
AN ALTERNATIVE TO DEAD RECKONING FOR MODEL STATE QUANTISATION
WHEN MIGRATING TO A QUANTISED DISCRETE EVENT ARCHITECTURE

Arno Duvenhage and Bernardt Duvenhage
The Council for Scientific and Industrial Research

Pretoria
South-Africa

Email: aduvenhage@csir.co.za, bduvenhage@csir.co.za

KEYWORDS
Quantised discrete event, state quantisation, state estima-
tion, dead reckoning, pure pursuit, alpha-beta filter

ABSTRACT
Some progress has recently been made on migrating an
existing distributed parallel discrete time simulator to a
quantised discrete event architecture. The migration is
done to increase the scale of the real-time simulations
supported by the simulator. This however requires that
the existing discrete time models be modified to work
within the quantised discrete event environment. To this
end the use of model state quantiser and quantised inte-
grator pairs are required. An alternative to dead reckon-
ing is suggested for the quantized integrator algorithm:
a state estimation algorithm that has successfully been
used to inject live aircraft into a discrete time simulator.

INTRODUCTION
The South African National Defence Force (SANDF)
currently requires a system of systems simulation capa-
bility for supporting the different phases of a Ground
Based Air Defence System (GBADS) acquisition pro-
gram as discussed by Baird and Nel(Baird and Nel, 2005)
and others(Oosthuizen, 2005)(Naidoo and Nel, 2006). A
non-distributed, fast-as-possible discrete time synthetic
environment simulator was developed by the Council for
Scientific and Industrial Research (CSIR) in support of
the simulation capability during the concept and defini-
tion phases of the acquisition life cycle as detailed by le
Roux(le Roux, 2006). The acquisition life cycle is part of
the system life cycle shown in Figure 1. Real-time simu-
lation execution has, however, now become a prioritised
requirement to support the development phase of the ac-
quisition life cycle.

In support of the real-time requirement a distributed
parallel simulator was implemented. The logical dis-
crete time management and modelling approach was kept
without modification to economically reuse the existing
models. Duvenhage and Kourie (Duvenhage and Kourie,
2007) have since shown that the distributed discrete time
architecture adequately supports the currently required
parallelisation speed-up, but that a parallelisation speed-
up ceiling exists just beyond the current use. Progress has

Figure 1: The System Life Cycle(Naidoo and Nel, 2006)

been made on the migration of the discrete time simula-
tor to a quantised discrete event architecture as discussed
by Duvenhage(Duvenhage, 2008). It is well known from
the literature, (Zeigler et al., 2000) among others, that a
discrete event approach to modelling a dynamical sys-
tem is more efficient than a discrete time approach, both
in terms of the communication bandwidth and the model
execution time. According to Duvenhage(Duvenhage,
2008), selective application of quantiser and quantised
integrator pairs (QQIPs) have shown promise in creating
quantised DEVS envelopes around the existing discrete
time models that significantly improve upon the simula-
tor scalability.

Live aircraft injection refers to modelling an aircraft
through state estimation in real-time when only plot and
track data from sensors are available through the rele-
vant command and control (C2) links. This has success-
fully been used to engage live aircraft with simulated air
defence batteries as detailed by Duvenhage (Duvenhage,
2007) within the SANDF GBADS environment. Aircraft
injection can also be used to facilitate interoperability or
collaboration between different C2 systems and simula-
tors.

This article will briefly discuss the proposed quantised
discrete event approach. The focus of the article is how-
ever the use of the model state estimator, as described in



Figure 2: The Layered Discrete Time Architec-
ture.(Duvenhage, 2008)

(Duvenhage, 2007), as a quantised integrator of a QQIP.

MIGRATING TO A QUANTISED DISCRETE
EVENT SIMULATOR ARCHITECTURE
The distributed parallel discrete time architecture is a
peer-to-peer message passing architecture discussed by
Duvenhage and le Roux(Duvenhage and le Roux, 2007)
with a publish-subscribe simulation model layered on top
of it as shown in Figure 2. Many of the existing models
have evolved from high fidelity engineering models of-
ten based on numerical method solutions. This resulted
in a modelling dependence on a high 100Hz discrete time
simulation frame rate and logical time management. In
case of real-time execution the simulation execution is
throttled to not exceed the wall clock time, but nothing
can be done if the simulation consistently runs slower
than real-time.

