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Abstract-Despite advances in recent years, autonomous multi-

robot systems remain classed as complex systems, because 
control and coordination of these systems remain a challenging 
task. Autonomous mobile robot houses heterogeneous sets of 
connected modular devices and are expected to communicate 
both synchronously and asynchronously. Robot complexities 
make the development of components for robot applications non-
trivial and failure prone exercise. In trying to find a solution to 
the problem efficient modular interaction, robot software 
“Middleware” emerged. Middleware is software layer that 
provides an infrastructure for integration of applications and 
data in distributed systems domain.  

This article discusses freely available middleware for robotics 
and their technologies within the field of multi-robot systems to 
ease the difficulty of realizing robot applications. And lastly, an 
example of algorithm development for multi-robot co-operation 
using one of the discussed software architecture is presented. 
 
Keywords – autonomous mobile robot, middleware, reusability, 
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I. INTRODUCTION 

Despite considerable gains in mobile robotics in recent 
years, control and coordination of autonomous multi robot 
system remains a challenge. The difficulty in robotics system 
stems due to the following attributes: (i) Rapid change in 
sensors, actuators and computer technologies lead to increased 
investigation into new robot capabilities, e.g. new sensor and 
actuator systems imply that sophisticated signal processing 
algorithms are possible (ii)Robotic systems are inherently 
distributed, i.e. sensors and actuators are distributed over 
interconnected subsystems, and in multi-robot system the 
distribution scales up , (iii) Components or Processes need to 
interact in an efficient way, (vi) Autonomous robot system 
requires its sensing, action and processing ability to work in 
accord  and (v)  autonomous systems incorporate the use of 
algorithms such SLAM, Obstacle Avoidance, Navigation 
primitives, Vision processing algorithms just to name a few. 
These algorithms are angled towards solving problem faced by 
a robot operating in a physical environment, i.e. a robot 
capable of sophisticated decision-making as single system or 
in a team working to accomplish a task. The time and work 

required to come up with such a robot system is quite 
enormous. A robot programmer needs to be well informed in a 
number of engineering fields. Robotics domain covers various 
fields like signal processing, computer science, Vision, 
Electrical, artificial intelligence. This is not always possible, 
and leads to a scenario where individuals and institutions 
around the world concentrate on specific topic of robot system, 
and present their results and move to the next project.  

 The current trend in robotics research is working to change 
all that by the use of open robotic software/ Middleware.  This 
is connectivity software that consists of a set of enabling 
services that allow multiple modular processes (modules/ 
components) running on board a robot or off board to interact 
across a network [1]. The software is a platform for 
components reuse, i.e. reusability of modules accepted as 
solved problem in robotics e.g. Extended Kalman filters. This 
‘plug and play’ concept will open up new area in robotics 
where new standard need to be met by research. 

Integrating this modules into one system is not an easy 
matter though, because these components are developed 
individually and have different network technologies, but need 
to communicate both asynchronous and synchronously. 
Middleware manages the iteration between robotic modules 
by abstract interfaces and transparent communication 
protocols to processes computing off board.  The software 
allows programmers to concentrate on building sophisticated 
and smarter modular components and incorporate these into 
the system without upsetting the existing modules. This will 
lead to increased robot intelligence or multi robot system able 
to perform complex tasks.  

The rest of the paper is structured as follows. Section II 
covers related work, i.e. looking at other robot software in 
robotic with similar attributes to middleware discussed in 
section III. Section IV discusses the advantages of using robot 
software. Section V discusses the criteria used to choose 
appropriate software. Section VI shows simulation results, 
followed by conclusion and future work in section 7. 
Acknowledgement and reference are in section 8 and 9 
respectively. 

II. RELATED WORK 



TABLE I 

ROBOT SOFTWARE CLASS 

 Middleware  Discussed 

Player √ 

Orca √ 

Miro √ 

OpenRDK × 

Marie √ 

Smartsoft × 

 

Orocos √ 
Control architecture  

 

 

 ADE × 

 MCA × 

 ADE × 

Development 

Toolkit 

  

TCA (IPC & TDL)  

× 

CARMEN √ 

 

YARP √ 

There are many robotic middleware, control architectures 
and development tool kits in use toady. Table I above shows 
freely available robotic software and classes them according to 
their distinct categories. The ticks indicate that software is 
briefly discussed in this article.  

