '(s) o

Pr(ola, b) '

where b(s) is the probability of the agent being in state s’
at time-step ¢. (Action and observation subscripts have been ig-
nored.) Equation (1) is derived from the Bayes Rule. PPr(o|a, b)
in the denominator is a normalizer; it is constant with time. S /5
returns a new belief distribution for every action-observation
pair. S I captures the Markov assumption: a new state of belief
depends only on the immediately previous observation, action
and state of belief.

3.2, Determining a policy

For any set of sequences of actions, the sequence of actions that
results in the highest expected reward is preferred. The optimal-
ity prescription of utility theory states: Maximize “the expected
sum of rewards that [an agent] gets on the next k steps,” [S].
That is, an agent should maximize 7 [Zf;()l 7'& where r; is
the reward received on time-step ¢.

belief state

slip right new

current belief state

belief
state
new

belief state

go right

slip left new

belief state

Figure 11 One tier of a POMDP-decision-tree.

When the states an agent can be in are belief states, we
needd @ reward function over beliet states. We derive Rb(a, b)
from the reward function over world states, such that a reward
15 proportional to the probability of being in a world state:

Bba,b) =" Ria.s) x bs). (2)
=)

Now the aini of using POMDP models is to determine rec-
onmendations of "good” actions or decisions. Such recommen-
danons are called a policy. Formally, a policy () is a function
from a set 73 of all belief states the agent can be in, to a set of
actions: w1 B - 1. That is. actions are conditioned on beliefs.
Sc given b the lirst action «” is recommended by 7. But what
is the next belief state? This depends on the next observation.
Theretore. Yor coch observation associated with o', we need to
convider a diffeient belief state. Hence. the next action. a”,
aciually depends on the observations associated with (immedi-
ately after) a’. In this sense. a policy can be represented as a
policy tree. with nodes being actions and branches being obser-
vilions. The above function is thus transformed to 7 : O — A,
Now once we have a policy, it is independent of the agent’s be-
liets, except its initial belief.

Let V5 (s)-~the value function—be the expected sum of
rewards gained from starting in world state s and executing pol-
iy 7 for £ steps. If we define a value {unction over belief states
as Vb th)y = 37 o Vo(8) x b(s). we can define the optimal
policy 7+ with p.anning horizon h (sct t = h) as

= argmar, (Vs (b)) (3)
tirom the imtial belief state)—the policy that will advise the
ag:nt o perform actions (given any defined observation) such
thit the agent gains maximum rewards (after kb actions).

To implement Equation (3). the authors make use of a deci-
sicn tree (there are other methods). DTGolog uses a similar
aparouch: forward search value iteration. An example sub-
decision-tree (one tier) is shown in Figure 1. This example is
based on an environment and agent model where the agent can
only go left or right and each of its two actions has two possible
rezlizatons in the environment; also, the agent may make two
kinds of observations (Oy and () il it chose to go left, and an-
atker two kinds of observations (5 and Oy) if it chose to go
right

Behef states (triangles) in the decision tree are decision
nodes, that is. at these nodes, the agent can choose an action
{make a decistor). Circles are chance nodes, that is, certain
events oceur, each with a probability (chance) such that any one
event at one chance node will definely happen (probabilities of
brinches leaving a chance node, sum to 1).

In Decision Analysis (sec e.g., [7]), we roll back a decision
tre te “decide’ the action. In any decision tree. for each action-
observation pair, there is a tier of sub-decision-trees. That is,
when considering NV actious in a row, a decision tree with V

tiers would be required. There is a unique path from the initial
decision node to cach leaf node, and at each belief state encoun-
tered on a path, a reward is added, until (and including) the leaf
belief state. At this point, the agent knows the total reward the
agent would get for reaching that final state of belief. Each of
the belief states is reachable with some probability.