Duvenhage and Kourie (Duvenhage and Kourie, 2007)
have analysed the performance of the discrete time archi-
tecture. It was found that the architecture has a real-time
parallelisation speed-up ceiling of around 4 while its cur-
rent use often requires a parallelisation speed-up of 3.4.
The parallelisation speed-up (also referred to as compu-
tational load) performance of the discrete time architec-
ture is shown in Figure 3. The performance of an ideal
distributed simulator is also shown. An ideal distributed
simulator’s distribution overhead has no impact on the
performance.

Notice that in the case of the discrete time simula-
tor, its maximum parallelisation speed-up is reached on
8 processing nodes. Adding more processing nodes to
the simulator would not increase the overall performance,
but actually decrease it due to the added distribution
overhead. The authors feel that the architecture’s cur-
rent usage is too close to the speed-up ceiling and a
quantised discrete event simulator is proposed by Duven-
hage(Duvenhage, 2008) as a future simulator migration
step.

The proposed discrete event architecture aggregates
the existing discrete time models into groups and then
wraps the groups within quantised discrete event en-
velopes. This concept as applied within the GBAD sys-

Figure 3: The Discrete Time Architecture’s Paral-
lelisation Speed-Up Against Number of Processing
Nodes.(Duvenhage, 2008)

Figure 4: DEVS Envelopes are Wrapped Around Groups
of Discrete Time Models.(Duvenhage, 2008)

tem of systems model is shown in Figure 4.
The parallelisation speed-up behaviour, shown in Fig-

ure 5, of an experimental implementation of the proposed
architecture resembles that of an ideal distributed simu-
lator. This is due to the fact that the architecture is now
processor limited and not communication bandwidth lim-
ited as was the case in the discrete time simulator. It
should be noted that the experimental implementation en-
veloped the existing discrete time models and the same
bench mark scenarios were used for both simulator ar-
chitectures.

Being bandwidth limited, as in the case of the discrete
time simulator, implies that the simulator’s performance
may be improved by upgrading the communication in-
frastructure. This is unfortunately not always feasible.
On the other hand, being processor limited, implies that
the available distributed processing power of the archi-
tecture is well utilised. It also has the additional advan-
tage that the simulator’s scalability may continually be
improved by adding processing nodes or upgrading the
existing processing nodes.

MODEL STATE QUANTISATION
State quantization can be divided into two parts as shown
in Figure 6. The dead reckoning (DR) algorithm can be
used to do model state quantization. This section will
however discuss the use of the state estimation algorithm
described in (Duvenhage, 2007) as an alternative to dead
reckoning for quantized state integration. An alternative



Figure 5: The Discrete Event Architecture’s Paral-
lelisation Speed-Up Against Number of Processing
Nodes.(Duvenhage, 2008)

Figure 6: State quantiser and quantised integrator de-
ployment

state quantiser is used in this case.

Dead Reckoning
Dead reckoning is a technique used by simulation tech-
nologies like the Distributed Interactive Simulation (DIS)
and High Level Architecture (HLA) to reduce the fre-
quency and consequently the bandwidth requirements of
distributing state updates and deals with network issues.
This is done by predicting a model’s state on all hosts un-
til the model’s controlling host deems a state update nec-
essary. The model’s controlling host will send out a state
update if the prediction error becomes too large. These
error correcting updates will correct the model state and
cause a state update jump on all hosts viewing the model.
Larger errors are tolerated if bandwidth requirements are
more strict. DR can be setup with several prediction al-
gorithms depending on the model’s expected behaviour
(Duvenhage, 2007).

The dead reckoning algorithm can be used to do both
the quantization and integration of the model state. The
dead reckoning state update jump in the reconstructed or
integrated model state can also be smoothed by using
time stamped updates and phasing in position updates.
It is important to note that the quantiser and integrator
should be setup with the same prediction algorithm (Fu-

Figure 7: The Tracking and Guidance Algorithm (Du-
venhage, 2007)

jimoto, 2000).

