

Sulphur Hexafluoride Gas Detection

R Stolper

CSIR Materials Science and Manufacturing, PO Box 395, Pretoria, 0001 rstolper@csir.co.za

Prism Spectrometer

USER REQUIREMENTS FOR DETECTING AND LOCATING SF, GAS

- Quick response (real time)
- Geometric high accuracy (imaging)
- Severity of leak (sensitive)
- -20°C to 60°C
- No calibration procedures
- Ease of start-up
- Eye safety Cost < R750 000

(atm⁻¹

- 1 Man handled
- Stand alone unit (no peripherals)
- Tripod (walkway problem)
- Indoor 75% vs outdoor 25%

Varanasi et al.

Gox & Gnauck

PRINCIPAL TECHNOLOGIES

SF₆ Absorption Coefficient 295 K, 760 torr 100 200 945 950

Imaging Michelson Interferometer

SF₆ absorption curve

Fourier Transform IR Interferometry

- High throughput
- Full aperture Big system
- Spectrally sensitive Complex and sensitive instrument
- Needs a sensitive IR detector
- Expensive to manufacture
- Need temperature difference between the gas and background
- No reflecting background needed
- A sensitive, yet expensive system, but it still requires a temperature difference in order to detect gases

Bigadvantageisnotemperaturedifference

Relies on particles to backscatter the CO₂

Fast optics needed to gather the little

Potentially big CO, laser with expensive

Using Fabry-Perot etalons, different

wavelengths can be scanned, but the

Sensitive IR imaging detectors are very

Still requires a working temperature

is required

laser energy

expensive

difference

energy that is received

cooled detector needed

Development costs > R1 Million

No reflecting background needed

system transmission drops to 60%

Development costs > R1 Million

Development time = 1 year

Development time < 1 year

- Developing costs > R1 Million
- Development time > 1 year

DIFFERENTIAL ABSORBING LIDAR

- High throughput
- Full aperture Potentially big
- Spectrally less sensitive
- Non-sensitive instrument
- Off-the-shelf technology
- Potentially expensive
- No temperature difference needed between the gas and background
- No reflecting background needed
- Throughput > 60%
- Full aperture
- Potentially small system
- Spectrally sensitive
- Sensitive instrument Fabry-Perot etalons
- Off-the-shelf technology
- Potentially expensive
- Need temperature difference between the gas and background

- Essentially a non-imaging solution
- Versatile since it can measure at different wavelengths

Grating Spectrometer Wavenumber (cm⁻¹)

150

Laser Energy

BACKSCATTER ABSORPTION GAS IMAGING

Fabrey-Perot Etalon imaging solution

INCIDENT COLLIMATED BEAM

Processed wavelength differentation P16-R22

Wavelength split using prisms

SF₆ gas appearing

SF₆ gas absorption at 10.55um wavelngth

- High throughput Full aperture
- Potentially small
- Spectrally less sensitive
- Non-sensitive instrument
- Off-the-shelf technology
- Inexpensive for this application
- No temperature difference between the gas and background Reflecting background needed
- System is smaller and less CO₂ laser energy is needed for the measurements
- Versatility limited to the type of laser
- Inexpensive uncooled IR detectors can be used

Uncooled IR sensor

Small CO₂ laser