We are looking at open robotic middleware capable of 
implementing multi mobile robot system. This constraint 
eliminates Orocos middleware [2]. The Orocos project was 
developed specifically for industrial robots as platform for 
building modular framework for robots and machine control. 
The middleware is organized in to four libraries- i. the real-
time toolkit (RTT), ii. Kinematic and Dynamics library (KDL), 
iii. The Bayesian Filtering library (BFL), iv. Orocos 
Component library (OCL). These libraries are implemented in 
C++.  

Another important toolkit is CARMEN [3], it is one of the 
most extensively used software in robotic research. It offers 
distributed collection of modules organized as three layered 
architecture. The hardware management layer/ base layer 
govern components interaction and control as well as 
presenting abstract interfaces to base and sensor systems. 
Navigation primitives are handled by the Navigation layer 
while the top layer is for high level task implementation. 
Modules communicate with each other over IPC (Inter-
process communication) protocol. This tool did not make the 
cut because it tailored for single robot systems. 

Humanoid robot uses YARP (Yet Another Robot Platform), 
is a multi-platform open-source framework that supports 
distributed computation. The main design focus is on robot 
control and efficiency [4]. It provides a set of protocols and a 
C++ implementation for inter-process communication on a 
local network. 

III.  WHY OPEN MIDLEWARE? 

Developing a middleware from scratch is an enormous task, 
because of the level of expertise required to come up with a 
flexible robotic software system. Therefore, a sensible 
alternative is to adopt one of the already existing open 
middleware for building robot applications. Making choice of 
which to use can be influenced by a number of factors. And 
these include things like robot software and existing hardware 
compatibility issues. Which languages are supported? What 
communication mechanism(s) are used? Are existing sensors 
and actuators supported? Is the software extendable? Ease of 
use, how easy is it to use and understand? Is real time 
implementation possible? What types of modules can be 
implemented using the middleware? etc. 

Robot systems are too complex for one person to build and 
maintain software and hardware, therefore modules or 
components need to be modular. Modularity in robotics 
describes the loose tightness of coupling between components, 
and hence has the following advantages  

• Extensibility- Addition of newly developed or 
modification of components need not interfere with 
the existing processes.  

• Reliability- self contained components fail safe - if 
one module fail the rest of the system is spared. 

• Network support- Some system need high 
computational power to process a task, therefore a 
more logical thing is to distribute the load using off 
board computers, i.e. distributed computing. 

• Maintainability – components are easy to improve 
because the changes do not affect the rest of the 
system. 

IV. OPEN ROBOTIC FRAMEWORKS  

A. Miro 

 
Figure 1. Miro architecture. 

 



Miro [5] is an open, object-oriented robotic framework 
consisting of three layers as shown in figure 1 above. It has an 
underlying middleware called CORBA. CORBA standards 
allow for inter-process and cross-platform communication, 
thereby facilitating for distributed control architectures.  

CORBA [11] has two main layers: ACE (Adaptive 
Communication Environment) and TAO (The ACE ORB). 
The ACE layer is linked to Miro Device layer to provide 
abstract interfaces to specific sensors and actuators of a robot. 
While the TAO CORBA and Miro Service Layer combination 
provides service abstraction to hardware devices via CORBA 
IDL (Interface Description Language).  The third layer is the 
Class Framework which houses numerous robot control 
functional modules like mapping, localizer, Planner, and 
logging. All core functionalities are coded in C++ and hence 
achieve high runtime efficiency.  
B. Marie 

Marie [12] is a framework for integrating existing robotic 
components. The software offer decentralized integration 
management, and advocates for the ideas of code reuse of 
components from other developers, as well as integrating 
locally developed applications. 
In order to handle distinct components developed 
independently, Marie follows a three layers abstraction 
approach.  
• Core layer- consists of tools for communications, data 

handling, and OS related issues 
• Component layer – It is also a management layer and 

built on top of the Core layer, consists of frameworks 
used to implement new components. 

• Application layer –Is made up of necessary interaction 
tools to build applications using available components. 

Marie architecturally adopts Mediator Design Pattern (MDP) 
depicted by figure 2 below. This is a centralized control unit 
which handles the arbitration between applications and 
interacts with these modules on direct basis. Communication 
protocols/ data management is decouples form components 
functionalities, implying that specialized components can be 
design irrespective of how data is sent or received.   

