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Abstract
Knowledge of a network’s entities and the physical connections between them,

a network’s physical topology, can be useful in a variety of network scenarios

and applications. Administrators can use topology information for fault-

finding, inventorying and network planning. Topology information can also

be used during protocol and routing algorithm development, for performance

prediction and as a basis for accurate network simulations.

Specifically, from a network security perspective, threat detection, network

monitoring, network access control and forensic investigations can benefit

from accurate network topology information.

The dynamic nature of large networks has led to the development of various

automatic topology discovery techniques, but these techniques have mainly

focused on cooperative network environments where network elements can

be queried for topology related information.

The primary objective of this study is to develop techniques for discovering

the physical topology of an Ethernet network without the assistance of the

network’s elements.

This dissertation describes the experiments performed and the techniques

developed in order to identify network nodes and the connections between

these nodes. The product of the investigation was the formulation of an

algorithm and heuristic that, in combination with measurement techniques,

can be used for inferring the physical topology of a target network.
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Chapter 1

Overview and Objectives

1.1 Introduction

The word topology is derived from the Greek words topos meaning location

or place and logos meaning study [1, 2]. In computer networking terms this

study of location refers to the layout of and relationships between elements

of a network. Topology discovery refers to the process whereby the topology

information is extracted from the network. In particular, physical or link

layer topology discovery concerns itself with finding the physical connections

between network elements.

Topology discovery is also related to the act of mapping, as was performed

by the cartographers of old. In this sense, as Dodge and Kitchin remark:

“Mapping is a process of creating, rather than revealing, knowledge, as a

result, decisions are made about what to include and what to exclude, how

the map will look, and what the map wants to communicate.” [3, p. 75]

Network topology information can be valuable in a variety of situations, it

can be used for network administration (including fault-finding [4, 5], inven-

torying and planning [6, 7, 5]), protocol and routing algorithm development

[8], performance prediction [9] and monitoring as well as accurate network

simulation [10]. From a network security perspective, topology information
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can find application in threat detection [11], network monitoring [12], net-

work access control [13] and forensic investigations [14, 15].

Manual network mapping is becoming increasingly difficult [16] (if not im-

possible [17]) due to the size and dynamic behaviour of networks. Automatic

topology discovery tools [5] and algorithms will therefore play an important

role [18] in network security, management and administration.

Research efforts concerned with physical topology discovery have focused

mainly on cooperative network environments [4] where it is assumed that

network elements are intelligent and can be queried for topology related

information.

1.2 Problem Statement

The purpose of the work presented in this dissertation is to discover the

physical topology, that is the physical connections between elements, of an

Ethernet network. Furthermore, the topology discovery is attempted in an

uncooperative network environment where the existence of intelligent net-

work elements and administrative access to these elements are not assumed.

Figure 1.1 shows that the focus of network discovery can be placed on either

the connections between nodes of the network, or the node specific charac-

teristics. Our efforts are directed towards the topology of the network and

only consider node specifics to a limited extent.

1.3 Methodology

A literature survey was conducted at the outset of our investigation to iden-

tify research areas that have not received a lot of attention. A study of the

relevant network concepts, that were needed during our investigation into

topology discovery, was also performed.

The bulk of the work presented in this dissertation is the product of empirical

experiments conducted on real-world Ethernet networks. The experiments

 
 
 



University of Pretoria etd - Delport, J P (2007)

1.4. Overview 3

Figure 1.1: Network Discovery Aspects.

presented a hands-on environment for studying topology discovery techniques

as well as a test bed for ideas.

The experiments conducted during the research proved extremely useful, but

could not answer all of our questions. Computer simulations were employed

to quantify experimental findings and to support the conceptual models and

algorithms that were developed.

1.4 Overview

Background related to our research is presented in Chapters 2 and 3. Chap-

ter 2 briefly discusses networking concepts and scanning techniques that are

relevant in the context of our experiments, while Chapter 3 presents related

research in the field of network topology discovery.

The following four chapters (Chapters 4 to 7) present results and discussions

of our investigations.

Chapter 4 concentrates on identifying unique elements present in an Ether-

net network without attempting to discover the connections between these
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elements. Elements at the edge of the network as well as elements internal

to the network are considered.

Internal Ethernet network element behaviour is explored in more detail in

Chapter 5, where an attempt is made to discover the presence of these ele-

ments.

The knowledge gained and techniques developed during the investigations in

Chapters 4 and 5 are combined in Chapter 6 to create an algorithm that can

be used to infer the physical topology of a target network.

An extensive set of experiments to exercise the topology discovery algorithm

presented in Chapter 6 proved impractical. Chapter 7 presents and discusses

computer simulations that were performed to determine the accuracy of the

algorithm.

Finally, Chapter 8 concludes the dissertation by reflecting on the work per-

formed and discussing possible future research work.
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Chapter 2

Background and Context

2.1 Introduction and Overview

This chapter introduces background topics relevant to both the related re-

search and the experiments presented in later chapters. The discussions are

not meant to be a thorough reference guide, but aim to set the context for

the work presented later.

Our work is aimed at a specific network layer and Section 2.2 presents the lay-

ered network design concept. Section 2.3 introduces network protocols, while

Section 2.4 focuses mainly on Ethernet concepts relevant to our work. Sec-

tion 2.5 compares active and passive network information gathering methods

and finally Section 2.6 concludes the chapter.

2.2 Layered Network Design

Networking protocols are normally designed using a layered approach [19,

p. 1]. The set of protocols and layers are also commonly referred to as a

network protocol stack [20, p. 20]. The layered design approach provides

three advantages according to Keshav [21, p. 70]:
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1. The complex networking problem is broken up into smaller, more man-

ageable, pieces. Each layer focuses on a different aspect of communi-

cation and in this way complex services can be provided by combining

simpler ones.

2. Implementation and specification are separated. The implementation

details of a specific layer are abstracted and hidden from the other

layers. This allows the implementation of a specific layer to change

without influencing the other layers.

3. Functionality can be reused. Once a specific function is implemented

in a network layer, all the layers above it can benefit from and use the

functionality.

The layered design also has disadvantages. In the same way that computer

ease of use and security present an engineering trade-off [22, p. 10], network

design simplicity and security present a trade-off. Initially networks protocols

were not designed with security in mind [23, p. 368]. When security is

compromised at a specific network layer, the layers above it will be completely

unaware of the problem [24, 25]. A lower network layer can therefore become

the weakest link in the security chain [26].

The most common model for reasoning about network layers is the Open Sys-

tems Interconnection (OSI) reference model1 developed by the International

Organisation for Standardisation (ISO) [23, p. 82]. The OSI model consists

of 7 layers with the physical layer being the lowest and the application layer

being the highest. A representation of the OSI model is shown in Figure 2.1.

In a logical sense, every network layer on one system communicates directly

with the corresponding layer on another system; however, in practise, data

passes from layer to layer on a single system and is transmitted only over the

physical medium connecting the two systems [27, p. 35].

The context of the research and experiments presented in this dissertation

requires consideration of only the first three layers of the OSI model. The

functions of the first three layers are briefly summarised below:

1ISO 7498
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Figure 2.1: The Open Systems Interconnection (OSI) reference model.

The physical layer provides an abstraction of bit transmission between two

systems connected to a single physical link and hides the details of the link

technology used by the physical hardware in the system [21, p. 74]. The data

link layer allows the transmission of an aggregation of bits (commonly called

a frame [23, p. 104]) from one point on a physical link to another [27, p.

339]. In order to reliably deliver frames on a shared medium the layer also

typically controls access to the medium, provides a means to uniquely address

systems sharing the medium and optionally offers error and flow control [27,

p. 176]. The data link layer is normally closely tied to the specific physical

layer (and also the physical medium) used for communication [21, p. 75].

The network layer has the main function of moving (also called routing)

data packets between two systems [27, p. 339] on the network. To this end

it needs to utilise one or more physical links and it must be able to uniquely

identify end systems in the wider network [21, p. 76].

The OSI model is a reference model in the sense that it provides abstract

guidelines for constructing a network protocol stack. The model does not

provide a specific implementation of the layers and concepts, but allows a

multitude of network stacks to be developed [23, p. 83]. For our research
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and experiments we are specifically interested in Ethernet as the physical net-

work that carries Internet Transmission Control Protocol/Internet Protocol

(TCP/IP) traffic. In this network scenario, Ethernet provides the physical

medium and implements the physical and data link layers, while IP2 operates

at the network layer.

The layers of the OSI model can also be visualised hierarchically. From this

perspective, data from higher layers are seen as encapsulated3 within the

structures provided by the lower layers [23, p. 95]. Figure 2.2 illustrates

the idea of encapsulation. The IP packet (layer 3) with all its related data

is encapsulated within an Ethernet frame (layer 2). The data link layer

mechanisms employed to deliver the Ethernet frames require no knowledge

of the data encapsulated within the frame.

Figure 2.2: Network Layer Encapsulation (IP Packet Inside Ethernet Frame).

The brief network layer discussion showed that a system has an address

at both the data link and network layers. In particular, delivery of data

at the data link layer depends on a correct data link layer target address.

The mechanism for converting a network layer address into a data link layer

address is the focus of Section 2.3.1.

2In particular, we focus on Internet Protocol version 4 (IPv4).
3An analogy that is often used is that of placing a letter (higher layer data) into an

envelope (the lower layer structure).
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2.3 Relevant Protocols

2.3.1 Address Resolution Protocol (ARP)

The process whereby network layer addresses are resolved into data link layer

addresses is known as address resolution [23, p. 212]. As mentioned earlier,

we are primarily concerned with IP network layer addresses and Ethernet

data link layer addresses. The TCP/IP Address Resolution Protocol (ARP),

as described in the Internet Request For Comments (RFC) 826, [28]4 was

specifically devised for tackling the problem of converting IPv4 network ad-

dresses into Ethernet hardware addresses.

Figure 2.3 shows the fields and layout of an ARP packet.

Figure 2.3: Address Resolution Protocol (ARP) Packet Fields and Layout.

4It is interesting to note that even the title of the RFC (“An Ethernet Address Resolu-
tion Protocol”) mentions Ethernet, even though the protocol can be used for translation
of various types of network and data link layer addresses.
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Details of the specific fields, as used during IPv4 to Ethernet address trans-

lation, are provided below. The field names are taken from the RFC [28].

The hardware and protocol types are stored in the hardware address space

(hrd) and protocol address space (pro) fields respectively. Examples for

hardware types are Ethernet (with a value of 1 or 6) and Fibre Channel (with

a value of 18). For Ethernet, the protocol type matches the Ethernet type

field [29, p. 40] in the Ethernet frame. For the Internet Protocol (IPv4) a

value of 0x0800 is used.

The hardware address byte length (hln) and protocol address byte

length (pln) fields contain values of 6 and 4 for Ethernet and IPv4 addresses

respectively. Ethernet addresses have a length of 48 bits (6 bytes) and IPv4

addresses have a length of 32 bits (4 bytes).

The opcode (op) field indicates the type of ARP message. A 1 indicates

an ARP request and a 2 indicates an ARP reply message.

Ethernet and IPv4 addresses of the ARP packet sender are stored in the

source hardware address (sha) and source protocol address (spa)

respectively.

The target hardware address (tha) and target protocol address (tpa)

contain the Ethernet and IPv4 addresses of the ARP target.

The total size of the ARP payload in the case of IPv4 to Ethernet address

translation is 28 bytes [23, p. 218].

In its simplest form, the ARP is a simple request and reply process5. A

system (source) on the network wants to send an IP packet to another system

(target). The source system knows the IP address of the destination, but not

its hardware address. The source system fills the fields of an ARP request

packet6 and broadcasts it to the local network. Systems on the local network

receive the ARP packet and examine it to determine if it is their own IP

address mentioned in the target protocol address (tpa). If it is, the target

5This simple description of the ARP protocol, even though completely valid, omits
much of the practical implementation details; however, it is sufficient for setting the context
for the use of ARP packets in the dissertation.

6All but the target hardware address.
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system enters its own hardware address into the packet, swaps the source

and target addresses in the packet, sets the opcode to reply and sends the

packet back to the original sender. The original sender receives the ARP

reply packet and can then use the hardware address contained therein.

The ARP protocol was designed to be efficient at a point in time when

everyone on a network was reasonably trustworthy [30]. This implicit trust

between the source and target nodes allows malicious use of the protocol [25],

but our research does not depend on any of the protocol’s vulnerabilities.

2.3.2 Simple Network Management Protocol (SNMP)

The Simple Network Management Protocol (SNMP) is not directly used in

our research, but is often employed in related work. An extremely simplified

overview is provided.

SNMP provides a systematic way of monitoring and managing a computer

network [27, p. 630] and is part of the Internet protocol suite [19, p. 359].

Network management is performed by network management stations

that communicate with network elements [19] (also called managed de-

vices [23, p. 1072]).

The managed devices contain software (called an agent [23, p. 1073])

for communicating with the network management stations and a virtual

information store [31] called a Management Information Base (MIB).

The MIB defines the types of information stored about the managed de-

vice that can be queried by the network management stations [19, p.

359] and defines variables that can be used by the network management

stations to control the managed device [23, p. 1073].

2.4 Relevant Ethernet Concepts

Ethernet was conceptualised at the Xerox Palo Alto Research Center [32] in

1973 [33, 34]. One of the inventors, Robert Metcalfe, was inducted into the
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Inventors Hall of Fame7 in 2007 [35]. Ethernet has seen explosive growth

[21, p. 42] into a truly ubiquitous [35] Local Area Networking (LAN) tech-

nology. It was estimated that 85 percent of the world’s personal computers

and workstations used Ethernet as a connection standard in the year 2000

[36, p. 7-1].

A draft Ethernet standard was approved by the Institute of Electrical and

Electronics Engineers (IEEE) 802.3 working group in 1983 after which an

official Ethernet standard was published in 1985 (ANSI/IEEE Std. 802.3-

1985) [36, p. 7-2]. The term Ethernet as used in this dissertation refers to

the 802.3 standard (especially the 2002 incarnation of the standard [29, 37]).

It is impossible to provide a detailed description of Ethernet in this section,

but concepts and details relevant to further discussions and experiments are

presented.

2.4.1 Data Link Sublayers

The Ethernet standard splits the data link layer (as defined in Section 2.2)

into two sublayers: The Logical Link Control (LLC) sublayer8 forms the

upper part and the Medium Access Control (MAC) layer9 forms the lower

part.

Typical functions of the LLC layer include the ability to retransmit corrupted

data (error control) and to pace the rate at which data is sent (flow control)

[21, p. 75].

The MAC sublayer concerns itself with the mechanisms used to allow multiple

stations to access and use a shared communication medium. The problem

of sharing a medium between multiple stations is called the multiple-access

problem [21, p. 117].

7The Hall of Fame has 331 members that include the likes of Alexander Graham Bell
and the Wright brothers [35].

8IEEE standard 802.2.
9IEEE standard 802.3 in our case.
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2.4.2 Hardware Addresses

Ethernet stations on a LAN are uniquely identified using a 48-bit address.