At each decision node, a choice is committed to. We itera-
tively roll back—from last decision nodes to first decision node.
The agent can in this way decide at the first decision node, what
action to take. Each subtree rooted at the end of the branches
representing the agent’s potential action, has an associated ex-
pected reward. The action rooted at the subtree with the highest
expected reward, should be chosen.

As the decision tree is rolled back, the best decision/action
is placed into the policy, conditioned on the most recent pos-
sible observations. Using such a policy tree (generated from a
decision tree), the agent can always choose the appropriate ac-
tion given its last observation. This is the essence of the theory
on which our POMDP planner is based.

4. Related work

In the following, we present some related work dealing with
reasoning under unceriainty. As there exists a large body of
work in this field, we concentrate in particular on approaches for
reasoning under uncertainty in the situation calculus and Golog.

[8]’s idea of representing beliefs is simple yet important.
Intuitively, their aim is to represent an agent’s uncertainty by
having a notion of which configuration of situations are cur-
rently possible; the possible worlds framework. Then further,
each possible world is given a likelihood weight. With these
notions in place, they show how an agent can have a belief (a
probability) about any sentence in any defined situation. Their
work does not, however, cover planning,

Reiter {3] describes how to implement MDPs as well as
POMDPs in the situation calculus. He defines the language
stGolog, which stands for ‘stochastic Golog’. Nevertheless, Re-
iter does not provide a method to automatically generate (opti-
mal) policies, given a domain and optimization theory; he only
provides the tools for the designer to program by hand policies
for partially observable decision domains.

Grosskreutz shows how the Golog framework “can be ex-
tended to allow the projection of high-level plans interacting
with noisy low-level processes, based on a probabilistic charac-
terization of the robot’s beliefs,” [9]. He calls his extension to
Golog pGolog. The belief update of a robot’s epistemic state is
also covered by [9]. (PO)MDPs are not employed in pGolog.
Instead, he does probabilistic projection of specific programs.
He does however make use of expected utility to decide be-
tween which of two or three or so programs to execute (after
stmulated scenarios).

In [11], Ferrein and Lakemeyer present the agent pro-
gramming language ReadyLog. Approximately ten years af-
ter Golog’s birth, ReadyLog combines many of the disparate
useful features of the various dialects of Golog into one pack-
age. ReadyLog has been implemented and successfully used in
robotic soccer competitions and a prototype domestic robot.

Whereas DTGolog [2] models MDPs—a useful model in
robotics, as most robots operate in environments where ac-
tions have uncertain outcomes—our new dialect models belief-
MDPs. A belief-MDP is one perspective of POMDPs, where
the states that are being reasoned over are belief states and not
the world states of MDPs. More detail concerning the semantics
of DTGolog is given in Section 2.

. left
initiat
peliet
state
right
BestDoPo BestDoPo BestDoPo
BestDoObserve BestDoObserve

Figure 20 Best Do PO represented as a POMDP-decision-tree.

Very related 1o our approach is the approach of [10]. Finzi
and Lukasiewicz present a game-theoretic version of DTGolog
to operate in partially observable domains. They call this exten-
ston POGTGolog. As far as we know, this is the only Golog di-
alect that can take partially observable problems as input, that is,
that has some kind of POMDP solver for agent action planning.
POGTGolog deals with multiple agents. Our work is different
from theirs, as we concentrate on the single agent case and our
agentis notrestricted to game theory. For developers who prefer
a Golog dialect for agent programming, but desire their robots
oragents o operate with POMDP information, these developers
cant easily modify POGTGolog 1o work with single robots.
Our work is not only a simplification of [10]; rather, we extend
D7 'Golog. and use several elements in POGTGolog—either di-
rectly or for inspiration.

5. Semantics of POMDPs in Golog

hit this section we describe our extension to the original for-
wird scarch value iteration algorithm as proposed in [2]. In
the tollowing. we extend the approach of DTGolog in such a
wiy that it can also deal with partially obscrvable domains. In
pacticular, instead of using 3est Do. we introduce a predicate
Ies1DoP0O to operate on a belief state rather than on a world
stote. BestDoPD{(p. b, h, @, v, pr) takes as arguments a Golog
program p. a belief state h and a horizon h, which determines
the selution depths of the algorithm. The policy 7 as well as
s value v and the success probability pr are returned by the
algorithm.