 

Figure. 2. Mediator design pattern for distributed system 

C. Orca 
Orca [8] is an open source framework (not architecture) for 

developing components based robotic systems. Components 
here are stand-alone process interacting with other 
components using clearly-defined interfaces. The framework 
does not impose any architectural constraints on the robot 
system. Orca is now on the second generation, called Orca 2 
and is hosted by SourceForge [9]. The difference with the 
earlier version is the communication middleware. The first 
version used several transport mechanism like CORBA and 
some custom made communication libraries. These were 
ditched due to CORBA middleware complexity and some 
limitations presented by custom transport mechanism. The 
current version uses Ice (Internet Communication Engine) 
[10], [11]. It is a contract-based middleware similar in many 
respects to CORBA middleware. CORBA uses IDL for 
Interface implementation, while Ice relies on a similar 
specification language called Slice. The language is used to 
define communication contracts (interfaces) between 
components at runtime, i.e. an explicit description of services 
to be provided by other components to others. Ice components 
can communicate with each other regardless of the language 
of implementation. Supported languages include PHP, C++, 
Python, Java, C# etc.  

D. Player 

Player project [12], [13] is an open source software project 
tailored for robotic research. It provides an infrastructure for 
distributed access to a number of popular robotic hardware 
devices. Player run on many UNIX-like platforms, and is 
released as Free Software under the GNU General Public 
License. The software is implemented in C++ and uses POSIX 
threads or pthread interface for multi-threading.  

 

 

Figure 3. Player device server 



Figure 3 above depicts the internal structure of player. 
When a client wishes to access a specific device, a command 
is sent to the command buffer. The command ‘sit’ waiting for 
the driver to read it form command buffer before a target 
device can be manipulated. In a similar vein, data from a 
device is written to a data buffer, where it waits for read 
command from a client thread. The client can run on an 
onboard computer or any computer that has network 
connectivity to the robot running player, i.e. distributed 
computing. Drivers have their own thread of execution and 
associated command and data buffer to channel information. 

Player supports two kinds of communication mechanism, 
which are client- server communication and Device-Device 
communication. Inter-device communication is possible 
within a player server or between servers by pass-through 
device. Inter-client communication is possible but it is left to 
the programmer to figure it out. 

V. CHOOSING  A SUITABLE MIDDLEWARE  

The choice of middleware to use in our robot system was 
influenced by factors mentioned in section 3. Considering this 
issues, Miro, Orca and Player jumps out of the list as one of 
the possible software to consider.  Selecting which software 
best suit our need, we needed to look at the robot platforms 
already in our lab. We have a couple of ER1 robots [14] from 
Evolution robotics, Robotino robot [15] from Festo, and about 
two in house developed robots.  Given these robot platforms, 
Player make a sensible choice because it is portable to both 
ER1 and Robotino robots, reducing the time needed to port the 
software.  

Table 2 below shows a comparison between open robotic 
middleware discussed in this article.  

TABLE II 

SUMMARY OF OPEN ROBOTIC FRAMEWORKS 

Middle-

ware 

Arbitration 

Model 

Components 

information  

sharing 

Additional 

Tools 

Player Threads, 

process 

Client/ 

server 

Logging, 

Remote 

inspection 

Orocos Call backs, 

threads 

CORBA Stage & 

Gazebo 

simulators 

Carmen Processes IPC Visualization, 

logging 

Marie Processes Handles 

many 

configuration 

GUI  

Orca Processes ICE Logging, 

remote 

inspection 

Miro Processes CORBA Logging 

Yarp Processes, 

Threads 

Client, server logging 

As shown the table Miro uses CORBA for transport 
mechanism while Player and Orca rely on client/server and 
ICE model respectively. 

CORBA is one of the most widely used communication 
software in robotics because it offers flexible inter-module and 
inter-robot communication. The main drawback with CORBA 
is that it is large and complex software. The complexity 
associated with this communication middleware violates one 
of the criteria mentioned in section 3 which is ease of use.  
Though, CORBA and Miro middleware combination seems to 
form a very stable system.   

ICE is a modern implementation software similar many 
respects to CORBA. The difference being that ICE is a much 
smaller and has consistent API. Communication tasks in ICE 
are managed by a core library using a protocol that has options 
for compressing messages. Compressed data stream offer fast 
data transmission than uncompressed one. Furthermore there 
is also support for UDP (User Datagram Protocol) and TCP 
(Transmission Control Protocol). ICE can be implemented in a 
number of operating system flavors namely Linux, Windows, 
and MacOS X.  