The address is directly used by the MAC sublayer and is therefore also re-

ferred to as the MAC address. The addresses are normally split up into 8

bytes10 represented as hexadecimal numbers for presentation or discussion,

for example 00:15:F2:1F:4D:3A.

A unique address used for sending data to a single destination is called a

unicast address. Ethernet addresses also exist for sending data to multiple

stations at once and are called multicast addresses. A special address, with

all the bits in the address set to one (FF:FF:FF:FF:FF:FF), is used to send

data to all the stations connected to the Ethernet LAN and is called the

broadcast address.

The first 24 bits of a MAC address are assigned to companies or vendors by

a registration authority. In the case of Ethernet the registration authority

is the IEEE [29]. This globally unique number is referred to as the Organi-

sationally Unique Identifier (OUI). Vendors combine the OUI with another

24-bit number to form unique device addresses.

2.4.3 Frame Layout

The 802.3 MAC frame structure is shown in Figure 2.4.

Figure 2.4: Ethernet 802.3 Medium Access Control (MAC) Frame Layout.

The fields of the frame, as defined in the standard [37], are briefly discussed

below:

The preamble and start of frame delimiter help with the framing and

synchronisation when two stations communicate. These values are defined

by the standard and cannot be altered by the user through software.

10The standard refers to bytes as octets to clearly show that they consist of 8 bits.
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Destination and source addresses are MAC addresses as defined in Sec-

tion 2.4.2. The destination address might contain a unicast, multicast or

broadcast address.

The length or type field allows two types of frames to co-exist on the same

network. When the value is 1500 or less it indicates the length of the data

field. If the value is larger than 1536 (hexadecimal 0x0600) it indicates

that a specific type of frame is present, for example this field contains the

hexadecimal value 0x0806 for an ARP packet.

Actual data for higher level protocols are contained in the data field. The

data field can contain a maximum of 1500 bytes. The pad field is optional

and is used to make sure that the Ethernet frame has a minimum size of 64

bytes (counting from the destination address to the frame check sequence).

This field can therefore have a length from 0 to 46 bytes. A minimum length

is required for proper collision detection and is explained in the following

section.

The Frame Check Sequence (FCS) is a 32-bit Cyclic Redundancy Check

(CRC) value calculated over the byte range from the destination address to

the pad field. The FCS value is used for error detection.

2.4.4 Duplex Modes

The Ethernet 802.3 standard [37] makes provision for both half duplex and

full duplex modes of operation.

Half Duplex

In half duplex mode two or more stations share a common communica-

tion medium and the Carrier Sense Multiple Access with Collision Detection

(CSMA/CD) medium access control method is used to make sure that only a

single station transmits on the medium at any one time [36, p. 7-8]. Any ac-

tive station in half duplex mode can either be busy transmitting or receiving

data, but cannot perform both functions at the same time [23, p. 42].
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Carrier sense means that stations connected to the shared medium can

sense when the medium is being used. Stations can therefore defer their own

transmission until they sense that the medium is available.

Even though stations can detect availability of the medium it does not auto-

matically guarantee that two or more stations will not start transmitting at

the same time. Collision detection refers to the ability of Ethernet stations

to detect simultaneous use of the medium. In order for a station to detect a

collision, a message from another transmitting station must have propagated

along the wire towards it. An engineering trade-off therefore has to be made

between the minimum frame size11 and the maximum cable length12 allowed

for an Ethernet network.

The following example [27, p. 282], graphically shown in Figure 2.5, illustrates

the trade-off problem. Consider two Ethernet stations (A and B) placed at

the maximum allowable distance from each other. Assume that the time it

takes for a bit sent from A to reach B is equal to τ . Station A starts to

transmit a packet at time 0 (a). Just before the frame reaches the other end

of the cable (τ − ε), station B starts to transmit (b). Station B detects the

collision and sends a 48-bit noise burst to the network (c). The noise burst

only reaches A after time 2τ (d). The minimum frame size therefore has to be

large enough so that station A receives the noise burst before it has finished its

own transmission. The minimum frame size allowed for an Ethernet network

operating at 100 megabits per second (Mbps) over Unshielded Twisted Pair

(UTP) cables is 64 bytes and the maximum cable length allowed is 100m.

After two stations have determined that a collision has occurred, they have to

wait before retrying the transmission. If the stations wait the same amount

of time, a collision will occur again, and to avoid this situation Ethernet

employs a binary exponential backoff algorithm [21, p. 280]. Details of

the algorithm are not important for our investigation.

11The frame size directly translates into time on the wire when considering the bit rate
at which the network operates.

12The cable length determines the time a frame spends on the wire when considering
the electrical propagation delay.
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Figure 2.5: Example Ethernet Collision on a Shared Medium.

Full Duplex

In full duplex mode two stations can communicate simultaneously (both can

transmit and receive at the same time). Full duplex mode requires a point-

to-point dedicated channel [36, p. 7-10]. Since there is no contention for

using the medium there is no need for the CSMA/CD medium access control

method.

A dedicated channel is achieved by connecting stations to a switch or bridge

where each port on the switch effectively forms a dedicated LAN with the

station connected to that port.

2.4.5 Hubs and Switches

A hub, also called a repeater [37], connects multiple stations together to form

a larger shared medium. Hubs are often used to connect stations into a star

type network. A hub essentially electrically mirrors traffic received on one of

its ports onto all of its output ports [38, p. 77].

Switches, also called bridges, perform the same function as hubs, but are

more intelligent. They normally consist of a processor and some memory

[38, p. 77]. A switch performs some analysis of Ethernet frames received on

its ports. MAC addresses of stations connected to each port is placed into

a list and when a frame arrives it can be routed directly to the appropriate
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port or ports. In order to analyse an Ethernet frame and decide onto which

port to output the frame, the switch has to receive at least part and in many

cases the whole frame [39, p. 166]. Switches are therefore also called store-

and-forward elements and introduce a delay when delivering frames between

ports [39, p. 166].

Stations connected to hubs can only function in half duplex mode. Hubs

are not normally addressable in the network, that is, they do not have MAC

addresses. By contrast, stations connected to a switch can operate in full

duplex mode and switches can be addressable in the network, that is, they

can have MAC addresses assigned.

2.5 Active versus Passive Scanning

Network monitoring or scanning can be performed either actively or passively

[40]. Active scanning sends out data (often called probe packets [41]) to the

network and evaluates responses. Passive scanning or monitoring uses cap-

tured, naturally occurring, network traffic data in order to gather information

about a network and its elements [40]. The two techniques are contrasted in

the following discussion.

Passive techniques are more covert and stealthy than active techniques [38,

p. 152]. By nature, active scanning techniques transmit data to the network

or node being investigated and this traffic can be detected by another party.

Target selection and timing can be controlled during active scanning,

that is, an investigator can decide what to scan and when do to a scan [41].

By contrast passive scanning relies on network traffic where sources, targets

and timing cannot be controlled [42]. Passive mapping can however be used

to infer the usage patterns of the network, because timing information is

received from the network and not generated by the scanning tool as in active

mapping [40].

Active scanning influences the target network (or target node) when sending

data, while passive scanning does not directly have an impact on the network
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infrastructure [43, 42].

Active probing attempts might explicitly be blocked or filtered on a net-

work to hide the presence of nodes, but if these nodes communicate at all

the communication could be detected by passive means [42].

Active mapping can provoke responses from any location in the network,

whereas passive mapping’s success depends a great deal on the location in

the network from where information is gathered [43, 42, 40].

From the discussion it is clear that passive and active techniques have differ-

ent strengths and weaknesses and could be used to complement each other

[43, 40].

2.6 Conclusion

The topics and information presented in this chapter provide the background

and context for the work to follow. Chapter 3 presents related research and

Chapters 4 to 7 present experiments that build on the concepts presented

here.
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Chapter 3

Related Work

3.1 Introduction and Overview

Internet maps are as old as the Internet itself and were initially drawn by

hand [3, p. 108]. Figure 3.1 shows an early conceptual map of the Internet

drawn by Larry Roberts while working at the Advanced Research Projects

Agency (ARPA) in the 1960’s [44, p. 49].

Figure 3.1: Early Hand-Drawn Map of the Internet [3, p. 108].

The manual effort required to generate accurate maps of networks’ infras-

tructure increased significantly [3, p. 94] as the early computer networks

grew. Research was therefore spurred on in the areas of network topology

discovery and the automatic creation of network maps [16].
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This chapter only samples and discusses more recent work in the area of

topology discovery related to our research. For a more historic perspective

the reader is encouraged to consult the excellent text by Dodge and Kitchin

[3].

The related work is divided into three main sections. Section 3.2 presents

related work from the viewpoint of the application areas of topology informa-

tion. Section 3.3 presents mapping efforts at the network layer (OSI layer 3),

without going into detail about the actual methods employed. Finally, Sec-

tion 3.4 discusses techniques that were developed to determine the physical

(OSI layer 2) topology of a target network.

Conclusions surrounding the related work are presented in Section 3.5.

3.2 Applications of Topology Knowledge

Motivations for research into topology discovery techniques are often found in

the areas where the resulting topology knowledge can practically be applied

[45]. This section highlights five of the application areas of network topology

information with a bias towards security applications.

3.2.1 Administration and Planning

Network administrators are often faced with network problems where fault

finding needs to be performed [4, 46]. In order to troubleshoot network

problems, a topology map of the network can effectively be used to isolate the

problem area [4, 47]. The topology map can also help identify infrastructural

vulnerabilities [48, 49] and the network can then be adapted to provide more

redundancy.

Network expansion planning [5] and decisions regarding the placement of

new infrastructure [50] are also aided by accurate knowledge of the network

topology.
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Network Management Systems (NMS) also employ topology information [51]

to help with network administration. The most notable [52] systems include

IBM’s Tivoli1, Hewlett-Packard’s OpenView2 and the open source Open-

NMS3.

3.2.2 Performance Prediction

In a second application area, that of performance prediction, topology infor-

mation can be used to optimise the performance of network aware applica-

tions [53] as well as the performance of distributed, either grid or cluster,

applications [54, 55].

Topology knowledge can help determine if a given network would provide

a certain Quality of Service (QoS) [50, 56]. As an example, in order to

determine if a network would support multimedia technologies such as Voice

over IP (VOIP), knowledge of the network topology is essential [57, 58].

3.2.3 Algorithm and Protocol Design

Algorithm and protocol design represents a third application area of topology

knowledge. A network’s topology influences the dynamics of routing proto-

cols [59, 60] and should therefore be taken into account during the design of

the protocols [8, 17].

Large network topology visualisation has proved to be a challenging task

and algorithms have been developed for effectively presenting the topology

information [61, 62, 8].

3.2.4 Simulation

The accuracy of network simulations, a fourth application area, depends on

realistic and accurate network topologies [10]. Generated topologies for use

1http://www.ibm.com/tivoli/
2http://openview.hp.com/
3http://www.opennms.org/
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in simulation do not always match real-world topologies [60] and create the

need for accurately [63] measuring real-world network topologies.

Network simulation can not only help researchers understand the current

behaviour of a network, but also the effects of possible future changes to the

network [64].

3.2.5 Security

The fifth and final application area that we address is that of network security.

Firewalls have traditionally been placed at the network edge to protect

against external threats [65, p. 4]. This creates a situation where the net-

work has a “crunchy outside with a soft, chewy center” [66]. Insider threats

to networks have become more common and it is estimated that they account

for around 30% of security incidents [67]. These security incidents also lead

to significant financial losses [68, 13]. Insiders do not only include disgrun-

tled employees, but even loyal workers can become unwitting insiders [69]

by unknowingly executing malicious software. Firewall placement and the

management of a network security policy should therefore be influenced by

the network topology [70, 69].

Another perimeter defence mechanism, Intrusion Detection Systems (IDS),

can also benefit by taking network topology information into account [71]. If

an IDS is not placed correctly it could generate both false positives and false

negatives [71, 30, 72].

The problems with firewall and intrusion detection systems have generated

research interest in the areas of Network Access Control [73] (NAC, also called

Network Admission Control [13]). These systems are proactive and attempt

to enforce a network security policy at either layer 2 or 3 of the network [13].

Devices that do not conform to the security policy can for example be denied

access to the network infrastructure by physically disabling switch ports [31].

A lack of knowledge about the network’s topology and the connected devices

can however seriously hamper the effectiveness of NAC solutions [72].
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Another proactive approach to network security, that augments firewalls and

intrusion detection systems, exists in the form of network forensics [14, 15].

Firewalls and intrusion detection systems focus mainly on attack prevention

and detection [14, 13]. By using topology information, forensic tools attempt

to trace network attacks to their source and actively respond to these attacks

[14].

In order to construct a proper security model of a network, to perform se-

curity analysis [12] and to analyse network attacks [74], knowledge of a net-

work’s topology is needed [11]. Network security models and simulation can

also be used to predict the spread of worms and other malware [75].

3.3 Network Layer Topology Discovery

In the late 1990’s Hal Burch and Bill Cheswick performed research in the

field of Internet mapping [16, 49]. Their research culminated in the creation

of the “Internet Mapping Project” in 1998 [76]. The project and research

focused on gathering topological Internet data over an extended period of

time in order to study routing problems, routing changes, Distributed Denial

of Service (DDoS) attacks and graph theory [76].

The motivation for initially collecting topological Internet data [49] was

voiced clearly by the Rand Corporation: “Network protection, and incident

analysis, is at times hampered by a lack of understanding of the topology of

the network, and an understanding of the critical nodes for its operation.”

[77]. “Incidents” can refer to both on-line and physical events, for example,

Internet maps allowed Burch and Cheswick to detect loss of power to routers

in Yugoslavia after NATO bombing of the country [49].

Active Internet mapping research is also performed by the Cooperative Asso-

ciation for Internet Data Analysis (CAIDA)4. CAIDA’s work has many appli-

cations including Internet traffic engineering, capacity planning and security

breach detection [8]. Assessment of a network security situation can benefit

4http://www.caida.org/
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from network topology information in that network sensors and probes can

be placed at optimal positions in the network to reduce system load and

network traffic [78].

Topology discovery has also been performed in newer IPv6 networks by

Waddington et al [17]. The research supports architectural design decisions

related to address allocation and distribution schemes [17].

Another research area related to network topology discovery is that of net-

work tomography. In contrast to topology discovery, where measurements

can be performed from any location in the network, network tomography is

a process for inferring internal network characteristics by using end-to-end

measurements from the edge of the network [79]. The advantage of using edge

based measurements is that cooperation from the internal network elements

is not required [80].

Network tomography requires knowledge of the network topology [79, 81],

but the techniques can also be applied to gain knowledge about the network

topology [79].

Ideas from network layer tomography research, such as the use of similarity

metrics [82, 18] to find shared paths between edge nodes, were applied during

our investigations into layer 2 topology discovery.