The Aircraft Injection Algorithm
The aircraft injection (state estimation) algorithm shown
in Figure 7 includes both state estimation (tracking) and
guidance.

The basic principle is that the guidance component
guides the simulated aircraft from its current position on
an ad hoc basis (in real-time) to position predictions cal-
culated by the tracking component. The position predic-
tions are made for the next expected update time each
time a new state update is received.

The tracking component is responsible for:

• Estimating the position of the aircraft from the state
updates,

• estimating the time of the next state update,

• compensating for temporal variance and lag in state
updates, and

• mitigating possible lag caused by the guidance al-
gorithm by being able to predict guidance input into
the future.

The tracking component can be a kinematic tracking
filter like an α−β or α−β−γ type tracking filter: These
are 2nd and 3rd order kinematic filters that are easy to im-
plement compared to the more complex Kalman, particle
and Interacting Multiple Model (IMM) type tracking fil-
ters that may also be used (Blackman, 1986).

The guidance component is responsible for:

• Guiding the aircraft to the predicted aircraft posi-
tions on an ad hoc basis (in real-time as new predic-
tions are made),

• calculating the aircraft orientation if required, and

• limiting aircraft movement to stay within the dy-
namics of the relevant aircraft type.

Guidance laws that can be used for the guidance com-
ponent are pure pursuit and proportional navigation. Pure
pursuit guidance can also be called a tail chase algorithm
since the pursuer always tries for a trajectory directly
toward the target. Proportional navigation on the other
hand over steers in an attempt to keep the line of sight
angle between the pursuer and target constant. The line



Figure 8: Target (dotted line) and output of alpha-beta-
pure-pursuit algorithm (solid line) (Duvenhage, 2007)

of sight angle can be defined as the angle between the
line of sight from the pursuer to the target and the pur-
suer trajectory (Duvenhage, 2007).

Alpha-beta-pure-pursuit Quantized Integrator

The aircraft injection algorithm can be called an alpha-
beta-pure-pursuit algorithm since it uses an α − β
tracker and a pure pursuit guidance algorithm (Duven-
hage, 2007). Figure 8 shows the output of this algorithm
for a specific set of state updates. The algorithm accepts
the state updates in real-time and always outputs an up to
date estimation of the model state.

The α− β filter is a 2nd order kinematic filter that as-
sumes the model moves at a constant velocity between
measurement updates. This is not the case for maneuver-
ing or accelerating models, although the assumption may
hold for sections of the model’s path. This specific im-
plementation allows for variable update rates and delayed
observations (also using time stamped updates) (Duven-
hage, 2007).

The pure pursuit guidance moves the pursuer (or
model in this case) directly toward its target. Pure pur-
suit guidance will cause the pursuer to trail the target and
intercept it from behind. The model’s orientation can be
calculated based on the model’s acceleration and velocity
(Duvenhage, 2007).

Alpha-beta-pure-pursuit Quantiser

The α − β filter requires updates to be able to stabilize
for the integrator to reconstruct the model state with the
minimum amount or error. One option is to simply sam-
ple the model state at regular intervals and use that as the
quantized states. This will allow the integrator to stabi-
lize as well as minimize the communications bandwidth
requirements of the distributed simulation.

CONCLUSION

Progress has recently been made, as mentioned, on mi-
grating an existing distributed parallel discrete time sim-
ulator to a quantised discrete event architecture. The mi-
gration is investigated to increase the scale of the real-
time simulations supported by the simulator. Such a mi-
gration is however economically possible only if the ex-
isting discrete time models are reused. This implies that
the discrete time models be enveloped in quantised dis-
crete event wrappers.

From the discussion it is clear that the aircraft injection
algorithm could be used as a quantised integrator algo-
rithm. This offers a good alternative to dead-reckoning
with the major advantages being that there already ex-
ists a proven implementation of the aircraft injection al-
gorithm within the SANDF GBADS environment. The
algorithm also doesn’t require matching of prediction al-
gorithms between the different simulation hosts since the
tracking algorithm can estimate the model state based
on arbitrary updates. One drawback however is that the
quantiser will have to send more updates, compared to
the active quantization done by DR, for the integrator to
stabilise fast enough.

