Design and Synthesis of a Heterocyclic Compound Collection for Probing the Spatial Characteristics of ATP Binding Sites

Presented at the CSIR Conference Centre

CSIR Biosciences

C.P. Kenyon, P.M. Matlaba, C.J. Parkinson, A.L. Rousseau and C.W. van der Westhuyzen

February 28, 2006
• The kinases
• The nature of the ATP site
• A basis for selectivity
• Types of potential guest molecules
• Methodology for preparation
The Kinases

- Proteins which transfer phosphoryl residues
- Utilise ATP as phosphate source
- All have an ATP site
- Why are kinases attractive targets?
Basic Structural Characteristics of the ATP Site

Typical ATP binding site

Adenine Binding Region

Sugar Binding Region

Hydrophobic Region
Pharmaceutical example: Interactions of SB203580 in the p38 MAP Kinase
Rational Basis of Design
Scaffold Selection

Pyrimidines

Purines

Imidazopyridines
Spatial Comparison of Scaffolds
Pyrimidines and Purines

\[
\text{Pyrimidines: } \quad \text{Purines: }
\]

1. Pyrimidines:
 - [Diagram of pyrimidine structure]
2. Purines:
 - [Diagram of purine structure]
Synthesis of Pyrimidines and Purines

Slide 10

© CSIR 2006 www.csir.co.za
Imidazopyridines
The Classical Approach

\[
\text{NH}_2 \text{N} + \text{O} \text{O} \text{Cl} \rightarrow \text{N} \text{N} \text{Cl}
\]
Diversity Orientated Approach

\[
\text{NH}_2 \quad \overset{\text{RCHO}}{\longrightarrow} \quad \text{N} \quad \overset{\text{R}}{\longrightarrow} \quad \text{NH}
\]

© CSIR 2006 www.csir.co.za
<table>
<thead>
<tr>
<th>Aldehyde</th>
<th>Isocyanide</th>
</tr>
</thead>
<tbody>
<tr>
<td>PhCHO</td>
<td></td>
</tr>
<tr>
<td>72%</td>
<td>60%</td>
</tr>
<tr>
<td>PyCHO</td>
<td></td>
</tr>
<tr>
<td>54%</td>
<td>57%</td>
</tr>
<tr>
<td>FCHO</td>
<td></td>
</tr>
<tr>
<td>25%</td>
<td>60%</td>
</tr>
<tr>
<td>H2COCHO</td>
<td></td>
</tr>
<tr>
<td>48%</td>
<td>22%</td>
</tr>
</tbody>
</table>
The Way Ahead

Explore the untapped dimension
Kinase and ATP –ase studies
Thanks To

CSIR Thematic Programmes

Department of Science and Technology