3.4 Link Layer Topology Discovery

A network’s physical topology can potentially correspond to many logical

topologies depending on the level of abstraction used [50, 45]. In 2000 Bre-

itbart et al [83] realised that network management tools as well as previous

research efforts focused on layer 3 topology discovery and ignored the connec-

tivity of layer 2 network elements. Where layer 2 topology discovery tools did

exist, they were found to specifically target single vendor products [83]. Breit-

bart et al therefore developed algorithms that could perform layer 2 topology

discovery in multi-vendor (heterogeneous) networks by using standard Simple

Network Management Protocol (SNMP, refer to Section 2.3.2) Management
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Information Base (MIB) data [83]. Hwa-Chun Lin et al [6] developed the

same techniques as Breitbart et al; however, they did not formally design a

discovery algorithm, but only demonstrated a possible discovery process by

example.

The initial algorithm developed by Breitbart et al [83] depended on perfect

Address Forwarding Table (AFT) data collected from every single element in

the network. Their research was refined to relax this dependency on complete

information [84, 7, 85]. The newer algorithms could successfully discover the

target network topology, provided that the network was uniquely described

by the SNMP MIB data obtained [84].

Lowekamp et al [9] also extended the initial work by Breitbart et al [83]

and developed a topology discovery algorithm that performed well with only

limited AFT data collected from SNMP enabled network elements. Yantao

Sun et al [86] proposed an enhanced algorithm that made more efficient use

of the AFT data than did Lowekamp et al’s [9].

Further work by Bejerano [87] showed that the algorithms developed by

Lowekamp et al [9] and Breitbart et al [84, 7, 85] did not perform well in

multi-subnet networks or in the presence of uncooperative switches and hubs.

Uncooperative elements do not speak SNMP (unmanaged elements), do not

allow access or do not even have layer 2 addresses. Bejerano [87] developed

an algorithm that could more accurately determine the network topology

than the previous attempts.

The work of Yuzhao Li et al [88] again concentrated on AFT data obtained

from SNMP enabled network elements, but they augmented incomplete AFT

data with the analysis of port traffic data (also obtained using the SNMP)

to create a topology of a single subnet network.

Research by Stott [56] also employed SNMP MIB data, but instead of using

forwarding table data, the algorithm used data from the Bridge-MIB [89]. A

white paper by Hewlett-Packard [90] describes the same technique. Stott’s

algorithm neglects any elements that do not support SNMP and further

requires that all switches use the spanning tree algorithm [56]. The work of
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Stott was further refined to become part of a tool for assessing the readiness

of networks for IP Telephony [58].

The Internet Engineering Task Force (IETF) attempted to create a standard

for SNMP topology discovery by creating the Physical Topology MIB [91],

but adoption of the proposal was hampered by the fact that it did not include

details on how to actually populate the required MIB objects [86]. To remedy

the situation, the IEEE developed the Link Layer Discovery Protocol (LLDP)

as part of the 802.1AB-2005 standard [92]. The LLDP allows neighbouring

devices to become aware of each other and populate their Physical Topology

MIBs [87, 93]. The efforts surrounding LLDP clearly shows an industry need

for topology discovery in heterogeneous networks at layer 2; however, LLDP

cannot easily be deployed on legacy equipment [87].

All the layer 2 topology discovery techniques and algorithms discussed thus

far depend on SNMP enabled network elements. The reliance on SNMP

can prove problematic in quite a number of network environments. As net-

works grow and management becomes decentralised it cannot be assumed

that SNMP would be enabled or that administrative SNMP access would be

granted [50, 17]. A lot of small business, home office and branch office net-

works are built using consumer-grade network equipment that do not even

support SNMP [4]. A need for topology discovery techniques that do not

require network cooperation [81, 51] and for tools that can augment SNMP-

based techniques [4, 47] therefore exists.

A technique for layer 2 topology discovery without network element coop-

eration has been implemented by Black et al [4]. The technique exploits

the packet forwarding properties of network elements, specifically those of

switches. The algorithm requires specialised software on many edge nodes

(hosts) that are controlled from a master node to execute the distributed

discovery algorithm [4]. Cooperating hosts train switches they are connected

to in order to only pass packets with specific addresses. The master node

then instructs other hosts to send probe packets with the specific addresses.

Depending on where the probe packets are delivered to (or not), a picture of

the network internals can be formed [4].
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Other efforts worth mentioning are proprietary protocols by network ven-

dors used prior to the standardisation of the LLDP. These include the Cisco

Discovery Protocol (CDP), Enterasys Networks’ Cabletron Discovery Proto-

col (also CDP), Extreme Networks’ Extreme Discovery Protocol (EDP) and

Nortel Networks’ Nortel Discovery Protocol (NDP) [94, 93].

The use of Ethernet as an access technology, especially in the telecommu-

nication industry, has also led to efforts to add and standardise Ethernet

capabilities for Operational, Administration and Maintenance (OAM) man-

agement [95]. The main operational issues addressed are discovery, link mon-

itoring, fault signalling and remote loopback [95]. The added functionality

is not aimed specifically at topology discovery in enterprise networks, but

could potentially be used.

3.5 Conclusion

In this chapter we have demonstrated some uses of network topology infor-

mation and we have shown how these applications drive network topology

research. Topology discovery at the network layer, especially Internet topol-

ogy discovery, represents a vast research area and we have only sampled some

of the related research. The techniques used for network layer topology dis-

covery cannot directly be applied at the data link layer, but some of the

concepts proved to be useful guidelines.

In comparison to network layer topology discovery, link layer topology dis-

covery has not received as much attention and most of this attention has been

focused on cooperative network environments. Research into techniques that

can be applied in an uncooperative network environment can therefore prove

useful in itself and can also be used to augment the other techniques devel-

oped thus far.
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Chapter 4

Passive Network Node

Discovery

4.1 Introduction and Overview

As a first step in gaining knowledge about an Ethernet network, it was de-

cided to focus on the process of identifying unique network nodes, both at

the edge and internal to the network, at the data link layer. Furthermore, a

choice was made to attempt the identification in a passive manner, that is by

only listening to network traffic (refer to Section 2.5). The nodes identified

during the passive discovery phase could be used as targets for further active

discovery techniques.

Nodes in an Ethernet network are uniquely identified by their MAC addresses

at layer 2 (refer to Section 2.4.2), but this raw number by itself does not

provide a lot of information about the node. Other sources of information

were therefore combined, where possible, with this number to provide more

information about each node.

The layout of this chapter is as follows. The design, preparation and execu-

tion of the experiments are discussed in Section 4.2. The initial execution

of the experiments provided raw data and the processing of the data is pre-

sented in Sections 4.3 and 4.4. Section 4.3 discusses initial processing of
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the raw data, where decisions were made as to what elements of the data

to consider. Section 4.4 focuses on the generation of the network node list.

Section 4.5 presents interesting processing results that were not directly used

in the creation of the node list. Finally, Section 4.6 concludes the chapter.

4.2 Experiment Design and Execution

This section details the design of the experiments, the preparations in terms

of hardware and software and the execution of the experiments performed

during node discovery.

4.2.1 Purpose and Procedure

The primary goal of the passive node discovery experiments was the gener-

ation of a list of network nodes. Information obtained about node specifics

and network internals was seen as a secondary objective.

The procedure envisioned in order to generate a network node list consisted

of the following activities:

1. Capture traffic data from the network in a passive manner.

2. Identify relevant packets and protocols and store the raw data in an

easy to query format.

3. Perform queries and processing on the data to generate a node list.

4. Correlate data in the list with other external data sources where pos-

sible.

4.2.2 Target Network Selection

A 100Mbps corporate Ethernet network using standard UTP network cable

was identified as the target for the data capture step of the experiment. The
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passive nature of the data capture process ensured that the network was not

affected during the experiment.

4.2.3 Capture Hardware

A Personal Computer (PC) with a standard full duplex 100Mbps network

card was used for capturing data. The PC was connected to the network

as a normal workstation. The PC was placed into an unused office and was

equipped with enough storage to allow for unassisted capture of network data

for extended periods of time (typically in the order of a week or two).

4.2.4 Capture Software

The problem of capturing network data is quite common and many software

packages, both proprietary and open source, exist for this purpose. There

was therefore no need to write custom software for the capture step of the ex-

periment. The Ethereal1 application was identified as an easy to use capture

application and was installed on a Debian GNU/Linux2 based PC.

In order to limit the number of packets stored to the hard disk, Ethereal can

filter packets as they are captured. The filter syntax is the same as that of

the ubiquitous tcpdump3 program and is described in detail in the tcpdump

manual page [96]. The following filter was used to limit the capture of packets

to Ethernet or IP multicast or broadcast traffic:

ether broadcast or ether multicast or

ip broadcast or ip multicast

The reason for capturing only broadcast and multicast traffic becomes clear

when we remember how a switch forwards frames in an Ethernet network

1http://www.ethereal.com/. In June 2006 Ethereal was renamed to Wireshark, also
see http://www.wireshark.org/.

2http://www.debian.org/
3http://www.tcpdump.org/
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(refer to Section 2.4.5). Traffic destined for a specific destination node would

only reach our capture node if the destination node shares a switch port with

our capture node. Since we were not interested in this special case, the filter

helped minimise the packets captured.

Captured packet data was saved in the libpcap4 file format. Ethereal also

allows for splitting the captured data into multiple output files while captur-

ing. The files can be split by either time, packet count or file size. The file

size option proved useful to keep the files small enough for our processing

scripts, while the time option allowed for easy identification of files captured

over an extended time period.

4.2.5 Database

It was decided to place all captured data into a database to allow for simpli-

fied queries and correlation of the data. The database could also be used to

store processed data. Furthermore, a database provides a unified interface

to the data, whereas a mixture of data formats would require separate tools

to process the data.

The SQLite5 database engine was chosen for the following reasons:

SQLite supports a standard query format in that most of the Structured

Query Language (SQL), SQL92, standard is implemented [97]. The database

engine is cross platform and can run on Windows and Linux among others.

This enables tools running on different operating systems to interact with

the data. The database is easy to install as the whole SQLite engine is

contained in a single executable or library file. No system services or special

permissions are needed to use the engine.

The database contents are self contained and saved into a single file that can

easily be transported across PCs. Various programming languages can

interface with the database and hooks to query and manipulate the database

4http://www.tcpdump.org/
5http://www.sqlite.org/
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exist for C, Perl and Python among others. The choice of language used to

implement a processing tool or script is therefore not constrained.

4.2.6 Experiment Execution

Once all the tools were set up, capturing experiments were executed numer-

ous times by starting the capture application and allowing it to record data

for various periods of time. Initially, when exploring the range of packets

available, the capture times were kept short.

The data used for the processing results presented in this chapter was recorded

continuously over a two week period from a single network location.

4.3 Initial Processing

The data acquisition process resulted in numerous binary data files contain-

ing captured data. The initial processing step focused on getting this data

decoded and placed into the database.

The Organisationally Unique Identifier (OUI), as discussed in Section 2.4.2,

was identified as another source of information that could be used to identify

nodes on the network. The procedure for obtaining OUI data and inserting

it into the database is discussed in Section 4.3.4.

4.3.1 Packet Selection

A decision had to be made as to which packets, from the variety of protocols

carried on the Ethernet network, to use for the construction of the node list.

ARP packets (refer to Section 2.3.1) were the obvious choice considering the

following preferences:

• We would like to create a list of nodes at the data link OSI layer.

• We would like to use packets that occur on the network quite frequently.
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The processing of the ARP packets are discussed in the following section.

After reviewing some of the captured data it was realised that the second

most common broadcast packets6, after ARP packets, on the network were

Server Message Block (SMB) browser announce packets. The SMB protocol

is commonly used to share printers and files across a LAN and all Windows

machines and Unix-like machines running Samba7 broadcast these packets

to make the rest of the network know about their existence.

The browser announce packets are carried inside User Datagram Protocol

(UDP) packets at the transport layer of the OSI reference model (refer to Sec-

tion 2.2). They are however delivered using the Ethernet broadcast address

and this makes them relevant to our list construction process. The browser

announce packets make it possible to associate human readable names with

raw MAC addresses. The processing of browser announce packets is discussed

in Section 4.3.3.

4.3.2 Address Resolution Protocol (ARP) Packets

The captured ARP packets were placed into a database table in order to

enable queries and cross correlation with the other captured data. Two

alternative procedures were investigated and will be discussed: The recorded

binary data file can either be read, interpreted and inserted directly into the

database by an application, or the file can be converted to a more parse-

friendly intermediate format before it is inserted into the database.

ARP Database Table

The ARP database table (named “arp”), created during the data capture

process, consisted of the following fields:

• timestamp – Time in seconds since January 1 1970 when the packet

was captured from the network.

6Packets with an Ethernet destination address of FF:FF:FF:FF:FF:FF (see also Sec-
tion 2.4.2).

7http://www.samba.org/
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• eth src mac – The source MAC address of the received Ethernet frame.

• eth dst mac – The destination MAC address of the received Ethernet

frame.

• opcode – Whether the ARP packet was a request or a reply.

• arp src mac – The hardware (MAC) address of the source node.

• arp src ip – The protocol (IPv4) address of the source node.

• arp dst mac – The hardware (MAC) address of the destination node.

• arp dst ip – The protocol (IPv4) address of the destination node.

Binary File to Database

A Perl script was written that understood the libpcap capture file format

and placed the processed data into the database table. The main disadvan-

tage of this direct approach is that the parser script needs to understand the

binary (as on the wire) format of the packets it needs to process. For simple

packets, such as ARP, this is possible, but the complexity quickly increases

for larger multi-layer packets. It is therefore advisable to use a common well

tested packet dissection library, rather than reinventing one’s own packet

parsing code.

The NetPacket8 Perl library was available that could parse the binary ARP

packet data and was used in the script. Simplified pseudo-code for the script

is shown in Figure 4.1.

Intermediate File to Database

After some investigation into file formats used for storing captured network

traffic data, the choice fell on the Packet Details Markup Language (PDML)

[98]. PDML uses an eXtensible Markup Language (XML) file format that

contains details of decoded network packets.

8http://www.cpan.org/modules/by-module/NetPacket/
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open the capture file

open a connection to the database

while there are frames in the capture file:

read a single frame

if the frame contains an ARP packet:

decode the fields of the frame and the ARP packet

build up an SQL instruction to add the data to the database

execute the SQL statement

close the capture file and database connection

Figure 4.1: Pseudo-Code for Parsing Address Resolution Protocol (ARP)
Packets.

The binary capture files were converted using the tethereal9 utility. Tethe-

real supports further filtering10 of packets as they are read from the capture

file. The output PDML file can therefore be constructed so that it only

contains the packets we are interested in (in this case the ARP packets).

Figure 4.2 shows a single packet excerpt from an ARP PDML file. Note how

the packet fields can easily be identified from the XML file.

The disadvantage of converting the binary dump file to an XML format is

that the resulting file is an order of magnitude larger than the original file

and therefore requires a lot of disk space. As an example a 64MB capture

file can easily result in a 650MB ARP PDML file.

A Python script was written to parse the PDML file and place the ARP

packet data into the ARP database table. The formatting of the text fields

were kept consistent with that of the Perl script used earlier.

9The utility is part of the larger Ethereal package.
10The syntax of the filter is different from that used for the packet capture. The syntax

can be found in the Ethereal documentation [99].
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Figure 4.2: Example ARP Packet in PDML Syntax.