The relation of BestDol”O 1o a POMDP-decision-tree can
be seen in Figure 2. The stochastic outcomes of actions has been
suppressed for eesc of presentation,

An example of how BestDoPPO may be called initially—
wiih a progrart that allows the agent to choose be-
twen three actions ay, aq. az (without constraints), with
b the inmtial oelief state and with the user or agent
requiring advice for a sequence of scven actions—is
BestDoPO(while true do {ay [az | as]. by, 7,7, v, pr).

3.1, Basic defimtions and concepts

A chet state b contains the elements (s, p): cach element/pair
is it possible (situation calculus) sitvation s together with prob-
abnlity p(as in [10]).

We use the idea of [10] and assume that an action is possi-
ble in a belief state. when it it possible in the situation which is
part of the belief state, that is, PossAct(a, b) iff PossAct(a, s)
(w rename the traditional Poss 1o PossAct). We add the

predicate PossObs(o, a. s) to the action theory, which speci-
fics when an observation o is possible (perceivable) in situation
s, and define PossObs(o, a, b) iff PossObs(o, a, s), which de-
fincs when the observation is possible in belief state b, given
an action a. The reader should clearly distinguish between
preconditions for observations, PossObs(o,a,s) and for ac-
tions, PossAct(a,s). It is important to note that the &' in
PossObs{o, a, b') is the belief state reached after action a was
executed. That is, if @ was executed in b and b’ is the new state
reached, then PossObs(o, a,b’) says whether it is possible to
observe o dfter a has been executed.

Next, we define a function symbol called probNat(n, a, s)
that is similar in meaning to the state transition function T of
a Markov process. Our definition ‘returns’ a probability. It ap-
plies to all of nature’s choices n, where s is the state in which
the agent performs action a. Similarly, we introduce the func-
tion probObs(o, a, s); the probability that o will be observed in
s after a was execulted in the previous situation.

Finally, we define belObs, which is the probability that
the agent will observe some specified observation given its
current beliefs and the sensor it activated: belObs(o, a,b) =
Dot pryen P probObs(o, a, s').

In tfw next section we briefly sketch our solution algorithm
which calculates optimal policies under partial observability.

5.2. The partially observable BestDo

This subsection presents the key formulas in the definition of
BestDoPO.

Considering possible observations after an action, we
branch on all possible observations, given the robot’s intended
action a. choiceObs’(a) ‘returns’ the set of observations that
the robot may perceive: {o|choiceObs(o, a. s) forall s € S}
The reward function R is defined by (Eq. 2).

Probabilistic observation
BestDoPo(a;rest.b, b, m,v,pr) =
~PossAct(a, by Amw=StopAv=0Apr=0V
PossAct(a,b) A
In’,v’. Best DoObserve(choiceObs'{a),
a,rest,b, by’ v pr) A
m=a;7 Av=R(b)+v.

Afler a certain action « and a certain observation oy, the
next belicf state is reached. At the time when the auxiliary pro-
cedure BestDoObserve is called, a specific action, the set of
nature’s choices for that action and a specific observation asso-
cialed with the action are under consideration. These elements
arc sufficient and necessary to update the agent's current beliefs.
[nside Best DoObserve, the belief state (given a certain action
and observation history) is updated via a belief state transition
function (similar in vein to the state estimation function of Sec-
tion 3, and the successor-state axiom for likelihood weights as
given in [8]).

Belicf update function
bu,eu' - BU(O,CL,()) =
for each (s.p) € b
In, st pt(sT,ph) € bremy 81 = do(n, s)A
choiceNat(n, a, s) A PossAct(n, s)A
Pt =p- probObs(o, a,s1) - probNat(n, a,s)
end for each

boew = normalize(bremp).

