Microreactors – A marvel of modern manufacturing technology: Biodiesel case study

5 R BUDDOO, H SYAKATSHANA, AND B PONGOMA
CSIR Biosciences, Private Bag X2, Modderfontein, 1645, South Africa
Email: sbuddoo@csir.co.za – www.csir.co.za

A biodiesel factory on a chip? CSIR researchers have investigated the possibility and now hope to make it a reality, proving just how revolutionary microreactor technology has become.

BIODEISEL PRODUCTION IN MICROREACTORS: CASE STUDY

Introduction

Biodiesel is defined as the mono alkyl esters of long chain fatty acids and is derived from vegetable oils via the transesterification reaction of triglycerides with alcohols, as shown in Figure 4.

Figure 4: Transesterification with methanol to produce fatty acid methyl esters (FAME)

Biodiesel has many merits as a renewable energy resource which relieves reliance on petroleum fuels. It is biodegradable, non-toxic, and has a more favourable combustion emission profile such as lower emissions of carbon monoxide, sulphur, particulate matter and unburned hydrocarbons. In addition, using biodiesel on a large scale would result in more carbon dioxide recording by phytosynthesis, thereby minimising the impact on the ‘Greenhouse Effect’. CSIR Biosciences has been investigating the production of biodiesel using various sources of vegetable oils, e.g. soya, sunflower, canola, Jatropha, palm, and peanut. All of these reactions were successfully scaled up to pilot plant scale using conventional, batch, stirred tank, jacketed reactors and biodiesel standards were produced for the SARS (~100% of each oil). The agro-processing and chemical-technologies (ACT) group has been developing expertise in microreactor technology and more recently an investigation was undertaken into the production of biodiesel using commercially available microreactors. The laboratory investigation and optimisation phase of the project has been completed and we are now in a position to conduct a comprehensive study of the conventional reactor system versus microreactor systems. The next phase includes construction of a pilot demonstration unit and commercialisation of the process.

BACKGROUND

The term microreactors is used to describe miniature reactors for carrying out chemical reactions. These reactors have a channel diameter of 50-500 microns and channel lengths of 1-10mm. Highly efficient mixing can be achieved by various means, e.g. interdigital mixing (Figure 1), and three-dimensional split-recombine mixing as shown in the Caterpillar mixer (Figure 2).

Figure 1: Inter-digital mixing of two reactant streams

Figure 2: 3-Dimensional split-recombine caterpillar mixing

Because of their inherently high surface-area-to-volume ratios, such tiny mechanical components demonstrate order-of-magnitude improvements in heat- and mass-transfer rates and therefore demonstrate several advantages over conventional manufacturing technologies:

- Faster reaction rates → higher productivity → smaller plant footprint
- Improved conversions and selectivities → reagent cost saving, less waste → lower raw material costs
- High heat transfer coefficients → lower energy requirements → lower production costs
- High heat fluxes → faster heat input and removal → runaway risks reduced → safer reactors
- Integrated process design → scale-up easier and cheaper
- Distributed production → mobile production units → storage and transport costs reduced.

Due to these advantages, microsystems are being increasingly utilised in numerous industries, as shown in Figure 3.

Figure 3: Applications of microsystems in various industries

Biodiesel production is a multi-stage process: feedstock pretreatment, transesterification, neutralisation, and purification. It is a complex process involving many variables, such as catalyst type, alcohol ratio, reaction time, temperature, and stirring speed. The transesterification reaction normally takes about three hours to complete in a stirred tank batch reactor. However, complete conversion was achieved in less than a second in the microreactor (Figure 5). This represents a 10800x increase in the reaction rate, which clearly demonstrates the unprecedented reaction efficiencies of conventional and microreactor systems.

Table 1: Comparison of batch versus microreactor plant for production biodiesel

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Batch Plant</th>
<th>Microreactor Plant</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat output (kW/hr)</td>
<td>20,000</td>
<td>20,000</td>
<td></td>
</tr>
<tr>
<td>Reactor volume (m³)</td>
<td>10</td>
<td>2.4 x 10⁻³</td>
<td>4160x smaller</td>
</tr>
<tr>
<td>Mass footprint (m²)</td>
<td>200</td>
<td>1000</td>
<td>500x smaller</td>
</tr>
<tr>
<td>Surface area to volume ratio (m⁻¹)</td>
<td>0.3</td>
<td>3 x 10³</td>
<td>1000x higher</td>
</tr>
<tr>
<td>Productivity (kg/hr)</td>
<td>250</td>
<td>10 x 10⁻³</td>
<td>4160x higher</td>
</tr>
<tr>
<td>Energy input (kW)</td>
<td>0.4</td>
<td>9.6</td>
<td>25x better</td>
</tr>
<tr>
<td>Mass transfer coefficient (cm/s)</td>
<td>10⁻⁷</td>
<td>10⁻⁷</td>
<td>10³ higher</td>
</tr>
<tr>
<td>Mass transfer coefficient (km/s)</td>
<td>5.7</td>
<td>8.6 x 10⁻³</td>
<td>55x higher</td>
</tr>
<tr>
<td>Decarboxylation (vol%)</td>
<td>0.3</td>
<td>45.5</td>
<td>55x higher</td>
</tr>
<tr>
<td>Capital cost (k$m)</td>
<td>6.6</td>
<td>5.5</td>
<td>4.94 saving</td>
</tr>
<tr>
<td>Manufacturing cost ($/k$m)</td>
<td>6.0</td>
<td>5.0</td>
<td>11.1% saving</td>
</tr>
</tbody>
</table>

A comparative study of the key process parameters is presented in Table 1, validating the advantages of microreactors as compared to conventional stirred tank reactors.

Figure 5: Comparative residence times in conventional and microreactor systems

CONCLUSIONS

A dramatic improvement in the rate of the transesterification reaction was demonstrated in the selected microreactor system, i.e. from three hours to less than a second. This has very important ramifications for the biodiesel production process from a scientific as well as an industrial viewpoint and changes our entire thinking around biodiesel, in general. The plan has always been to have massive, centralised plants whereas microreactor technology now makes it possible to have mobile production units at the oil source. These would be highly efficient, compact units with the capability of producing production scale quantities of biodiesel at reduced production and capital costs, thus making the production of biodiesel economically more attractive.

REFERENCES