4.3.3 Browser Announce Packets

As was done with the ARP packets, all captured browser announce packets

were placed into a database table. The procedure is discussed below.

Browser Announce Database Table

The browser announce database table (named “browser”), containing the

captured browser announce packets, consisted of the following fields:

• timestamp – Time in seconds since January 1 1970 when the packet

was captured from the network.

• src mac – The MAC address of the sender as per the Ethernet frame.

• src ip – The IP address of the sender as per the UDP packet.

• name – The name that the node uses for itself.

 
 
 



University of Pretoria etd - Delport, J P (2007)

4.3. Initial Processing 37

• comment – A descriptive string to used by the node for further identi-

fication.

• os major – The major version number of the operating system.

• os minor – The minor version number of the operating system.

Packet Parsing

The PDML [98] file format was again used as an intermediate format to

transfer the raw packet data from capture files into the database. A filter

was used during creation of the PDML file to make sure that it only contained

browser announce packets.

An excerpt of a PDML file showing the relevant fields of a browser announce

packet is shown in Figure 4.3.

Figure 4.3: Example Browser Announce PDML File Snippet.

A Python script was written to parse the PDML fields and insert the data

into the database table. The script loaded the whole PDML file into memory
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and this became a limitation when large capture files were used. Instead of

rewriting the parsing code it was possible to split the binary input file using

either the tcpsplit or editcap utility.

4.3.4 Organisationally Unique Identifier (OUI) Data

OUI data allows for the matching of MAC addresses to Ethernet vendors

(refer to Section 2.4.2). This data was also placed into a database table.

OUI Database Table

The OUI database table (named “oui”) consisted of the following fields:

• code – The hexadecimal value of the OUI entry.

• info – The vendor name associated with the entry.

Data Parsing

The OUI data can be obtained directly from the IEEE website11 as a flat

text file. An excerpt from the file is shown below:

00-03-E4 (hex) Cisco Systems, Inc.

0003E4 (base 16) Cisco Systems, Inc.

170 West Tasman Dr.

San Jose CA 95134

UNITED STATES

00-03-E5 (hex) Hermstedt SG

0003E5 (base 16) Hermstedt SG

Carl-Reuther - Str. 3

D-68305 Mannheim

GERMANY

11http://standards.ieee.org/regauth/oui/index.shtml
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For our purposes, the first line of each entry contained sufficient information

to place into the database. A Perl script was used to parse the OUI text file

and extract the first three octets and the company name from the data. In

order to make the data consistent, the first three octets were converted to

lowercase and separated by colons.

Figure 4.4 shows an excerpt of the created database table. At the time of

executing the script a total of 9103 entries were added to the database.

Figure 4.4: OUI Database Table Example.

4.4 Node List Generation

The initial processing steps placed all the data needed for the generation of

the network node list into the database. In order to complete the list the

data from the various tables had to be manipulated and merged.

The ARP and browser announce tables contained data directly converted

from the capture files and potentially had many duplicate entries. As a first

step unique nodes had to be identified, after which data from the unique

nodes were merged with the OUI table.
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4.4.1 Unique MAC and IP Pairs

It is possible for a single node in the database to have multiple IP addresses

for its specific MAC address. The node can either have multiple IP addresses

assigned (either manually or automatically through the use of the Dynamic

Host Configuration Protocol (DHCP)) over the course of the data acquisition

period. In order to allow for these cases, nodes had to be grouped not only

according to unique MAC addresses, but according to unique pairs of MAC

and IP addresses.

The SQL “GROUP BY” [100] command was used to create a new database

table named “uniq mac ip” that contained unique entries with respect to

MAC and IP address pairs. The command executed was:

CREATE TABLE uniq_mac_ip AS SELECT * FROM arp

GROUP BY arp_src_mac, arp_src_ip

4.4.2 Unique MAC and Browser Name Pairs

As with the MAC and IP pairs, a situation can occur where a single MAC

address can relate to multiple browser names. The most obvious example

occurs when a node’s name is changed during the data acquisition period.

A new database table named “uniq mac browse” was created using the fol-

lowing SQL command:

CREATE TABLE uniq_mac_browse AS SELECT * FROM browser

GROUP BY src_mac, name

4.4.3 Unique Nodes Merged with OUI Data

The unique node database tables as created earlier in this Section were now

merged with the OUI database table (as created in Section 4.3.4) to form

the final network node list.
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The unique node tables are joined by comparing the MAC address of the

nodes to form a new table named “mac ip name”. The SQL command is

shown below:

CREATE TABLE mac_ip_name AS

SELECT arp_src_mac, arp_src_ip, name FROM

uniq_mac_ip LEFT JOIN uniq_mac_browse ON

arp_src_mac = uniq_mac_browse.src_mac

ORDER BY arp_src_mac

The list was completed by adding the vendor name from the OUI database

table. The vendor code in the OUI table is compared to a substring12 of the

MAC address from the “mac ip name” table created above. The SQL state-

ment to add to OUI data and create a new table named “mac ip name vendor”

is shown below:

CREATE TABLE mac_ip_name_vendor AS

SELECT mac_ip_name.*, oui.info FROM

mac_ip_name, oui WHERE

SUBSTR(mac_ip_name.arp_src_mac,1,8) = oui.code

ORDER BY arp_src_ip

The final list contained the MAC address of the node, its IP address, the

browser name (if present) and the vendor name of the network card used by

the node. Figure 4.5 shows a few rows from the final table.

4.5 Additional Processing

The network node list as generated in Section 4.4 already contains a of lot

of information and is useful in itself, but further queries performed on the

list can reveal even more information. This section explores some processing

steps that revealed more information from the generated list as well as steps

that revealed additional information from the original database tables.

12The substring length was chosen to span the first 3 octets of the MAC address.
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Figure 4.5: Passively Discovered Node List Table Extract.

4.5.1 Multiple IP Addresses or Names

Nodes with multiple IP addresses for a specific MAC address are often in-

teresting. If multiple IP addresses from separate IP subnets are observed

in a short space of time, it indicates that the specific node functions as a

router between the subnets. The probability of the node being a router can

be increased by looking at the vendor attached to the specific node’s MAC

address in the list created in Section 4.4. If the IP address changes more

infrequently, it can either indicate that the node gets an address through

the use of DHCP or that someone is manually changing the node’s static IP

address.

DHCP address allocation occurs mostly when a node is switched on, so these

type of IP address changes can be identified by looking for the presence of

ARP packets in the time vicinity of the change. If the IP address change is

not preceded by other ARP packets, the node has probably been switched

on and has received an IP address using DHCP. The subnet served by the

DHCP server can also be identified by observing these types of changes. If

the IP address change is preceded in time by other ARP packets using the

same MAC address, the IP has more likely been changed manually.

Multiple node names are not as interesting as multiple IP addresses, but can

provide some history on the names used by the node.
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As a first step, we identified nodes with multiple IP addresses or names by

counting.

CREATE TABLE mult_ip AS

SELECT *, COUNT(*) AS n FROM mac_ip_name_vendor

GROUP BY arp_src_mac HAVING n > 1

We then created a new table called “mult ip list” where the multiple IP

addresses are listed by matching MAC addresses as follows:

CREATE TABLE mult_ip_list AS

SELECT mac_ip_name_vendor.*

FROM mac_ip_name_vendor, mult_ip

WHERE mac_ip_name_vendor.arp_src_mac=mult_ip.arp_src_mac

ORDER BY mac_ip_name_vendor.arp_src_mac

Figure 4.6 shows a selection of rows from the resulting multiple IP table.

Figure 4.6: Nodes with Multiple IP Addresses Table Extract.

4.5.2 Packet Timestamps

The ARP packet timestamps reveal if a node on the network was active on

the network at a particular time. Desktop machines are more likely to be
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switched off daily than server machines and it was hoped that the timestamp

data would be able to show this. It was decided to use plots of the timestamp

data to investigate node activity.

In order to generate a plot of ARP packet timestamps a node address was

chosen manually from any of the tables created earlier. A simple SQL query

retrieved all the ARP packets for the specific node, after which the data was

exported as a comma delimited text file and plotted using Matlab.

Figure 4.7 shows the ARP activity of a node over the period of a week. This

node was clearly switched on and off daily. Figure 4.8 shows the ARP activity

of a node that remained on during the night (using the same timescale as

Figure 4.7).

The ARP packet timestamps therefore help in distinguishing desktop ma-

chines from possible server machines. Note also how (in a possible privacy

invasive way) a desktop user’s habits in terms of working hours can be de-

termined from the PC’s ARP timestamps.
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Figure 4.7: Desktop Node ARP Timestamps.
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Figure 4.8: Possible Server Node ARP Timestamps.

4.5.3 Communication Peers

The ARP traffic present on the network also gives an indication of all the

nodes a specific node tries to communicate with (refer to Section 2.3.1). An

attempt was made to visually show this relationship.

A new table was created that counted the number of times a certain node

(identified by its MAC address) requested a specific IP address.

CREATE TABLE ip_req_count AS

SELECT *, COUNT(*) as n FROM arp

GROUP BY arp_src_mac, arp_dst_ip having n > 1

ORDER BY arp_src_mac

The requested IP addresses were then converted back to MAC addresses by

using the unique MAC and IP pair table created in Section 4.4.1. Note that

a specific IP address can possibly relate to multiple MAC addresses, but for

this experiment only the first match was chosen.
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CREATE TABLE arp_peers AS

SELECT n, ip_req_count.arp_src_mac AS src,

uniq_mac_ip.arp_src_mac AS dst FROM

uniq_mac_ip INNER JOIN ip_req_count

ON uniq_mac_ip.arp_src_ip = ip_req_count.arp_dst_ip

ORDER BY src

The created “arp peers” table now contained a source MAC address, a guessed

destination MAC address (using the reverse look up) and a count approx-

imating the number of times the source wanted to communicate with the

destination. It was decided to plot the communication relationships as a

force directed graph [101]13 with the force between the nodes related to the

request count.

An example of an output graph is shown in Figure 4.9. After examining

the graph in more detail it was noted that the nodes belonging to a specific

subnet were grouped together in a cluster. Figure 4.10 shows a close-up of

the cluster of nodes in the top-left corner of Figure 4.9 and it can be seen

that they belong to the same subnet when looking at the IP addresses.

The router between the different subnets was also clearly distinguishable in

the middle of the graph. Nodes that sit in between the clusters could have

moved between subnets during the course of the data capture or they might

have improper IP network masks [47] set.

13The fdp utility from the GraphViz package was used to generate the graphs.
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Figure 4.9: Graph of Communication Peers.

Figure 4.10: Graph of Communication Peers (Zoomed In).
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4.6 Conclusion

The main goal of the chapter, the generation of a network node list, was

achieved by the experiments and processing presented. The generated list

represents all the nodes whose presence could be determined passively by

means of their broadcasting of ARP request packets.

The generated list can also be seen as an inventory of the elements on the

network. If this list is generated periodically it can be compared to snapshots

of the network at different times in order to reveal changes to the network.

The processing described in Section 4.5 also showed that it is possible to

identify routers in the network not only by means of their MAC addresses,

but also through their communication patterns.

The list of network nodes contains initial knowledge about a target network

and is used in further experiments conducted during the course of our re-

search.
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Chapter 5

Internal Network Device

Discovery

5.1 Introduction and Overview

The results of the experiments and data processing presented in Chapter 4

provided information about the nodes of the network, but not a lot of in-

formation about the connections between these nodes. The focus of this

chapter is on finding the internal elements of the network as a step towards

identifying and characterising the links between nodes of the network.

The chapter is organised as follows. Details about the motivation, considera-

tions and design of the experiments are discussed in Section 5.2. Section 5.2

also provides details concerning the hardware and software used during the

experiments. The execution of the experiments is discussed in Section 5.3.

Results of the experiments are presented in Sections 5.4, 5.5 and 5.6. Finally

some conclusions are drawn in Section 5.7.
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5.2 Experiment Design and Preparation

5.2.1 Motivation

Internal network elements such as switches and hubs (refer to Section 2.4.5),

even though transparent to the network layer, influence the delivery times of

packets in the network. Store-and-forward delays [39, p. 166], carrier-sense

delays as well as collisions [27, p. 282] influence the time it takes for an

Ethernet frame to reach a receiver on the network.

The experiments in this chapter were constructed to explore the feasibility

of detecting store-and-forward, carrier-sense and collision delays experienced

by an Ethernet frame as it travels across the network. It was hoped that the

temporal influence of internal elements on packet delivery times would reveal

the existence of the elements themselves.

5.2.2 Considerations

Proper preparation for the experiments required consideration of two prob-

lems: What is the magnitude of packet delays we can expect and how can

we measure these delays?

The delays experienced by a packet as it travels across an uncongested Eth-

ernet network are quite small. A rough calculation (Equation 5.1) showed

that a 1000-byte packet takes approximately 80 microseconds to transmit on

a 100Mbps Ethernet network. This is also the typical delay a packet would

experience as it traverses a store-and-forward element in the network (refer

to Section 2.4.5).

1000 bytes

100 Mbps
=

(1000 ∗ 8) bits

100× 106 bits
s = 80× 10−6s (5.1)

In order to measure the delay experienced by a packet, two methods were

considered:
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1. Send a packet from one network node to another and record the sending

time on the sender and the reception time on the receiver. This method

allows calculation of the one-way delay the packet experiences, but

requires accurate clock synchronisation between the nodes as well as

the cooperation of the target node.

2. Send a packet that evokes a response from the target node and record

the sending time as well as reception time of the response on a single

node. This method measures the round-trip time of the packet and is

simpler in terms of time-stamping and clock synchronisation [79], but

it has to contend with the uncertainty in the target node’s response

time.

The second method was chosen for the experiments in this chapter because

of its simplicity. It could also potentially be used in a live network envi-

ronment if suitable packets were used. The selection of probe packets is

addressed in the following section. The infrastructure, in terms of hardware

and software, required to measure the small round-trip delays are discussed

in Sections 5.2.4, 5.2.5 and 5.2.6.

5.2.3 Packet Selection

The round-trip technique for measuring physical link delays, chosen for its

time-stamping simplicity as described in Section 5.2.2, relies on packets that

evoke a response from a target node. Two types of packets were considered,

namely: Internet Control Message Protocol (ICMP) echo request/reply mes-

sages and ARP packets.

ICMP is a network layer (OSI layer 3) protocol [23, p. 508] used for sending

diagnostic and notification messages for other protocols in the TCP/IP suite

[38, p. 134]. The ICMP request/reply messages are used as the most basic

test to see if two stations can send IP packets to each other [23, p. 536].

The fact that ICMP packets are routed, in the same way as IP packets,

disqualifies them for use in our experiments.
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Routing at layer 3 can provide misleading information about the layer 2 topol-

ogy of the network, for example: two stations connected to the same switch

but with different network masks1 would communicate through a router (that

could be connected through a number of other layer 2 network elements)

even though they are in fact directly connected. ICMP request packets are

also quite often filtered either at the target host or at intermediate routers

[102, 80].