Four-state world; four states in a row. Ini-
ticlly the agent believes it is in cach state with probabilities
11.01]0.95]0.00[0.01] corresponding to state position,

Figure 3

A major difference between the POMDP model as defined
in Secuon 3 and the POMDP model we define here for the sit-
uzton caleulus, 1s that here the belief state is not a probability
distribution over a fixed set of states. If a situation (state) was
part of the belief state to be updated. it is removed from the new
beliel state, and situations (states) that are ‘accessible’ from the
re noved situaticn via cholceNal(n, a, s) and are executable
Vit PossActin. s), are added to the new belief state. Because
n¢n-cxecutable cetions result in situations being discarded, the
“probability” disribution over all the situations in the new be-
lich state may not sum to 1; the distribution thus needs to be
nermakized.

seiseClond is mentioned in the definition of
st DoObserve: Tt is similar to the the definition in
Scetion 20 only, here it is defined for observations instead of
actions

BestDoPC s recursively called with the remaining pro-
gram and with the horizon h decremented by 1. Also note that
the recursive Best DoPO will now operate with the updated
beliet b, In the ollowing delinition, {04} is a single (remain-
it observation in the set returned by choiceObs’.

Observations possible
SrstDoQbserve({or}, arest. b, hom v opr) =
LDossObstop.a, D) Ar=StopAhe =0Apr =0V
PossObs{oy. a, b) A = BU (o, a, b)A
L BestDoPolrest,V b — 1,7 0, pr' VA

EET
. ‘ /
senseClond{or, gn) AN ro= 7w’ A

=0 belObs(op.a by A pr = pr’ < belObs{ox, a. b).

When the set of observations has more than one observa-
tion w i, the formula definition is slightly different, but similar
to the one above: the first branch of possible observations is
processed, and the other branches in the remainder of the set
are processed recursively.

When the planning horizon has reached zero or when all ac-
tions have been “performed” (no remaining actions in the input
programy), there will be no further recursive calls.

Conditional statement and test action formulas arc similar
to those of Golog. except that the *condition” or ‘test statement’
respectively. are with respect to the agent’s current belief state,
and probabilitics involved in these formulas are influenced in
proportion to the agent’s degree of belief [8] in the respective
statements (see [10] for details). Sequential composition and
conditional iteration are defined as one would expect according
o zomplex actions in Golog.

6. A Simple Example

A very simple example follows o illustrate how BestDolPO
caleulates an opt.mal policy. We use a four-state world as de-
picted in Figure 3. The agent’s initial belief state is by =

{{s1,0.04). (52,0.95), (s3.0.0), (s1,0.01) }. The only actions
available o the agentare fe fr and r1ght. We define the actions’

stochasticity with Vn. a, s.choiceNat(n,a,s) = TRUE,
with associated probabilities:
probNat(left,left, s) = probNat(right,right, s) = 0.9
probNat(right,left,s) = probNat(left, right,s) = 0.1

The probability that any of the actions will cause an obser-
vation of nothing (obsnil) is 1: probObs(obsnil,a,s) = p =
(a =leftVa=right) Ap = 1. The corresponding definition
for choice of observations is choiceObs(obsnil, a, s) = (a =
leftV a = right).

Let the fluent At(loc(z), s) denote the location of the
agent. It's successor-state axiom is defined by

At(loc(z), dofa, s)) =
a=left A(At{loc(x +1),s) Az #1)
V (At(loc(x), s) ANz = 1)V
a = right A (At(loc(x — 1), s) Az #£ 4)
V (At(loc(z), s) Ax = 4)V
At(loc(x), s) A (a # left Aa # right).

For simplicity, we allow all actions and observations all
of the time, that is, Ya,s.PossAct(a,s) = TRUFE and
Va.s.PossObs(a,s) = TRUE.

