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Abstract
Temporal Text Mining (TTM) is the task of discovering 
temporal patterns in text collected over time. This is useful in
application domains where each entity of text in a text stream 
(usually a document or publication) has a meaningful 
timestamp [2]. 

For example, research papers in the field of Bayesian 
analysis have publication dates that can be viewed as time 
stamps. In this text stream, interesting temporal patterns 
could exist. 

A research field such as Bayesian analysis could inherit 
patterns of change over time. These patterns could include 
evolution in research topics and sphere of interest of 
researchers. 
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Abstract (cont.)
The aim of this study is to evaluate the discovery of temporal 
themes in a text stream.

We evaluate a probabilistic model for unsupervised learning 
to solve the problem and a scheme for theme evolution 
visualisation is proposed. 

The proposed methods will be evaluated on a collection of 
Bayesian Analysis abstracts (www.bayesian.org). The output 
will be a temporal summary of Bayesian related research 
themes and how they evolve over time, captured in a graph
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Definitions

Data: Collection of time-indexed documents:

{ }TdddC ,...,, 21=

Each document is a sequence of words from a 
vocabulary set:

{ }NwwwV ,...,, 21=
Collection C is partitioned into subcollections defined by 
time intervals. A subcollection of C consists of 
documents in the time span that defines the 
subcollection.
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Themes

A theme in a text collection C is a probabilistic 
distribution of words that characterises a semantically 
coherent topic [2].

Theme i is represented by 

Each theme in the text collection is represented by a 
multinomial distribution. This is also known as a 
unigram language model:

{ } Vwwp ∈)|( θ 1)|(
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Multinomial Mixture Model
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are k multinomial models that represent k themes in 
document collection C

The multinomial mixture model is [3]:

kθθ ,...,1
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Multinomial Mixture Model (cont.)

The log-likelihood of collection C
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Estimate model parameters:
EM (expectation-maximisation) Algorithm [4]

E-step: Compute the expected values      of the hidden 
indicator variables .ijz

ijp

ijz = 1 if data was generated by the ith component

= 0 otherwise

M-step: Find new values of the parameters that 
maximises the likelihood of the data
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Updating Formulas

indicates word w document d is generated using 
theme j [2]
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Non-informative Priors:

Dirichlet : The conjugate prior distribution for the parameters 
of the multinomial distribution [6]:
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Data

Abstracts downloaded from abstract archive located at the 
Duke University Institute of Statistics and Decision Sciences 
(ISDS).

Website: www.bayesian.org

236 abstracts from 1995 to 2003
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Experiment
Partition data into three time intervals

1995-1997 1998-2000 2001-2003

d = 93 d = 106 d = 37
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Results: 1995 - 1997

0.0099human0.0125flexible0.0079evaluate0.0076non-Bayesian

0.0099undergoing0.0125Gibbs0.0079approximated0.0076investigation

0.0099time-varying0.0126crucial0.0079averaging0.0076passing

0.01multivariate0.0126build0.0079strategies0.0077namely

0.01components0.0127identification0.0081mean0.0116estimated

0.0103diseases0.0127smoothly0.0081orthogonal0.012Monte

0.0103heterogeneous0.0128resolutions0.0094analytically0.0124chain

0.0104Heterogeneity0.0128Models0.0128approximations0.0129Carlo

0.011Cancer0.0128Hierarchical0.0146Bernoulli0.0132inherent

0.0183Clinical0.0128Markov0.0149asymptotic0.0134individual

Theme4Theme3Theme2Theme1
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Results: 1998-2000

0.0116prognosis0.0118focus0.0087Jeffreys0.0065EM

Theme 4Theme 3Theme2Theme 1

0.0052Surveillance0.006scheme0.0047accept-reject0.0037Unsupervised

0.0052population-based0.0061EXPLORATION0.0048simply0.0038non-Bayesian

0.0052Steroid0.0062structuring0.0048approximations0.0041simulation

0.0055Dirichlet0.0063customers0.0054predictive0.0048sampling

0.0071group0.0063Southern0.0054possible0.0049Metropolis-Hastings

0.0077heterogeneity0.0066Though0.0061desirable0.005BATS

0.01mass0.0076informative0.0065Maximizing0.005classification

0.0101generated0.0083described0.0069few0.0063elucidation

0.0102relationship0.0084learning0.007minimizing0.0064Gaussian



Slide 15 © CSIR  2006                        www.csir.co.za

Results: 2001-2003

0.0077earlier0.0087empirical0.0076goodness-of-fit0.0076appropriate

Theme 4Theme 3Theme 2Theme 1

0.0054powerful0.0049Developments0.0053fasting0.0045Mapping

0.0057subjective0.0053multivariate0.0054flexibly0.0048smoothing

0.0057Jeffreys'0.0056extensions0.0054Ilorin0.0048Markov

0.0057measured0.0056algorithms0.0054Bayesian0.0053geographical

0.006require0.0063Gibbs0.0055unknown0.0054Joint

0.006Conjugate0.0064computation0.0058Significance0.0057taken

0.0072sampled0.0066economic0.0062Wishart0.0058estimates

0.0072quantities0.0071Student-t0.0064involved0.0058observation

0.0074Pareto0.0085components0.0073investigated0.006common
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Theme Summary

01-03

98-00

95-97
•Clinical trials
•Heterogeneous 
data

•Sampling 
methods
•Hierarchical 
models

•Approximations
•Parameter 
estimation

Theme 4Theme 3Theme 2Theme 1

•Prior distributions
•Sampling 
methods

•Gibbs

•Distributions
•Goodness-of-fit

•Parameter 
estimation

•Clinical trials
•Heterogeneous 
data
•Dirichlet
distribution

• ??
•Approximations
•Algorithms

•Parameter 
estimation
•Learning algorithms
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