In comparison to ICMP, ARP packets (refer also to Section 2.3.1) have the

following useful properties:

Probing targets are abundant, because any host on an Ethernet LAN that

wishes to communicate using the TCP/IP protocol has to listen for ARP

broadcasts requesting its IP address [21, p. 283]. If the host receives a valid

ARP request, it should send a targeted reply to the sender containing its own

MAC address. There is also a good chance that ARP request packets will

not be filtered by personal firewall software operating at the network layer.

Secondly, packets are easy to process. ARP request packets are easy to

generate and ARP reply packets are easy to parse by host software.

Thirdly, ARP packets are normally handled at a low level in the network

stack of a target node, which increases the predictability of reply times and

makes reply times more consistent.

Most importantly, various packet sizes can be used. ARP request packets

have a specific size (refer to Section 2.3.1), but during experimentation it was

found that they remain valid even if encapsulated within Ethernet frames of

various sizes. Variations in Ethernet frame sizes cause variable delays when

an ARP request packet moves through a store-and-forward element [39, p.

166].

By virtue of the properties mentioned above, ARP packets were chosen for

the experiments presented in this chapter.

1The two stations are on different IP subnets.
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5.2.4 Operating System Selection

In order to measure the sub-millisecond delays introduced by Ethernet net-

work elements, the transmission and time-stamping of packets had to be

controlled very accurately. The use of a real-time operating system was in-

vestigated and it was decided to use RTLinux/GPL [103] for the experiments.

RTLinux is a hard real-time operating system that runs the standard Linux

kernel as its lowest priority thread [104]. RTLinux provides low (at the

interrupt and IO port) level access to devices, but still allows one to use all

the normal GNU/Linux tools for non-real-time tasks.

5.2.5 Hardware and Device Drivers

The RTLinux distribution by itself does not provide real-time network drivers

for Ethernet cards, but relies on the non-real-time Linux drivers; however,

the RTLinux Ethernet Device Drivers (REDD) project [105, 106] has done

some work to produce real-time Ethernet drivers.

The REDD project provided a driver for the RTL8139 Ethernet chipset [107]

used by a lot of inexpensive Peripheral Component Interconnect (PCI) net-

work cards. An 80x86 PC equipped with an RTL8139 based network card

was used for the execution of our experiments.

Device Driver Modifications

The device driver provided by the REDD project could be used to send raw

Ethernet frames, but did not have the ability to time-stamp the transmission

or reception of packets. The driver was modified using information about the

design and architecture [105, 107, 108] in order to record the time2 when a

packet was fully transmitted by the RTL8139 chip (the packet was on the

wire) and the time when a complete packet was received.

2The RTLinux clock resolution is well below 1µs, but worst case interrupt latency can
be up to 40µs [109].
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In order to measure round-trip times, a packet is sent to a target host and

time of transmission is recorded. When the reply from the target arrives the

time-stamp of the reply packet is again recorded, but identifying the reply

packet amongst all the other traffic on the network proved problematic. A

filter had to be added to the device driver to only consider and time-stamp

received packets matching the target node’s MAC address.

5.2.6 Software

RTLinux applications consist of two parts: a real-time kernel module and a

userspace application [104]. The module is responsible for the real-time tasks

and is kept as small, fast and deterministic as possible. The module runs in

kernel-space and can use only a limited set of RTLinux and Linux kernel sys-

tem calls. The userspace application can use all available GNU/Linux tools

and libraries and communicates with the real-time module using RTLinux

First-In-First-Out (FIFO) buffers.

Kernel Module

A kernel module was written to send ARP packets (or groups of packets)

using a variety of parameters. The module was also responsible for collecting

the time-stamp data from the device driver and for passing all the data to

the userspace application.

The parameters passed to the module included: the target (destination) MAC

address, the target (destination) IP address, the number of ARP packets to

send in close succession (a maximum of 10 was allowed), an array containing

the packet lengths (in bytes) for each of the packets and an array containing

the delay in microseconds between packets n and n+ 1.

The kernel module main loop contained the following steps:

1. Wait for parameters (as described above) from the userspace applica-

tion.
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2. Send ARP packets using these parameters using the device driver.

3. Wait for reply packets or time-out.

4. Collect time-stamp data from the device driver and push into the FIFO

buffers.

Userspace Application

The kernel module provided the flexibility for conducting a wide range of

experiments and all the userspace application had to do was provide the

module with appropriate parameters and save the data received from the

kernel module to disk. The application therefore changed depending on the

specific experimental needs.

The data was saved in a simple space delimited text file that allowed for easy

reading into processing applications.

5.3 Experiment Execution

The experimental setup as discussed in the previous sections allows for vari-

ous experiments to be performed. This section provides specific details about

the execution environment and parameters used during the experiments.

5.3.1 Network Configurations

Initially a few simple tests were performed on a live corporate network, but

it was soon realised that the number of variables were too many to make

sense of the recorded data. It was therefore decided to perform experiments

in a more controlled environment.

A range of network configurations, as shown in Figure 5.1, were constructed

to determine the effect of specific elements on the round-trip time of ARP

packets.
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Probe TargetSwitch Hub Switch

Probe TargetSwitch HubSwitch

Probe TargetSwitchSwitch

Probe TargetHubSwitch
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Configuration 2

Configuration 3

Configuration 4

Configuration 5

Configuration 6

Configuration 7

Figure 5.1: Experimental (Controlled) Network Configurations.
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The network configurations consisted of a mixture of two unmanaged network

switches (both 100Mbps, but from different manufacturers) and a 100Mbps

network hub. The target node was a laptop running the Debian GNU/Linux

distribution, while the probing host was a PC with a PCI RTL8139 based

network card as discussed in Section 5.2.5.

5.3.2 Packet Configurations

A set of four experiments were conducted for each of the experimental net-

work configurations described above. The experiments differed in the cocktail

of packets that were sent to the target node. The ARP request packets (or

sequence of packets) sent during each of the experiments consisted of the

following:

1. Single packets with sizes of 60, 120, 240, 480 and 960 bytes 10 millisec-

onds apart.

2. A pair of packets (both 960 bytes in length) as close together in time

as possible.

3. A triplet of packets (60, 960 and 60 bytes in length) as close together

in time as possible.

4. A triplet of packets (960, 60 and 960 bytes in length) as close together

in time as possible.

It was hoped that the combinations of packets sent close together in time

would reveal the half-duplex or full-duplex (refer to Section 2.4.4) mode of

the target node.

Even though we have control over the ARP request packet size, it should

also be noted that the size of the ARP reply packets generated by the target

node remains constant (60 bytes3).

3This includes 14 bytes of the Ethernet header (excluding the preamble and start of
frame delimiter), the ARP payload of 28 bytes and an 18 byte pad. Together with the
frame check sequence of 4 bytes, the minimum Ethernet frame size of 64 bytes is reached.
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5.4 Single Packet Results

Single packets with various sizes (60, 120, 240, 480 and 960 bytes) were sent

to the target node a total of 1000 times for each packet size and network

configuration. The minimum size of an ARP packet is 60 bytes (refer to

Section 2.3.1) and the packet sizes were chosen by starting with the mini-

mum value and doubling it while the packet size remained valid for 100Mbit

Ethernet.

The value of 1000 for the number of iterations was chosen arbitrarily, but

was found to provide a good statistical distribution of round-trip times. The

distribution of round-trip times for the 960-byte case for two of the network

configurations are shown in Figure 5.2.

The noise in the data is probably due to the processing delay on the target

node. Even though the network and target node was idle in our case, the

differences could still occur because of operating system scheduling jitter and

delays. In a live network the noise would also increase because of node and

network activity and load.

It was decided to use the median of the 1000 samples of each experimental

run for further processing and plots. Figure 5.3 shows the median of the

round-trip times for all the packet sizes and network configurations used

during the single packet experiments.

The following paragraphs discuss observations that were made from Fig-

ure 5.3.

The number of switch (store-and-forward) elements has a large influence

on the round-trip times of the packets, while it seems that the hub has

a negligible influence. This can be seen from the fact that the results of

configuration 1 and 2, configuration 3 and 4 as well as configuration 5 to 7

are closely grouped together. Hubs could therefore not be identified using

these single packets and some other method had to be investigated.

The extra delay caused by a store-and-forward element is very close to the

theoretically calculated time it takes to transmit a packet. The round-trip
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Figure 5.2: Typical Single Packet Round-Trip Time Distributions.
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delay of the 960-byte packets in Figure 5.3, of around 80 microseconds, com-

pared very well with the transmit time calculated for a 1000-byte packet

(Equation 5.1) in Section 5.2.2. Using this knowledge it should therefore be

possible to determine if switching elements were added or removed between

a probe and target node provided that timing information was saved earlier.

One can also guess4 at the number of switches between the probing host and

the target node by subtracting the round-trip time for the 60-byte packets

from that of the 960-byte packet and dividing the answer by the delay added

by a store-and-forward element for a 960-byte packet. The 60-byte round-

trip time roughly represents the reply delay of the target host while the 960-

byte round-trip time is mostly influenced by the store-and-forward elements

present on the delivery path. A rough calculation for configuration 3 gives:

135µs−55µs
80µs

= 80µs
80µs

= 1

and for configuration 5 gives:

210µs−55µs
80µs

= 155µs
80µs

≈ 2

There is a linear (or at least very close to linear) relationship between ARP

request packet size and the round-trip time. This makes sense if we remember

that we control only the ARP request size. It is also easier to spot timing

differences using the larger packet sizes and it was decided to use larger

packets where possible in future experiments.

5.5 Packet Group Results

Section 5.4 showed that we could distinguish between three groups of net-

work configurations using single packets. It was hoped that by using groups

of packets we could find further round-trip time differences between the ex-

perimental network configurations.

4If we assume that all the store-and-forward elements operate at the same speed.
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5.5.1 Pair of Large Packets

In this experiment a pair of 960-byte packets (closely spaced in time) were

sent to the target node a total of 1000 times. The median of the round-trip

times were recorded for both of the packets. Figure 5.4 shows the results for

all the experimental network configurations.
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Figure 5.4: Large-Large Packet Group Results.

It can be seen that the first packet of the group experiences a greater delay

than the second when a hub is the final element en-route to the target node.

The additional delay can be explained by remembering the half-duplex nature

of the hub and the CSMA/CD principles as explained in Section 2.4.4. The

two large packets are sent back-to-back and the Ethernet carrier-sense [21,

p. 139] circuitry in the target node forces it to wait until the second of the

packets has been completely received before it can reply to the first packet.

The pair of large packets allows us to differentiate between network config-

urations 1 and 2, 3 and 4 as well as 5 and 6; however, configuration 7 still

produces the same results as configuration 5.
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5.5.2 Triplet of Packets (Small-Large-Small)

A triplet of packets with sizes of 60, 960 and 60 bytes respectively were sent

to the target node a total of 1000 times and the median of the round-trip

times for each of the packets was recorded. Figure 5.5 shows the results for

all the experimental network configurations.
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Figure 5.5: Small-Large-Small Packet Group Results.

It can be seen that this group of packets did not provide as good a means

of differentiation between the different network configurations as the pair

of packets in the previous (large-large packet) experiment. It is however

included in our discussion to indicate the thought processes involved and the

order in which the experiments were conducted.

The difference in behaviour of the first packet of network configuration 2

versus the other configurations is notable. One would expect the large packet

(second one sent) to cause a delay in the reply to the first (small) packet

whenever a hub is the final element en-route to the target (as in our previous

experiment), but it occurs only for configuration 2. The apparent anomaly

is explained by realising that the delay a packet experiences in a store-and-
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forward element is proportional to its size. The first small packet experiences

only a short delay en-route to the target and the target has enough time to

respond while the second larger packet is being received5 by one of the store-

and-forward elements. When no store-and-forward elements are present, as is

the case for configuration 2, the target itself has to wait until it fully receives

the larger second packet before the response to the first packet can be sent.

5.5.3 Triplet of Packets (Large-Small-Large)

For this experiment a triplet of packets was again used. Packets with sizes

of 960, 60 and 960 bytes respectively were sent to the target node a total of

1000 times and the median of the round-trip times for each of the packets

was recorded. Figure 5.6 shows the results for all the experimental network

configurations.

In this case, whenever a hub is the final element en-route to the target,

the target node has to fully receive the final large packet before it can send

replies for the first two packets. The explanation is the same as that for the

pair of large packets experiment discussed earlier (refer to Section 5.5.1). The

triplet of large-small-large packets did not provide any additional information

compared to the pair of large packets. The pair of large packets therefore

remains the best way investigated so far to determine the presence of a hub

as the last element en-route to the target node.

5.6 Packet Delay Results

The experiments discussed in Section 5.4 and Section 5.5 allowed for differen-

tiation between 6 of the 7 experimental network configurations. Knowledge

gained during these experiments about collisions and carrier-sense behaviour

on the half-duplex part of a network link suggested a procedure for distin-

guishing the final network configuration from the rest.

5During the reception of the packet by the store-and-forward element the half-duplex
link on its other port is not utilised.
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If the second packet in a large packet pair is delayed by just the right amount,

the carrier-sense circuitry of an element in half-duplex mode, anywhere be-

tween the probing host and target node, can be triggered. An experiment

was set up to again send pairs of large packets, but the second packet of the

pair was delayed by various amounts of time. The experiment was conducted

on network configuration 5 and 7. Figure 5.7 shows the round-trip time for

the first packet versus the delay before sending of the second packet.

It can be seen how the round-trip time for the first packet starts to increase

when the second packet is delayed by around 120 microseconds. In this case,

the second packet has barely made it through the half-duplex part of the link

between the probing host and target. If the second packet is delayed further,

the final switch en-route to the target has to wait a little bit longer for the

second packet to make it through the half-duplex part of the link.

The maximum delay is achieved when the second packet reaches the half-

duplex link just as the final switch en-route to the target node is about to

send the reply to the first packet (between 200 and 220 microseconds in this

case). This maximum delay is directly related to the time it takes to transmit

the second packet. The value of around 76 microseconds for the maximum

delay obtained by examining Figure 5.7 correlates well with the calculated

time of around 80 microseconds to transmit a 1000-byte packet (Equation 5.1

in Section 5.2.2).

5.7 Conclusion

This chapter introduced a set of experiments with the goal of determining the

presence of internal network elements in an Ethernet network. The results

of the experiments conducted in a controlled network environment showed

that it is definitely possible to determine when internal elements are added

or removed from the network by examining the changes in the round-trip

time of packets. Round-trip time information gathered at different dates can

therefore be compared to determine if changes occurred to the internals of a

network.
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Figure 5.6: Large-Small-Large Packet Group Results.
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Figure 5.7: Delayed Large-Large Packet Group Results.
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The round-trip time results for single packets with varying sizes (Section 5.4)

presented a method for estimating the number of store-and-forward (switch)

elements present between two nodes in the network, while results from pairs

of large packets (Sections 5.5.1 and 5.6) showed that it is possible to detect

the presence of hubs between two nodes in the network.