Finally, we specify the
cale and the reward function,
= ¢ = Outcomels(nil, sensor_value)) with
Outcomel s(obsnil, sensor_value) = TRUE. and
reward(s) = if At(loc(3),s) then 1 else —1; hence,
the agent’s goal should be location 3.

Assume, the agent is equipped with the following program;
an initial input for Best DoPO:

BestDoPO(while (true do lieft | right)),
{(51.0.04), (52,0.95), (3. 0.0), (s4,0.01)}, 1,7, v, pr);

the algorithm must computing a one-step optimal policy.

After the iterative component of the program is processed,
the following call is made, as per the definition of BestDoPO
for the nondeterministic choice of actions:

BestDoPO([left | right];rest, by, 1,7, v, pr)
3m, v, pri.BestDolPO(le fi;rest, bo, 1, 7wy, w1, pridA
3z, v2, pra. Best DoPO(right; rest, bo, 1, w2, va, pra)A
((viyleft) > (va,right) AT =m1 Av =1u1 Apr = pri)V
(videft) < (va,right) AT =ma Av =2 Apr = pra)),
where rest is while (true do [left | right]). Then the
recursive 3estDoPOs make use of the “Probabilistic obser-
vation” definition of the formula. Because-by the action pre-
condition axioms for this example—left and right are always
executable, the following portion (times two) of the formula arc
applicable:

3n’,v'. Best DoObserve(choiceObs’ (left), 4)

sensing condition predi-
senseCond(obsnil, ¥)

left,rest by, 1, m' o', pr) A 5
m=left;n Av=R(by) + ' (6)

and 3n’,v'. Best DoObserve(choiceObs' (right), (7)
right,rest, by, 1, 7', v, pr) A (%)

7 =right;x’ Av = R(by) + v’ 9)

For Lines (4) and (5) the following portion of the “Obser-
vations possible” definition is applicable:

i BU Consnal e [t by) A
s e BestDoPO(rest, V1 — 1w o pr A
senscCondlobsnil. o) A x = @7 w7 A

vt el Dbsobsnil Lo [t bo)A
or = ' belObs(obsnil, left by)

In this formula (portion). @ unifics with
Ounteomel s(obsnil sensor valuc) and because the re-
cursive call to FestDoPO has a zero horizon, 7’ = nil, and
thas = (Outcomel s(obsial sensor value)) 7snil.

The updated belief is an input to a *zero horizon’ call and
will therefore be used to determine v'; we calculate the new
belietl state & = B{/ (obsnil, left, bo) now (we work out only
the first new eleraent of # in detaily:

T =dolleft.s)A pT = 0.04% 1 x0.9,

Uty e b, s
Because al actions are possible, the only effect
that normalizaton (in the update function) has, is to
remove (do(lej't, 3),0.0) and (do(right, $3),0.0) from
the new beliel” state, because of their zero probabilitics.
B35 Cobsnal e £ by) results in
Vo {idotie ft, 51).0.036), (do(right, s1).0.004),
{dolle j1.52),0.855), (do(right, s2),0.095),
{rdo(le [1.54),0.009). (do(right. s1),0.001)}.

e Obstobsnd e ftobo) = (0.04)(1)+(0.95)(1)4-(0.0) (1) +
oebil) = L and henee v = v x 1, and pr =
pe’ v b Due o the “zero horizon® call. v’ = R(b')
111.036) D00 + (~1)(:885) + (1)(.095) +
cLI0009) -+ (=13{(.001) = -0.822 and pr’ = 1.0, Therefore,
0.822, and pro == 1.0.
Now we can instantiate Line (6) as follows: 7 =

fe " Qulcornel s(obsnil, sensor_value))inil Av = -1 +
i 0822 Similarly. we can instantiate Line (9) as w71 =
right: Outconel s{obsnil, sensor_value))? nilAv = —1+
T

Then finally, we find that (- 0.822,1¢ft) <

T2 righty and return the policy w =
right: Qutcomel s(obsni, sensor_value))?; nil, with
total expected reward v = —0.288 and program success
probability pr = 1.

