

Optimal Exploration Target Zones

Debba, Carranza, Stein, van der Meer

Introduction 1 Remote Sensing

Background and Objective of the study

Methodology

Results

Optimal Exploration Target Zones

Pravesh Debba¹, Emmanual M.J. Carranza², Alfred Stein², Freek D. van der Meer²

¹CSIR, Logistics and Quantitative Methods, CSIR Built Environment ²International Institute for Geo-Information Science and Earth Observation (ITC), Hengelosestraat 99, P.O. Box 6, 7500AA Enschede, The Netherlands

(日) (日) (日) (日) (日) (日) (日)

Q Outline

Optimal Exploration Target Zones

Debba, Carranza, Stein, van der Meer

Introduction t Remote Sensing

Background and Objective of the study

Methodology

Results

1

Introduction to Remote Sensing

2

Background and Objective of the study

3 Methodology

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

OVERVIEW OF HYPERSPECTRAL REMOTE SENSING

Optimal Exploration Target Zones

Debba, Carranza, Stein, van der Meer

Introduction to Remote Sensing

Background and Objective of the study

Methodology

Results

Hyperspectral sensors

- record the reflectance in many narrow contiguous bands
- various parts of the electromagnetic spectrum (visible near infrared - short wave infrared)
- at each part of the electromagnetic spectrum results in an image

Figure: Spectral Range

OVERVIEW OF HYPERSPECTRAL REMOTE SENSING (cont...)

Optimal Exploration Target Zones

Debba, Carranza, Stein, van der Meer

Introduction to Remote Sensing

Background and Objective of the study

Methodology

Results

Figure: Hyperspectral cube

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

3

OVERVIEW OF HYPERSPECTRAL REMOTE SENSING (cont...)

Optimal Exploration Target Zones

Debba, Carranza, Stein, van der Meer

Introduction to Remote Sensing

Background and Objective of the study

Methodology

Results

Figure: Pixels in hyperspectral image

・ コット (雪) (小田) (コット 日)

OVERVIEW OF HYPERSPECTRAL REMOTE SENSING (cont...)

Optimal Exploration Target Zones

Debba, Carranza, Stein, van der Meer

Introduction to Remote Sensing

Background and Objective of the study

Methodology

Results

Figure: Example of 3 different spectral signatures

BACKGROUND AND OBJECTIVE OF STUDY

Optimal Exploration Target Zones

Debba, Carranza, Stein, van der Meer

Introduction t Remote Sensing

Background and Objective of the study

Methodology

Results

The location of known mineral occurrences (mines/prospects) are used for training in data-driven predictive mapping of prospective ground. Particular methods for obtaining a mineral prospective map are

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- the weights-of-evidence (WofE) method
- Iogistic regression
- canonical favorability analysis
- neural networks
- evidential belief functions

BACKGROUND AND OBJECTIVE OF STUDY (cont...)

Optimal Exploration Target Zones

Debba, Carranza, Stein, van der Meer

Introduction t Remote Sensing

Background and Objective of the study

Methodology

Results

Mineral prospectivity maps are then usually used to guide further mineral exploration. A logical question regarding efficacy of mineral prospectivity maps is: "Where should targets of exploration for undiscovered mineral occurrences be focussed?"

The objective of this study is to demonstrate a methodology that we have developed in order to provide a plausible answer to the above question in a district-scale case study.

STUDY SITE

Optimal Exploration Target Zones

Debba, Carranza, Stein, van der Meer

Introduction 1 Remote Sensing

Background and Objective of the study

Methodology

Results

Figure: A generalized geological map of the Rodalquilar area mineral district.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

DATA USED

Optimal Exploration Target Zones

Debba, Carranza, Stein, van der Meer

Introduction t Remote Sensing

Background and Objective of the study

Methodology

Results

- Two sets of locations of mineral deposit occurrences, from different sources, were used in WofE modeling.
- Set 1: 14 epithermal deposits and set 2: 36 epithermal deposits.
- Set 2: Training set for WofE and designing optimal exploration target zones.
- Set 1: Validation of WofE and optimal exploration target zones.
- HyMap: 126 bands 0.4–2.5 μm
- Geology: 30 bands 1.95–2.48 μm
- Distinctive absorption features at wavelengths near 2.2 μm

Optimal Exploration Target Zones

Debba, Carranza, Stein, van der Meer

Introduction t Remote Sensing

Background and Objective of the study

Methodology

Results

Figure: Plot of seven endmembers from USGS spectral library in the spectral range 1.95–2.48 μ m. Vertical lines indicate the band centers used to obtain band ratio images (see text for further information).

Optimal Exploration Target Zones

Debba, Carranza, Stein, van der Meer

Introduction 1 Remote Sensing

Background and Objective of the study

Methodology

Results

Figure: Band Ratio 1: arctan transformation on bands 103/107 (2.100/2.171 μ m).