The work presented in this chapter was also delivered in a paper at the

Southern African Telecommunication Networks and Applications Conference

(SATNAC) in 2005 [110].
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Chapter 6

Topology Inference

6.1 Introduction and Overview

Work presented in earlier chapters showed that it is possible to identify, and

gain some knowledge about, network nodes (Chapter 4) and that it is pos-

sible to determine when network elements are added or removed from the

internal network infrastructure (Chapter 5). This chapter builds on tech-

niques developed earlier in an attempt to infer the internal structure of a live

target network.

The design, planning and execution of the live network experiments are pre-

sented in Section 6.2. Observations related to initial processing of the mea-

surement data is presented in Section 6.3. The initial observations are further

explored in Section 6.4 to create the concept of node signatures and these

signatures are then employed to create clusters of similar nodes. The simi-

larity between clusters of nodes is then exploited in Section 6.6 to infer the

connectivity between clusters of nodes. Finally, Section 6.7 presents con-

clusions drawn and future work identified during the experiments and data

processing.
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6.2 Experiment Planning and Execution

Empirical experiments were again used as the preferred method for tackling

the topology inference problem. This section provides details on the design,

setup and execution of the experiments performed on a single live corporate

Ethernet network. The tools developed during earlier experiments provided

a suitable starting point for the live network experiments.

6.2.1 Design Concept and Objective

Round-trip packet delay measurements proved successful at identifying the

addition or removal of network elements between a probing host and a target

node in a controlled network environment (refer to Chapter 5). In a live

network this addition or removal of network elements can be mimicked by

performing measurements from various network locations or viewpoints.

The number of network elements between a specific network viewpoint and a

target node can potentially change as the viewpoint changes [111]. A change

in the number of internal elements affects the round-trip delay to the target

node and it was hoped that information about the internal layer 2 structure

of the network would be revealed by comparing the measurement results from

various viewpoints.

6.2.2 Measurement Setup

The experimental setup as used during the internal network element identi-

fication, as discussed in Chapter 5, was employed for the multiple viewpoint

experiments. A short overview, with the differences between the new and

old experiments, is presented below1:

ARP packets were again used for probing target nodes, but only a pair of

960-byte packets was used during the new experiments. A PC (with an RTL-

8139 network card) running RTLinux was again used as the probing host,

1For a detailed discussion please refer to Section 5.2

 
 
 



University of Pretoria etd - Delport, J P (2007)

6.2. Experiment Planning and Execution 69

but a laptop was used for the new experiments in order to increase mobility

around the live network. The drivers and kernel module developed earlier

was used without modification, but the userspace application was adapted

to read a target list from a file.

Target List

During the internal network element identification experiments, a single tar-

get node with known MAC and IP addresses was used for all the experiments.

In order to probe target nodes on a live network it is necessary to create a

list of target node IP addresses to be used in the ARP request packets.

The procedure developed for passive node discovery as discussed in Chapter 4

came in handy and could be used for creating the target node list.

6.2.3 Execution

The probing PC was connected to a live corporate Ethernet LAN and as

a first step, passive node discovery was performed for around 2 hours. A

database table consisting of 155 unique MAC addresses was created as de-

scribed in Section 4.4. The database table was then exported to a text file

that served as a target node list for the new measurement application.

Packets were sent from the probing PC to all targets in the list from thirteen

physically distinct Ethernet endpoints in the network. The viewpoints were

manually chosen by simply moving around the building and plugging the PC

into unused Ethernet sockets. A total of 100 pairs of packets were sent to

each of the target nodes from each network viewpoint.

The probing experiment was conducted in as short a time as possible (around

3 hours) to minimise the possibility of changes occurring to the internal net-

work or target nodes. The round-trip times for each of the target nodes and

each of the viewpoints were again saved into text files for further processing.

 
 
 



University of Pretoria etd - Delport, J P (2007)

6.3. Measurement Observations 70

6.3 Measurement Observations

The experiments discussed in Chapter 5 were conducted in a very controlled

network environment where neither the network nor target nodes were loaded

in any way. A difference between the round-trip times for the controlled

versus the live network was expected, but the extent of the variation was

unknown.

Round-trip time variations were also expected in measurements conducted

from different viewpoints, but it was unclear whether the variations would

be significant enough to be detected. The following sections address these

uncertainties by looking at the low-level measurement data.

6.3.1 Round-Trip Time Distribution

Figure 6.1 shows round-trip time data measured for two configurations of

the controlled network environment used in earlier experiments (refer to Sec-

tion 5.3.1). Figure 6.2 shows data for a single target node measured from two

different network viewpoints on the live network. In each figure the round-

trip results from 100 probe packets are shown. Even though disturbances in

the live network data can be observed (probably due to either network or tar-

get node activity), it can be seen that the data from the distinct viewpoints

can be clearly separated.
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Figure 6.1: Round-Trip Time Distribution in a Controlled Network.
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Figure 6.2: Round-Trip Time Distribution in a Live Network.
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6.3.2 Viewpoint Dependent Variations

The mean of the round-trip times were calculated for each node, packet

sequence number (first or second packet) and network viewpoint. Plots of

the calculated values were initially used for visually comparing the round-trip

time variations between viewpoints.

Figure 6.3 and Figure 6.4 show plots for two target nodes where data from

seven viewpoints were processed per node and packet sequence number. It

can be seen how the round-trip time varies for each of the nodes depending

on the network viewpoint that was used during the measurement.

From the two figures it is also evident that the order in which the viewpoints

appear in the graphs (in terms of round-trip time) are different. It was

decided to use this order of viewpoint occurrence as a signature for the

specific node. If it is assumed that the internal node response time does not

change during the measurements; the signature depends only on the store-

and-forward network elements present between the measurement node and

the target node. The round-trip time decreases as the number of store-and-

forward elements between the node and network viewpoint decreases.
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Figure 6.3: Viewpoint Round-Trip Times to Node 37.

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

0.2

0.4

0.6

0.8

1

1.2

x 10
−3 Round−trip times per packet and viewpoint for node 49

packet number

tim
e 

(s
ec

on
ds

)

 

 
viewpoint A
viewpoint B
viewpoint C
viewpoint D
viewpoint E
viewpoint F
viewpoint G

Figure 6.4: Viewpoint Round-Trip Times to Node 49.
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6.4 Clustering Nodes using Signatures

In the previous section is was shown how the temporal order of round-trip

data from various viewpoints can be used as a signature for the specific target

node. If we calculate the signature for every viewpoint to all the target nodes,

we can then compare the signatures and group nodes with similar signatures.

The nodes with similar signatures should be close to each other in terms of

the network’s layer 2 topology.

A tool was created to automate the data processing task in order to experi-

ment with different numbers of viewpoints and viewpoint combinations. The

following sections explain the procedure used for processing and visualising

the collected round-trip time data.

6.4.1 Data Processing

A program was written to automatically calculate node signatures based on

data files from a number of viewpoints. The pseudo-code for the program is

presented in Figure 6.5. In essence, the program sorts the viewpoint results

per round-trip time for each node, forming a signature for the node, and then

creates clusters of nodes by comparing and matching the signatures.

The result of the program is written to a text file that indicates to which

group each node belongs.

6.4.2 Visualisation

The output data of the program presented in Section 6.4.1 was fed directly

to the neato [112] application of the GraphViz package [113]. Nodes with

similar signatures were connected using graph edges to a common group

node. Figure 6.6 shows a graph generated by using data from four distinct

viewpoints.

The group nodes created by the clustering application are numbered from

500 upwards. The other numbers in the figure identifies the target node used
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for each viewpoint data file:

calculate the mean of round-trip times per node

for each node:

if the node is visible from all viewpoints:

create a node signature by sorting viewpoints per round-trip time

if the signature is unique:

add to unique signature list

for each unique signature:

create a group node

find nodes with matching signatures and attach them to the group node

write out the groups

Figure 6.5: Pseudo-Code for Calculating and Matching Node Signatures.

Figure 6.6: Nodes Clustered using Signatures from Four Viewpoints.
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for probing. The visualisation technique immediately shows the different

signature groups and also provides a spatial dimension to the raw data.

It should be noted that the number of clusters formed does not necessarily

match the number of viewpoint data sets considered during the processing.

Physically distinct Ethernet endpoints might be connected to the same switch

and would not result in a greater number of unique signatures. Adding more

viewpoints that are not unique would only result in longer signatures that

contain redundant data.

6.5 Quantifying Signature Similarity

Nodes clustered together as per Section 6.4 have a very good chance of being

in close proximity at the data link network layer. Proximity in this case

means that they are either connected to the same network switch or that

they share a common switch close to both of them. In order to determine

the proximity of one cluster to another a method had to be found to quantify

the signature similarity between clusters of nodes.

A metric similar to the RSIM metric presented by Hu and Steenkiste [114]

was constructed. RSIM delivers a route similarity value (between 0 and 1) for

two nodes based on the Internet paths between a set of network endpoints

and the two nodes. The RSIM similarity metric increases if the number

of shared links on a path between the two nodes and a specific endpoint

increases. In our case, because there is initially no clear indication of shared

links, viewpoint pairs in the node signatures were used as a substitute for

the shared link concept.

Let sig(c) be an ordered set of viewpoint names sorted by round-trip time

(from smallest to largest in time), where c represents a cluster of nodes.

As an example, let cB represent the cluster of nodes connected to switch

B in Figure 6.7. If we assume that only switches influence packet round-

trip times, that the switches delay packet transmission by the hypothetical

duration indicated in Figure 6.7 and that packets to and from the target node
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experience the same delay, the round-trip times from the set of viewpoints

to any node in cB would be: viewpoint (VP) A = (1 × 2 + 1 × 2) = 4

units, B = (1 × 2) = 2 units, C = (1.1 × 2 + 1 × 2) = 4.2 units, D =

(1.2×2+1.1×2+1×2) = 6.6 units and E = (1.3×2+1.1×2+1×2) = 6.8 units.

Therefore, the signature would be defined as sig(cB) = 〈B,A,C,D,E〉.

Figure 6.7: Example Network, Signatures and Similarity Values.

Further, let shared(c1, c2) be the number of unique viewpoint pairs that

occur in the same order in both sig(c1) and sig(c2). Let pos(x, c) be the

position (counting from 1) of x in sig(c), for example pos(C, cB) = 3, then

shared(c1, c2) can be represented as:

shared(c1, c2) =
∑

x,y∈sig(c1)

pairshared(c1, c2, x, y) (6.1)

pairshared(c1, c2, x, y) =


1 if pos(x, c1) < pos(y, c1) and

pos(x, c2) < pos(y, c2)

0 otherwise

(6.2)

As an example, let cB and cC represent the clusters of nodes attached to

switches B and C in Figure 6.7 respectively. The function shared(cB, cC)

would increment by one for the signature pairs {B,A}, {B,D}, {B,E},
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{C,D}, {C,E} and {D,E}. Therefore shared(cB, cC) = 6.

The maximum value of the shared function is attained when it is used to

compare identical signatures. In this case the sum takes on the form:

1 + 2 + 3 + . . .+ n

where n is one less than the number of viewpoints present in the signature.

We define this sum as total(c1, c2) and it can be rewritten as:

total(c1, c2) =
n(n+ 1)

2
(6.3)

The total function value for the example network in Figure 6.7 would be
4(4+1)

2
= 10.

Finally, we can define our similarity metric as:

similarity(c1, c2) =
shared(c1, c2)

total(c1, c2)
(6.4)

The similarity values for some cluster pairs in the example network are in-

dicated next to graph edges in Figure 6.7. The higher the similarity value

between clusters, the better the chances are that the two clusters are directly

connected.

6.6 Topology Inference Using Signature Sim-

ilarity

The metric presented in Section 6.5 can be calculated for all possible pairs

of node clusters (as identified in Section 6.4). The similarity value between

pairs of clusters can then act as a guideline to indicate if two clusters should

be connected to recreate the network topology. An application was written to

programmatically recreate and visualise a network topology from signature

similarity values.
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The following sections describe the thought process followed in the attempt

to firstly recreate the topology of the test network shown in Figure 6.7 and

to secondly infer the topology of the measured live network.

6.6.1 Example Network

If one blindly connects all node clusters of the test network shown in Fig-

ure 6.7 the result is as shown in the left graph in Figure 6.8. Since an Ethernet

LAN is not allowed to contain loops [32], a method had to be found to elim-

inate some of the edges in the graph. A threshold value was introduced to

ignore edges (representing connections between clusters) with a similarity

value less than the threshold.

The graph to the right of Figure 6.8 shows the recreated topology of the

test network with a similarity threshold value of 0.5. It can be seen that the

graph matches the topology of the example network in Figure 6.7.

Figure 6.8: Example Recreated Network Graphs.

At this stage it was hoped that a single threshold value would also allow the

reconstruction of the live network topology.

6.6.2 Live Network

The similarity metric was also calculated for measurement data obtained

from the live network. Figure 6.9 shows an example network graph created by

using the data from five different network viewpoints and a threshold value of

0.55. The five viewpoints were selected based on the fact that they generated
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clusters of nodes with five unique signatures. It can be seen that the graph

illegally contains a loop [32] and in order to eliminate it the threshold value

was increased.

Figure 6.10 shows the same network graph as in Figure 6.9, but with a

threshold value of 0.8. The larger threshold value allowed the removal of

more edges, but caused some node clusters to become disconnected from the

rest of the graph. The disconnectedness is unacceptable since we were able

to receive responses from these nodes by probing from all the viewpoints.

Other threshold values were tried, but no single threshold value was found

where the generated graph for the live network was without loops and where

all the node clusters were connected. A simple heuristic was developed in an

attempt to remedy the situation:

Start from a graph without any loops and increase the threshold value

steadily while noting where edges between node clusters appear. If an edge

appears that causes a loop in the network, remove the edge from the graph;

otherwise, leave the edge in the graph.

It was found that the heuristic worked satisfactorily where data from certain

numbers and combinations of viewpoints were considered, but that it also

failed for some scenarios. In the case of the five viewpoints used to generate

Figure 6.9 and Figure 6.10 the heuristic failed in that two edges that create

a loop in the network appear at the exact same threshold value. Figure 6.11

shows the two edges (using bold dashed lines) that appear simultaneously at

a threshold value of 0.6.

The only way that was found to overcome this limitation, was to use data

from more viewpoints to try and eliminate the ambiguity. Figure 6.12 shows

the network graph created by employing the heuristic developed earlier and

the data from six distinct network viewpoints. All the node clusters were

connected without loops. Note how the additional viewpoint data caused a

split of the leftmost cluster in Figure 6.11.

The data obtained during the passive node identification phase of our exper-

iments allowed us to convert the node numbers in Figure 6.12 into computer
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Figure 6.9: Reconstructed Network Graph using Data from Five Viewpoints
with Some Edges Removed Based on a Similarity Threshold of 0.55.

Figure 6.10: Reconstructed Network Graph using Data from Five Viewpoints
with Loops Removed Based on a Similarity Threshold of 0.8.
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Figure 6.11: Reconstructed Network Graph using Data from Five Viewpoints
Showing Edge Appearing Simultaneously at a Similarity Threshold of 0.6.