Note that for the sake of clarity. we assumed noise-free per-
ceptions. Tt should be clear though, that our algorithm can deal
wi b noisy perceptions as well.

Considering that the agent believed to a relatively high de-
gree that it was initially just left of the “high-reward’ location,
and given that its observations are complete and its actions are
no extremely errneous, we would expect the agent’s first move
w e rightwards. as indeed. the policy recommends.

7. Discussion and Conclusion

I this paper we have given a formal semantics for an action
planner that can generate control policies for agents in partially
observable domams. The language we used for the specifica-
tio vis the agent programming language DTGolog, Much of the

seraantics is similtar to [10). Their approach is however not for

a s ngle-agent donain.

An exampic was presented that showed in detail the pro-
cesses involved in generating a policy for an agent with proba-
bil stic behiefs in a partially observable and stochastic domain.

w

We implemented the POMDP planner in ECL* PS¢ Pro-
log. The implementation was set up for two toy worlds: a four-
state world where the states are all in a row, and a five-by-five
grid world. In both cases, an agent must find a ‘star’. Prelimi-
nary experiments with the implementation showed the potential
for practical application of the planner presented in this paper:
the results of the experiments showed that the policies generated
are reasonable, and overall, the planner secms to work correctly.
However, benchmarking and comparison to other similar plan-
ners (for problems in similarly stochastic and noisy domains)
still needs to be conducted.

8. References

[1] Levesque, H., Reiter, R., Lespérance, Y., Lin, F., and
Scherl, R., "GOLOG: A Logic programming language for
dynamic domain”, Journal of Logic Programming, 31:59~
84, 1997.

[2] Boutilier, C., Reiter, R., Soutchanski, M., and Thrun, S.,
“Decision-theoretic, high-level agent programming in the
situation calculus”, in Proceedings AAAI-2000, 2000, pp.
355-362.

[3] Reciter, R., Knowledge in action: logical foundations for
specifying and implementing dynamical systems, Mas-
sachusetts/England: MIT Press, 2001.

{41 Brachman, R. J. and Levesque, H. J., Knowledge repre-
sentation and reasoning, California: Morgan Kaufmann,
2004.

{5] Kaelbling, L. P, Littman, M, L., and Cassandra, A. R.,
“Planning and acting in partially observable stochastic do-
mains”, Artificial Intelligence, 101(1-2):99-134, 1998.

[6] Pineau. I, Tractable planning under uncertainty: exploit-
ing structure, Robotics Institute, Carnegie Mellon Univer-
sity, 2004. Unpublished doctoral dissertation.

[7] Clemen, R. T., and Reilly, T., Making hard decisions, Cal-
ifornia: Duxbury, 2001,

[8] Bacchus, F, Halpern, J. Y., and Levesque, H. J., “Reason-
ing about noisy sensors and effectors in the situation cal-
culus”, Artificial Intelligence, 111(1-2):171-208, 1999.

[9] Grosskreutz, H., Towards more realistic logic-based robot
comtrollers in the Golog framework, Knowledge-Based
Systems Group, Rheinisch-Westfilischen Technischen
Hochschule, 2002.

[10] Finzi, A, and Lukasiewicz, T., “Game-theoretic agent pro-
gramming in Golog under partial observability”, in K/
2006: Advances in Artificial Intelligence, 2007, pp. 113—
127.

[11] Ferrein, A. and Lakemeyer G. “Logic-based robot control
in highly dynamic domains.”, Journal of Robotics and Au-
tonomous Systems, Special Issue on Semantic Knowledge
in Robotics 2008. to appear.

[12] Bonet, B. and Geflner, H., “Planning and control in artifi-
cial intelligence: a unifying perspective”, Applied Intelli-

gence, 14(3): 237-252, 2001.

Poole, D., “Planning and acting in partially observable
stochastic domains”, Linkdping Electronic Articles in
Computer and Information Science, 3(8), 1998.

[13]