FUTURE WORK

Future work on using more advanced tracking and guid-
ance algorithms will contribute to the success of the pro-
posed simulator migration step towards a quantised dis-
crete event architecture. Included in such a study would
be the comparative analysis of the performance and error
behaviour of all of these algorithms.

The error behaviour is of particular importance due to
the fact that the GBAD System of systems model has be-
come reliant on the 100Hz logical and discrete time man-
agement. Future effort is also required in re-validating,
firstly, the individual enveloped models (models updated
with QQIPs) and, secondly, the composed GBAD system
of systems model.

REFERENCES

Baird, J. and Nel, J. J. (2005). The evolution of M&S as part
of smart acquisition using the SANDF GBADS programme
as an example. In Proceedings of the 12th European Air
Defence Symposium, volume 3694, pages 173–182.

Blackman, S. (1986). Multiple Target Tracking with Radar Ap-
plications. Artech House.

Duvenhage, A. (2007). A state estimation approach for live
aircraft engagement in a C2 simulation environment. In Pro-
ceedings of the 2007 Fall Simulation Interoperability Work-
shop.

Duvenhage, B. (2008). Migrating to a real-time distributed par-
allel simulator architecture. Master’s thesis, University of
Pretoria.



Duvenhage, B. and Kourie, D. G. (2007). Migrating to a real-
time distributed parallel simulator architecture. In Proceed-
ings of the 2007 Summer Computer Simulation Conference,
page 46.

Duvenhage, B. and le Roux, W. H. (2007). Peer-to-peer sim-
ulation architecture. In Proceedings of the 2007, High Per-
formance Computing & Simulation (HPCS’07) Conference,
pages 684–690.

Fujimoto, R. M. (2000). Parallel and Distributed Simulation
Systems. Wiley-Interscience, New York, USA.

le Roux, W. H. (2006). Implementing a low cost distributed
architecture for real-time behavioural modelling and simula-
tion. In Proceedings of the 2006 European Simulation Inter-
operability Workshop, pages 81–95.

Naidoo, S. and Nel, J. J. (2006). Modelling and simulation of
a ground based air defence system and associated tactical
doctrine as part of acquisition support. In Proceedings of
the 2006 Fall Simulation Interoperability Workshop, pages
551–558.

Oosthuizen, R. (2005). Doctrine development during systems
acquisition and the importance of modelling and simulation.
In Proceedings of the 2005 European Air Defence Sympo-
sium.

Zeigler, B. P., Kim, T. G., and Praehofer, H. (2000). Theory of
Modelling and Simulation, second edition. Academic Press,
San Diego, California, USA.

AUTHOR BIOGRAPHIES
ARNO DUVENHAGE is a Researcher for the Council
for Scientific and Industrial Research (CSIR), South
Africa. He joined the CSIR’s Mathematical and
Computational Modelling Research Group in January
2005 as a Software Engineer. Arno’s current work
involves modelling and simulation for acquisition
decision support, focusing on air defense, specializ-
ing in distributed and networked systems. Arno has
a BEng Degree in Computer Engineering from the
University of Pretoria, South Africa, and is currently
specializing in software engineering. His email address
is aduvenhage@csir.co.za

BERNARDT DUVENHAGE is a Researcher at the
Council for Scientific and Industrial Research (CSIR),
South Africa. He joined the CSIR’s Mathematical and
Computational Modelling research group in 2004 as a
Computer Scientist. He has since moved to the CSIR’s
Optronics Sensor Systems Simulation Research group
and is currently involved in the modelling and develop-
ment of the simulator architecture for a first principles
physics based infrared and visual band synthetic scene
simulator. Bernardt has a Bachelors of Science degree
and Honours degree in Computer Science from the Uni-
versity of Pretoria. He is currently finishing off a Masters
degree in Modelling and Simulation at the University of
Pretoria’s Computer Science Department. His email is
bduvenhage@csir.co.za.