Player on the other hand uses client/server communication 
model. In this model, threads communicate through shared 
memory space. The space organized such that each device has 
a specific command and a data buffer. These buffers present 
an infrastructure for asynchronous communication channel 
between the read/write client threads and the device threads 
(drivers). When a client wishes to control a device through 
player, the following sequence is followed; first client reader 
thread receives a command from a client, then it writes the 
command into the command buffer for that specific device. 
The command will ‘sit’ in the command buffer until a device 
thread is ready to receive new command. The driver then 
reads the command from the command buffer and passes it to 
the target device. Data from devices follows a similar process 
but in this instant a device thread writes it into data buffer in 
the shared Global address space.  This data is sent to clients by 
default at 10Hz but a programmer can changes the setting to 
meet the demands of clients. 

Players’ applications information sharing is not optimal 
because of the ‘sitting’ of data/ command in the buffers. The 
server also does not implement device logging mechanism, 
implying that multiple clients can concurrently write 
commands to a single command buffer. Since there is no 
queuing of commands, each time a device thread is ready to 
read it ‘picks’ what it finds in the command buffer irrespective 
of whether its old or new command. This presents a 
disadvantage since there is no guarantee that a command will 
reach target device since new command overwrites old 
command.  

Looking at the concurrency models of the three frameworks 
one can conclude that ICE offers a better inter-module or 
inter-robot communication protocol. Orca though, has few 
readily developed robotic components and hardware and 
sensor support. Due to this lack, Orca is not selected. Player 



then takes the nod because it supports a wide variety of 
sensors, actuators and robot platforms available in the market 
today. It is actively developed by both the public and 
developers, creating a good platform for components reuse. 
Player project in addition has got two simulation tools called 
Stage and Gazebo which are 2D and 3D environments 
respectively.  

VI.  PLAYER/ STAGE SIMMULATION RESULTS 

The paper present simulation results of an ongoing project 
in multi-robot system. In the project a handful of robots 
explore the environment for hidden target. Control of robots in 
the system is achieved through the use of perception-action 
units, or behaviors. Each behavior is activated depending on 
feedback information from carefully selected sensor readings 
or message from a team member. Behaviors such as 
ObstacleAvoidance, GoalsearchMode, GoalFoundMode, 
TargetHomingMode, Mapbuilding, CommunicationMode, 
pathplanning, and Pathfollowing are used. GoalsearchMode 
mode has two other sub modes, Initializer and Gobbler. 
Initializer mode requires all robots in a team to giveaway their 
position and communication channel to other robots in the 
environment. Gobbler mode is used when robots are initially 
close knit, and it causes robots to spread quickly way from 
each other before normal search begins.  
Figure 4 below shows three robots exploring and environment 
in a search mode. The robots in the simulation are able to 
locate a target (green square) but other behaviors such as 
communication and map building are not yet optimal. The 
path taken by a robot when TargetHomingMode is entered is 
currently implemented in MATLAB. A point of interest is 
tracked using a camera keeping it in view all the time. Range 
and bearing to the goal are evaluated and appropriate speeds 
are calculated to enable the robot stop at target position. The 
speed is proportional to range and it reduces as is goal is 
reached. Figure 5 shows a trajectory followed by a robot from 
an initial position to a target position.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Three robots in GoalsearchMode 

 

Figure 5. Trajectory following 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 shows bearing angle to the goal 

 
Figure 6 above shows how the bearing to the target changes 

as the robot moves towards a goal position. Initially bearing is 
around 0.68 radians but as the robot moves parallel to the 
target for a few seconds it sharply increases to above 0.9 
radians. Then the robot start turning towards the goal position 
indicated in the figure by decline in bearing which eventually 
settles to zero, when robot and target are aligned.  
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VII.  CONCLUSION &  FUTURE WORK 

The paper briefly described a number of open source 
robotic framework comparing their concurrency model and 
their information sharing methods. ICE middleware seem 
attractive for implementing interfaces for components but 
Orca system supports a few sensory and actuatory devices. 
This constraint means time lost in actually building new 
components for robots used, than actually coding algorithms 
for robot application.  Player uses client server model to 
access and control a number of popular robot bases. Its main 
drawback is the latency issues because commands ‘sit’ in their 
respective buffers waiting to be read. Having said that though, 
Player is easy to use and the client side can be implemented in 
any language with socket support.  

The project was undertaken with no prior knowledge of 
how player work, hence some modules are still lagging behind 
in terms of implementation. The next step is to get modules 
mentioned in section four to function together by sharing the 
right information to accomplish the cooperative search task. 
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