Figure 6.12: Reconstructed Network Graph using Data from Six Viewpoints
with All Clusters Connected.
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names. The names confirmed that node clusters in close proximity in the

graph were also in close physical proximity in the building where the experi-

ments were performed. In other words, the topology of the generated graph

conformed to the physical layout of the building. Unfortunately, no link layer

map of the network was available for comparison and we can therefore only

speculate about the accuracy of the recreated topology.

6.7 Conclusion

The measurement and scanning techniques developed in earlier chapters al-

lowed us to design and execute new experiments in an attempt the infer

the layer 2 topology of a live network. It was shown that processing of the

data gathered by the live network experiments could identify groups of nodes

using the concept of node signatures.

The signature concept of the identified node clusters was further expanded to

develop a similarity metric between clusters. The similarity metric combined

with a heuristic was then used to infer the connectivity between the clusters.

Even though a topology could be recreated, there exists uncertainty as to its

accuracy. The accuracy is definitely influenced by the specific locations and

the number of network viewpoints used. It could therefore be useful to in

future determine the optimal location of viewpoints or to ascertain whether

more viewpoints need to be considered during measurement or processing.

The accuracy of the topology reconstruction technique could not be con-

firmed due to the unavailability of a network map and this deficiency is the

topic of the next chapter, Chapter 7.
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Chapter 7

Reconstruction Simulations

7.1 Introduction and Overview

The previous chapter showed that it is possible to infer the layer 2 topology

of a live network, but that there was no measure of how accurate this inferred

topology was. Lack of accurate internal network maps makes verification of

the reconstruction technique in a live network environment almost impos-

sible. One way to test the algorithm and heuristic developed earlier is to

create a known network topology in software, perform simulated measure-

ments on this network, process the results of these virtual measurements and

compare the inferred topology with the known starting conditions. These

reconstruction simulations are the focus of this chapter.

Three main questions were investigated using the simulations:

1. Are the reconstruction algorithm and heuristic accurate when we con-

sider all possible viewpoints and assume perfect measurements?

2. How does the accuracy degrade if measurement errors are introduced

into the round-trip time of packets?

3. How does the number of viewpoints influence the accuracy of the in-

ferred network topology?
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As a first step, we needed to create experimental network topologies and

this problem is addressed in Section 7.2. The simulation of measurement

experiments is discussed in Section 7.3 and Section 7.4 deals with the problem

of topology reconstruction and comparison. Once the simulation techniques

were refined they were used in Monte Carlo method simulations to determine

the accuracy of our reconstruction algorithm and heuristic. The results of

the simulations are presented in Section 7.5. Conclusions are presented in

Section 7.6.

7.2 Topology Generation

Literature concerning topology generation for simulation mainly focus on

creating Internet layer 3 topologies [10, 60]. These generated topologies typ-

ically contain hundreds to thousands of nodes and need to match real-world

networks in terms of statistical node distribution and connectivity. In our

case a simpler approach could be followed, as the primary objective was the

testing of our topology reconstruction algorithm at layer 2 of the network.

The constructed networks in our case contained less than a hundred nodes,

but we generated a multitude of different network topologies to test the re-

construction algorithm against.

The following sections describe the procedure that was followed to generate

the test network topologies for the simulation.

7.2.1 Software Representation and Manipulation

In order to perform simulated measurement of delays from a specific location

(or viewpoint) in the network towards a target location, it was required

to generate a known and valid abstract network representation in software.

“Known” means that we can store the topology of the network in a format

that is unambiguous and that the format can be used for easy comparison to

a reconstructed network topology stored in the same format. “Valid” means
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that the generated network represents an Ethernet network containing no

loops [32]1.

It was decided to construct a graph with its vertices representing computer

nodes (be it measurement or target nodes), edges representing network links

between nodes and edge weights2 representing packet delivery delays when

sending a message from one node to another. By using the graph in this

manner, the sum of the edge weight values along a path from one vertex to

another represents the total one way delay experienced by a packet travelling

between the selected vertices or nodes.

The Boost Graph Library [115] provides a set of C++ classes and algorithms

for easy construction and manipulation of graph objects. This library proved

very useful in the generation of test network topologies as well as for recon-

struction of networks.

7.2.2 Creation of a Fully Connected Graph

As a first step in creating an experimental network topology, we created a

fully connected (also called complete [116, p. 29]) graph. In this graph every

pair of vertices are connected by a single edge. It was decided to randomise

the edge weights in the graph in order to create variations in the topology

that would emerge during further processing (see Section 7.2.3).

The variables that could be chosen at the time of graph creation are the

number of vertices, a random number generator seed value and a maximum

random number range. The seed allows for the creation (and possible later

recreation) of a specific pseudo-random number sequence, while the range

value places a limit on the integer value created by the random number

generator.

Programmatically the graph is constructed using the procedure shown in the

pseudo-code in Figure 7.1.

1The fact that a valid Ethernet topology does not contain loops also simplifies the
network generation when compared to generation of Internet topologies.

2A value that can be associated with every edge.
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initialise the random number generator using seed

create a single graph vertex

until the requested number of vertices have been added:

add a vertex (A) to the graph

for all the previously existing vertices (B):

generate a random number (R) in the allowed range

add an edge from (A) to (B) using (R) as the weight

Figure 7.1: Pseudo-Code for Creating a Fully Connected Graph.

Figure 7.2 shows a fully connected graph with 7 vertices on the left side of the

figure. The edge weights were calculated as pseudo-random integer values

between 0 and 100.

7.2.3 Pruning of Graph Edges

As the final step in the creation of our test network topology we needed to

eliminate all the unnecessary edges from the complete graph as generated in

Section 7.2.2. A valid Ethernet network does not contain any loops, but we

need a path to exist between any chosen pair of nodes in the network. The

problem of finding a subset of graph edges that still connects all the vertices

in the graph, while also minimising the total weight (sum of the edge weights)

of the graph, has been investigated as early as the 1950’s [117]. The problem

is commonly referred to as the minimum spanning tree problem [115, p. 89].

The Boost Graph Library contains an implementation of Kruskal’s algorithm

[117] for finding the minimum spanning tree of an undirected graph. This

algorithm was used to reduce the complete graph that was produced earlier to

a graph representing a valid Ethernet network. The topology of the resulting

graph depended on the random edge weights assigned during the creation

of the complete graph and in this way a multitude of topologies could be

generated by varying the random number seed used initially.

Figure 7.2 shows the minimum spanning tree (right side of the figure) created
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from the original complete graph (left side of the figure).

Figure 7.2: Example Generated Test Network.

7.3 Measurement Simulation

Once an experimental network topology was created, we needed to simulate

network delay measurements similar to the physical measurements described

in Chapters 5 and 6. The experimental topology was purposefully set up so

that graph edge weights represented packet delivery delays. The problem of

finding the total delay experienced by a packet travelling between two nodes

therefore reduced to summing the edge weights along the path between the

vertices representing the nodes.

The Boost Graph Library was again employed for the task of summing edge

weights along paths between vertices. The library contains an implemen-

tation of Dijkstra’s shortest path algorithm [118]. The algorithm finds the

shortest paths and calculates the path lengths between a single source vertex

and all other graph vertices. Because our test networks do not contain loops,
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the shortest path corresponds to the only path between two nodes.

Depending on our specific experimental need we could now simulate the

measurement of delay between a specific network viewpoint and any target

nodes by using Dijkstra’s algorithm on our experimental network. The path

lengths calculated by the algorithm were stored in a text file that was used

during further processing and reconstruction.

7.4 Reconstruction and Comparison

This section deals with the problem of programmatically reconstructing a

network topology from virtual measurement data as generated by simula-

tion. The focus is now placed on testing the accuracy and robustness of our

reconstruction algorithm and heuristic as presented in Section 6.6.

The process consists of three steps, namely:

1. Calculate viewpoint similarity based on the measured delay data.

2. Rebuild the network topology using the similarity data.

3. Compare the resulting topology to the initial test network topology.

In order to ease the explanation of the three steps, we assume for now that

perfect network measurements could be performed. Variations on this special

case are presented and discussed in the results section (Section 7.5).

7.4.1 Viewpoint Similarity

The simulated measurement results (as described in Section 7.3) were used

to calculate a similarity value between network viewpoints. The similarity

metric as discussed in Section 6.5 was again used, but with a slight modifi-

cation: Instead of purely comparing the relative position of two viewpoints

in a signature, we compared the differences between the path lengths to the

respective viewpoints.
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The calculation is best described by a piece of pseudo-code as shown in

Figure 7.3. Note that the code is specific to the assumed case of perfect

measurement results.

load path lengths for all viewpoints

for all pairs of viewpoints (v1, v2):

set similarity between v1 and v2 to 0

for all pairs of target nodes (t1, t2):

calculate delay differences (d1, d2):

d1 = path length(v1 to t1)− path length(v1 to t2)
d2 = path length(v2 to t1)− path length(v2 to t2)

if d1 is equal to d2:

add 1 to the similarity between v1 and v2

write out the similarity between v1 and v2

Figure 7.3: Calculating Viewpoint Similarity – Perfect Measurements.

The similarity idea can also be visualised in the following way. Imagine that

a network (for example, the one on the right of Figure 7.2) consists of marbles

connected by pieces of string where the marbles represent vertices, the strings

represent edges and the string lengths represent edge weights. To find out

how similar two viewpoints (or vertices) are, pick up the network in turn

by holding each of the two marbles representing the viewpoints and let the

other marbles hang down freely. The degree to which the patterns3 formed

by the hanging marbles match between the two views gives an indication of

the viewpoint similarity.

The similarity values were written into a text file with each line containing

the similarity value (as the first element) and the two node or viewpoint

numbers (as the second and third elements). The text file was then sorted

so that the highest similarity values were at the top of the file. The sorted

file eased the execution of our heuristic for topology reconstruction. As an

example, the sorted similarity values for the test network shown in Figure 7.2

are given in Table 7.1.

3Especially the distance between pairs of marbles.
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Table 7.1: Calculated Similarity Values when using Perfect Measurements.

Similarity Node 1 Node 2

15 4 5
15 2 3
15 0 6
15 0 1
11 3 5
10 3 4
10 1 6
9 0 3
7 3 6
7 2 5
7 1 3
6 2 4
6 0 2
5 0 5
4 2 6
4 1 2
4 0 4
3 5 6
3 1 5
2 4 6
2 1 4
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7.4.2 Reconstruction Heuristic

Once the similarity values between viewpoints were calculated and sorted, we

employed our heuristic developed in Section 6.6 to reconstruct the network’s

topology.

The heuristic proved easy to code once a function was developed for detecting

loops in the network topology. The Boost Graph Library was again employed

as it contained a depth-first search algorithm [115, p. 67] ready for use. The

depth-first search algorithm calls a class method once it detects a back edge4

and this immediately indicates that a loop exists in the current network

topology being searched.

The procedure is shown in the pseudo-code in Figure 7.4. Since the file

containing the similarity values was sorted previously, we could easily process

one line at a time and be sure that the highest similarity values were processed

first.

create an empty graph with no edges

while lines exist in the similarity file:

read the two viewpoint (v1 and v2) numbers

add an edge between v1 and v2

if a loop exists in the network:

remove the edge between v1 and v2

write out all existing edges

Figure 7.4: Pseudo-Code for Reconstructing a Network Topology.

7.4.3 Comparison

The final processing step during both the initial test network construction

phase (see Section 7.2) and the network reconstruction phase writes out graph

4A back edge represents a connection from a vertex to one of its ancestors in a search
tree [115, p. 67].
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edges in a textual format. Every edge is written out onto a single text line

as two numbers representing the edge endpoints. The smaller of the two

numbers is written first.

The initial test network and the reconstructed network could now be com-

pared by first sorting the lines of their two textual representations5 and then

textually comparing6 the two files.

Vector graphics7 representations of the test and reconstructed networks were

also saved into files that could be used for visual inspection. Visual inspection

of the topologies helped to identify differences when the textual comparison

failed.

7.5 Monte Carlo Method Results

The whole process, as described in the previous sections, from test network

construction to reconstruction and comparison was automated so that a mul-

titude of simulations could be performed. Simulation parameters were varied

prior to individual simulations in order to create a variety of scenarios.

Three groups of simulations were considered in order to test the accuracy

and robustness of our reconstruction algorithm and heuristic:

1. Assume perfect measurements from all network viewpoints.

2. Introduce measurement errors when calculating path lengths (network

delays).

3. Use only measurement data from a subset of the network viewpoints.

The execution and results of these simulations are presented in the following

sections.

5The Unix sort --general-numeric-sort command was used to sort the files using
general numeric value.

6The Unix diff command was used.
7The Scalable Vector Graphics (SVG) file format was used. Refer to http://www.w3.

org/Graphics/SVG/.
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7.5.1 Perfect Measurements

We started out by assuming that perfect network measurements can be per-

formed. A failure of the algorithm to generate an exact replica of the test

network topology under these conditions would have indicated a serious flaw

and would have forced revision of the algorithm.

Network Generation and Measurement

The procedure for creating an experimental network as described in Sec-

tion 7.2 was used with an additional step added: After the network with-

out loops was constructed, the edge weights of this network was again ran-

domised. The extra randomisation step ensured that we did not only test

the algorithm against the minimal spanning tree constructed network.

The parameter ranges used during the network generation phase were:

• Number of nodes: 5, 10, 20 and 50

• Random number generator seed: 0 to 499

• Random number (used as edge weight) range: 0 to 1000

Simulated measurements were now performed from every node in the network

to every other node (refer to Section 7.3). The path lengths from a specific

viewpoint to all nodes in the network were stored in a text file indexed by

the viewpoint number.

Reconstruction and Comparison

The reconstruction of network topologies and comparison with the generated

test networks proceeded exactly as described in Section 7.4.
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Results and Observations

A total of 4000 simulation runs were performed (500 for every network size)

and the reconstructed network topology matched that of the generated topol-

ogy in every single case.

Figure 7.5 shows example topologies for a generated test network (on the left)

and the reconstructed version of the network (on the right). The network

has 20 nodes and a seed value of 53 was used during generation.

Figure 7.5: Generated (left) and Reconstructed (right) Topology.

The simulation results showed that our similarity metric and reconstruction

heuristic performed without error when perfects measurements are used. It

provided a good starting point for further simulations and questions.

7.5.2 Measurement Errors

The positive results obtained during reconstruction simulations using perfect

measurements (see Section 7.5.1) created confidence in our reconstruction al-

gorithm and heuristic; however, in a real network it is impossible to generate

these perfect measurement results. The algorithm was now tested in a sim-

ulation environment where measurement errors were introduced.
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Network Generation and Measurement

Experimental network topologies were again constructed as described in Sec-

tion 7.2. The edge weights were however changed to a fixed value of 100

units after the network was constructed. The fixed value simulated a net-

work where a predetermined and constant packet delivery delay is introduced

by every network element. This situation would typically occur in a network

where all the elements operate at the same bit rate. The fixed value also

allowed for easier evaluation and quantification of the effects produced by

measurement errors of various sizes.