Optimal Exploration Target Zones

Debba, Carranza, Stein, van der Meer

Introduction Remote Sensing

Background and Objective of the study

Methodology

Results

Figure: Band Ratio 2: arctan transformation on bands 107/109 (2.171/2.205 μ m).

Optimal Exploration Target Zones

Debba, Carranza, Stein, van der Meer

Introduction 1 Remote Sensing

Background and Objective of the study

Methodology

Results

Figure: Band Ratio 3: arctan transformation on bands 118/112 (2.357/2.258 μ m).

DATA USED (cont...): CREATION OF STRUCTURAL EVIDENCE

Optimal Exploration Target Zones

Debba, Carranza, Stein, van der Meer

Introduction t Remote Sensing

Background and Objective of the study

Methodology

Results

Figure: Distance to fault and fracture. Increasing pixel brightness in this image indicates increasing distance from a fault or fracture.

METHODS

Optimal Exploration Target Zones

Debba, Carranza, Stein, van der Meer

Introduction Remote Sensing

Background and Objective of the study

Methodology

Results

Figure: Flow diagram describing the process.

METHODS (cont...): ESTIMATION OF THE NUMBER OF EXPLORATION FOCAL POINTS

Optimal Exploration Target Zones

Debba, Carranza, Stein, van der Meer

Introduction t Remote Sensing

Background and Objective of the study

Methodology

Results

To estimate the number of exploration focal points, we used the binomial distribution – mineral deposit occurrence is a binary variable, being either present or absent.

Thus, estimation of *n* exploration focal points so as to yield (or discover) at least *r* mineral deposit occurrences, with a probability of success *p*, at a 95% confidence, requires a solution for the following equation:

$$\sum_{i=r}^{n} {n \choose i} p^{i} (1-p)^{n-i} = 0.95.$$
 (1)

METHODS (cont...): FITNESS FUNCTION

Optimal Exploration Target Zones

Debba, Carranza, Stein, van der Meer

Introduction Remote Sensing

Background and Objective of the study

Methodology

Results

$$\phi_{\text{WMSD+V}}(\mathbf{S}^{n}) = \frac{\lambda}{N(A)} \sum_{\overrightarrow{\mathbf{x}} \in A} P(\overrightarrow{\mathbf{x}}) \left| \left| \overrightarrow{\mathbf{x}} - Q_{\mathbf{S}^{n}}(\overrightarrow{\mathbf{x}}) \right| \right| + (1-\lambda)s^{2}(O_{\mathbf{S}^{n}}), \quad (2)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

where $Q_{\mathbf{S}^n}(\vec{\mathbf{x}})$ is the location vector of an optimal exploration focal point in \mathbf{S}^n nearest to $\vec{\mathbf{x}}$, and $s^2(O_{\mathbf{S}^n})$ is the variance of the posterior odds.

RESULTS: ESTIMATION OF THE NUMBER OF EXPLORATION FOCAL POINTS

Optimal Exploration Target Zones

Debba, Carranza, Stein, van der Meer

Introduction 1 Remote Sensing

Background and Objective of the study

Methodology

Results

Assume

- r = 9 based on the nine predicted out of 14 undiscovered epithermal occurrences in training set 1
- p = 0.0025 based on the average posterior probabilities of prospective pixels in the input WofE prospectivity model

With these assumptions we derive n = 6280. Instead of p = 0.0025, we used p = 0.6 based on the approximate prediction rate of the input WofE model. Accordingly, n = 22

RESULTS (cont...): OPTIMIZED TARGET ZONES

Optimal Exploration Target Zones

Debba, Carranza, Stein, van der Meer

Introduction to Remote Sensing

Background and Objective of the study

Methodology

Results

Figure: Optimal exploration target zones defined by buffering to 238 m each of the optimal exploration focal points.

・ロン ・ 雪 と ・ ヨ と ・ ヨ ・

RESULTS (cont. . .): OPTIMIZED TARGET ZONES

Optimal Exploration Target Zones

Debba, Carranza, Stein, van der Meer

Introduction Remote Sensing

Background and Objective of the study

Methodology

Results

- Total area represented by the 6280 unit cells is approximately $6280 \times 25^2 = 3925000 \text{ m}^2$.
- Delineated sub-area of $3925000/22 = 178409 \, m^2$
- If assumed undiscovered deposit is within a radius of $\sqrt{178409/\pi} = 238 \text{ m}$ (area of circle = $\pi \times \text{radius}^2$) around a derived optimal exploration focal point then close.
- Each of the 22 allocated focal points of exploration targets was thus buffered to a radius of 238 m to delineate exploration zones.

RESULTS (cont...): OPTIMIZED TARGET ZONES

Optimal Exploration Target Zones

Debba, Carranza, Stein, van der Meer

Introduction t Remote Sensing

Background and Objective of the study

Methodology

Results

- Seven of the nine (assumed) undiscovered occurrences, delineated by the WofE model out of the 14 cross-validation undiscovered occurrences, are within the 238 m buffered exploration target zones.
- The result of this analysis indicates that allocated focal points of exploration targets are proximal to undiscovered epithermal occurrences.