The parameter ranges used during the network generation phase were:

• Number of nodes: 5, 10, 20 and 50

• Random number generator seed: 0 to 1999

• Random number (used as edge weight in initial network) range: 0 to

1000

The shortest path algorithm as described in Section 7.3 was again used to

calculated the path length from every network viewpoint to all others, but

an error was added to the path length before it was written to the output

file. The error was calculated as a random value between 0 and upper limits

of 50, 55, 60, 65 and 70. The choice of the error range values would become

clear in the following sections.

Reconstruction and Comparison

The viewpoint similarity code as described in Section 7.4.1 could not be

used as it assumed perfect measurements and used a direct comparison of

path length differences. The similarity metric code was adjusted to not

only increase similarity between nodes when path length differences matched

exactly, but also when they were within the fixed edge length value chosen in

the network creation phase. The adjusted pseudo-code is shown in Figure 7.6.
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load path lengths between viewpoints

for all pairs of viewpoints (v1, v2):

set similarity between v1 and v2 to 0

for all pairs of target nodes (t1, t2):

calculate delay differences (d1, d2):

d1 = path length(v1 to t1)− path length(v1 to t2)
d2 = path length(v2 to t1)− path length(v2 to t2)

if the absolute difference between d1 and d2 is less than 100:

add 1 to the similarity between v1 and v2

write out the similarity between v1 and v2

Figure 7.6: Calculating Viewpoint Similarity – Measurement Errors.

It is tempting to calculate d1 and d2 by using the absolute value of the

difference between the path lengths, but taking the absolute value discards

information about the temporal order of the viewpoints in the node signatures

and results in erroneous similarity values.

Application of the reconstruction heuristic and comparison of topologies were

performed as described in Section 7.4.

Results

A total of 40000 simulation runs were completed covering the range of input

parameters. The results of the simulations are shown in Table 7.2.

Perfect Reconstruction Perfect topology reconstruction occurred when

the error range for the measured path lengths were set to 50 units or below.

This specific value where perfect reconstruction occurs can be explained by

the setup of our initial test topology and the way we compare path length

differences to calculate node similarity. In our similarity metric discussed

earlier (see Figure 7.6), we compared path length differences to pairs of target

nodes and increased similarity if the absolute difference was less than 100

units.
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Table 7.2: Reconstruction Results when Measurement Errors are Introduced.

Topologies Topologies
Nodes Error Range Matched Did Not Match

5 50 2000 0
10 50 2000 0
20 50 2000 0
50 50 2000 0

5 55 1999 1
10 55 1995 5
20 55 1936 64
50 55 1237 763

5 60 1989 11
10 60 1934 66
20 60 1497 503
50 60 48 1952

5 65 1956 44
10 65 1786 214
20 65 893 1107
50 65 1 1999

5 70 1924 76
10 70 1568 432
20 70 431 1569
50 70 0 2000
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When the error range is set to 50, the maximum path length error is 49

units and the minimum error is 0 units. The maximum difference between

two paths is therefore 49 − 0 = 49 units and the minimum difference is

0 − 49 = −49 units. If we now assume the worst case when comparing

path length difference between two viewpoints, the maximum difference that

can be attained is 49 − (−49) = 98 units. The error is therefore always

small enough to pass our similarity test and the network topology can be

reconstructed perfectly.

Reconstruction Errors As soon as the path error range was increased

above 50 units, the reconstruction algorithm started to fail in specific cases. It

was also clear from the results that the chance of reconstructing an erroneous

topology increased as the error range was increased and also as the number

of nodes in the network was increased.

An increase in the error range caused our similarity metric to fail more often,

as the chance of encountering path differences that did not satisfy our con-

dition for similarity increased. Similarly, an increase in the number of nodes

in the network caused a lot more paths to be evaluated and also increased

the chance of encountering and error.

It is interesting to note how the algorithm actually fails. If we consider the

results of a network with 10 nodes and an error range of 55, we see that only

5 out of the 2000 reconstructions were incorrect. In all 5 cases two nodes at

the edge of the reconstructed network were swapped. Figure 7.7 shows an

example of one of the failed reconstructions. The generated test network is

on the left and the reconstructed network on the right of the figure. It can

be seen that nodes 6 and 8 are swapped.

Table 7.3 shows the distribution of errors made during reconstruction for

an error range of 55 units. It can be seen that the majority of reconstruc-

tion errors are due to the difference in a single network edge between the

reconstructed and test networks.

Figure 7.8 shows the worst reconstruction result for a 50 node network and

an error range of 55. The generated test network is at the top and the
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Table 7.3: Error Distribution for an Error Range of 55 Units.

Reconstruction Errors
Nodes 1 2 3 4 Total

5 1 0 0 0 1
10 5 0 0 0 5
20 63 1 0 0 64
50 604 136 21 2 763

reconstructed network at the bottom of the figure. It can be seen that 4

errors occurred during reconstruction, but that the errors are still towards

the outer edge of the network.

Figure 7.7: Reconstruction Error at the Edge of a 10 Node Network.

For error ranges larger than 55 the number of errors in the reconstructed net-

works increased at an alarming rate. The errors still occurred mostly toward

the outer edges of the networks, but whole branches of the reconstructed

networks differred from those of the test networks.

Conclusive Observations

The reconstruction algorithm delivered accurate results provided that the

measurement error on path lengths were less than half of the minimum edge
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Figure 7.8: Reconstruction Errors at the Edge of a 50 Node Network.
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length. In physical terms it means that network delay measurements to any

specific target node must be accurate to less than half of the minimum delay

experienced by a packet passing through any of the network elements en

route.

It was also satisfying that when the reconstruction algorithm failed due to

measurement errors, the topology errors were towards the edge of the network

and not at the network core.

7.5.3 Limited Viewpoints

All the simulations considered thus far assumed that we could obtain mea-

surement data from all the nodes or viewpoints in the network. This section

deals with the final set of simulations where the effects of measuring network

delays from only a limited number of network viewpoints were investigated.

Network Generation and Measurement

Network topologies were constructed using the same procedure as described

in Section 7.5.1.

Instead of performing simulated measurements from every node in the net-

work to all the other nodes (as in Section 7.5.1), the simulation allowed for

specifying a list of nodes to be excluded from simulated measurements.

Reconstruction and Comparison

The reconstruction of network topologies and comparison with the generated

test networks proceeded as described in Section 7.4. The only difference was

that similarities were only calculated between viewpoints for which simulated

measurements were performed earlier.
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Results and Observations

As soon as a viewpoint is excluded from the measurement simulations it could

not be evaluated during reconstruction and was therefore missing from the

reconstructed network. Comparison between a reconstructed network, with

one or more nodes missing, and the test network would therefore always

fail. Statistics of comparison results could not produce any insight into the

effects of excluding certain viewpoints from the reconstruction process. It

was therefore decided to focus on a few topologies and visually examine the

effect of increasing the number of excluded nodes.

Figure 7.9 shows how an initial network topology changed as nodes or view-

points were excluded during the reconstructions process. The initial topology

is shown in the top left corner of the figure and the node about to be ex-

cluded is drawn using a stippled edge. The next topology in the sequence

then shows the reconstructed network with the node excluded.

The figure shows the importance of using data from enough viewpoints to

identify the true network topology. Viewpoints close to the core of the net-

work, especially when they have multiple branches, have to be used for mea-

surement to minimise ambiguity in calculating the final topology. The figure

also shows how the algorithm tries to preserve the number of hops between

all nodes in the network. When a viewpoint or node close to the core of the

network is ignored during reconstruction, it is replaced by another node.

7.6 Conclusion

The main aim of the simulations presented in this chapter was to gauge

how accurate the topology inference technique developed in Chapter 6 was.

The simulations showed that very accurate topologies can be reconstructed

provided two conditions were met:

1. The measurement error on the round-trip delay measured to a target

node has to be less than half of the minimum delay experienced by the

packet inside a network element en route to the target.
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Figure 7.9: Reconstruction Errors when using Limited Viewpoints for a 20
Node Network.
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2. Measurements have to performed from a large set of unique network

viewpoints or locations.

The measurement error condition is met by our measurement technique intro-

duced in Chapter 5, but the second condition, of enough unique viewpoints,

is not easily met in an ad hoc measurement experiment as the one conducted

in Chapter 6. Identifying all unique network viewpoints requires a network

topology map and this is what we are trying to create in the first place. The

technique for estimating the number of switches between a probe and a tar-

get node, as developed in Section 5.4, might be useful to identify viewpoints

that were missed during initial measurements.

The simulation results also provided insight into how the topology generated

by the reconstruction algorithm degrades as errors, either measurement errors

or lack of viewpoint measurements, are introduced.
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Chapter 8

Conclusion

8.1 Completed Work

At the outset of our investigation we set ourselves the ambitious goal of dis-

covering the physical topology of an Ethernet network. The research problem

was approached from various angles and the completed work is summarised

in the following paragraphs.

The literature study, that was performed as part of our research, was sum-

marised in Chapters 2 and 3. Chapter 3 discussed related research in the

area of network topology discovery and also identified a specific subproblem

that became the focus of our research, namely the problem of discovering

the physical topology of an Ethernet network without cooperation from the

network’s elements. It was also realised that the research problem required

investigation into the workings of Ethernet hardware and protocols. The re-

sults of this specific investigation was the focus of Chapter 2 and established

the context for the rest of our work and experiments.

Chapter 4 concentrated on the development of techniques in order to identify

as many nodes of the Ethernet network in a passive manner as possible. It

was shown that a list containing the hardware and IP addresses of the nodes

present in the network could be created and that the list could be combined

with additional identifying information such as the network device vendor
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and the host’s browser name to create an inventory of devices on the network.

The discovery of the elements internal to the network was the focus of Chap-

ter 5. It was shown that network elements could be identified by exploiting

the effects they have on the delivery time of ARP packets. The half-duplex

nature of Ethernet hubs reveals these elements, while the store-and-forward

delay that network switches introduce reveals their existence at the data link

network layer.

The techniques developed in Chapter 4 and 5 were combined in Chapter 6 in

an attempt to infer the topology of a live Ethernet network. The experiments

led to the development of an algorithm and a heuristic that could be used

to infer the topology of a network based on round-trip time measurements

towards target nodes made from various positions in the network.

The accuracy and robustness of the algorithm developed in Chapter 6 could

not be determined due to the unavailability of an accurate network map

for comparison. Chapter 7 employed computer simulations in order to sup-

port, refine and test the topology inference algorithm. The simulations also

provided insights into the limitations of the algorithm.

We have shown that it is possible to infer the topology of an Ethernet network

provided certain constraints are met. These constraints and limitation are

the topic of the following section. Reflection during the work (and also after

the work had been completed) also identified opportunities for possible future

work and these are the topic of Section 8.3.

8.2 Limitations

Our experiments, performed to identify the internal hubs and switches of

an Ethernet network (the focus of Chapter 4), were performed in a very

controlled test environment where the network elements all performed at

the same speed. The assumptions and reasoning about the behaviour of

network elements might prove invalid in the presence of, for example, mobile
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or wireless nodes. The effectiveness of the technique can therefore not be

assured for all possible network environments.

The simulations conducted in Chapter 7 showed that placement of the mea-

surement points in the network is of utmost importance in order to generate

an accurate network topology. In a large network it might be impractical

to physically move a single measurement station to all the relevant positions

in the network. One solution might be to place measurement software into

nodes, but this immediately requires cooperation from the nodes. It is also

difficult to determine where relevant measurement positions are, because the

very artifact that would help, a network map, is what we are trying to create.

8.3 Future Work

In Chapter 6 the concept of node clusters was created and we then connected

these clusters in order to form a larger network topology. Instead of merely

connecting these clusters, it might be possible to use the signature similarity

between the clusters as an attractive force in the network graph. Clusters

with similar signatures would then automatically move closer together if a

suitable spring- or force-based network layout tool can be constructed or

identified.

During our reconstruction simulations described in Chapter 7 it was shown

that a network element disappears from our reconstructed topology when

measurements from that specific network position are discarded during pro-

cessing. It might be possible to reconstruct the appearance of the network

from a specific location by using measurements towards that location. This

could especially be useful where an internal network element, such as a man-

aged switch, has a layer 2 network address that can be used as the target

address for measurements.

The errors made by our reconstruction algorithm, when a limited number of

viewpoints in the network were considered (refer to Section 7.5.3), were only

illustrated visually. A more stringent mathematical approach might provide
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improved quantification of the errors.

The round-trip delays experienced by single ARP packets of various sizes

showed that an estimate could be made about the number of store-and-

forward elements present between the measurement node and a target node

(refer to Section 5.4). Information about the number of elements present

between a measurement point and target node could be combined with the

results of the reconstruction algorithm to identify nodes missing from the

reconstructed graph. These nodes could then either be manually added to

the network graph, or an attempt could be made to perform measurements

from these nodes. In the same way, the technique used in Chapter 5 to

identify hub elements internal to the network could be used to augment the

map created by our reconstruction algorithm.

Network simulations, while proving extremely helpful, are not a substitute

for empirical real-world experiments. Experiments using real networks would

therefore provide the ultimate test for the reconstruction techniques and

algorithm that was developed.

Despite the limitations and possible improvements mentioned in this and the

previous section, the reconstruction techniques were developed in an area

where shortcomings in related techniques were identified. It is hoped that

the strengths of the techniques developed during the course of this research

effort could be combined with existing and related techniques in order to

create improved topology discovery tools.
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Glossary of Abbreviations

AFT Address Forwarding Table

ANSI American National Standards Institute

ARP Address Resolution Protocol

ARPA Advanced Research Projects Agency

CAIDA Cooperative Association for Internet Data Analysis

CDP Cisco Discovery Protocol or Cabletron Discovery Protocol

CRC Cyclic Redundancy Check

CSMA/CD Carrier Sense Multiple Access with Collision Detection

DDoS Distributed Denial of Service

DHCP Dynamic Host Configuration Protocol

EDP Extreme Discovery Protocol

FCS Frame Check Sequence

FIFO First-In-First-Out

GNU GNU’s Not Unix
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GPL GNU General Public License

ICMP Internet Control Message Protocol

IDS Intrusion Detection System

IEEE Institute of Electrical and Electronics Engineers

IETF Internet Engineering Task Force

IPv4 Internet Protocol version 4

ISO International Organisation for Standardisation

LAN Local Area Network

LLC Logical Link Control

LLDP Link Layer Discovery Protocol

MAC Medium Access Control

MIB Management Information Base

NAC Network Access Control or Network Admission Control

NDP Nortel Discovery Protocol

NMS Network Management Systems

OAM Operational, Administration and Maintenance

OSI Open Systems Interconnection

OUI Organisationally Unique Identifier

PC Personal Computer

PCI Peripheral Component Interconnect
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PDML Packet Details Markup Language

QoS Quality of Service

REDD RTLinux Ethernet Device Drivers

RFC Request For Comments

RTLinux Real-Time Linux

SATNAC Southern African Telecommunication Networks and Applica-

tions Conference

SMB Server Message Block

SNMP Simple Network Management Protocol

SQL Structured Query Language

SVG Scalable Vector Graphics

TCP/IP Transmission Control Protocol/Internet Protocol

UDP User Datagram Protocol

UTP Unshielded Twisted Pair

VOIP Voice over IP

VP Viewpoint

XML eXtensible Markup Language
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