Some Thoughts on Humanitarian Logistics and Quantitative Methods

Antony K Cooper
Operating Unit Fellow
Built Environment Unit
CSIR

PO Box 395, Pretoria, 0001
South Africa
Outline of the presentation

• Acknowledgements
• Introduction to the CSIR
• Some thoughts on some research issues in humanitarian logistics and quantitative methods
• Conclusions and the way forward
Acknowledgements

• This presentation draws heavily on the work of my colleagues at the CSIR:
 • Hans Ittmann, Theo Stylianides, Esbeth van Dyk, Emma Maspero, Elsa Strydom, Elza Kekana and Signe Hermann

• Prof Anna Nagurney for the invitation
• Rockefeller Foundation for funding of my travel costs
• CSIR for funding my time at this conference and allowing me to participate
Introduction to the CSIR

- Statutory science council established in 1945
- A leading scientific and technology research, development and implementation organisation in Africa
- Over 60% funded by research contracts, royalties, etc
- Official name is CSIR
 - Used to be: Council for Scientific and Industrial Research
- Built Environment Unit (Acting Director: Hans Ittmann)
 - Logistics and Quantitative Methods (L&QM)
Some research issues in humanitarian logistics and quantitative methods

- Identifying people in a disaster
- Facilitating movement of people and aid
- Producing 'before' and 'after' pictures of disaster areas
- Predicting or preventing disasters
- GIS to support humanitarian logistics
- Inappropriate donations
- Preventing looting and pilfering
- Deployable logistics systems
- Logistics of information flow
- Scales, indices or indicators of disaster severity, aid effectiveness, refugee conditions, etc
Identifying people in a disaster [1]

- After disasters, authorities are often unable to give accurate casualty figures
 - If they don’t know how many have been killed, they don’t know how many survived but are still trapped or isolated somewhere
 - Don’t know where to target search and rescue operations
 - Don’t know if they still need to run search and rescue operations
- Need to identify accurately the survivors and their needs
 - To record that they are not missing
 - To identify resources needed (eg: specific medicines)
 - Eg: diabetics affected by Hurricane Katrina
- Applies to “slow moving” disasters as well
 - Eg: young AIDS orphans who cannot access services because they do not have identity documents, and do not know how to get them
 - Eg: Kabelo Thibedi, who took a hostage to try to get his ID after a two-year wait
Identifying people in a disaster [2]

- **What records are available?**
 - Local authority records
 - Neighbours and eyewitnesses
 - How coherent would their accounts be, under the circumstances?

- **However, this need for information on people needs to be balanced with other issues**
 - Invasion of privacy
 - Governments using the information against their citizens that they consider to be hostile
Facilitating the movement of people and aid

• Physical access to disaster areas can often be difficult because of disruptions to transport networks

• Bureaucratic access can often be worse!
 • Overzealous bureaucrats or those wanting bribes
 • The supply chain of paperwork
 • Eg: delays in issuing visas for foreign humanitarian workers
 • Sometimes because of suspicion of their intentions
 • Eg: journalists in disguise
 • Eg: aid impounded because of customs clearance, inadequate documentation on the supply chain (eg: for drugs)

• Could all the appropriate documentation be prepared in advance, to be used when necessary?
 • Would need an authority (eg: UN) to pre-verify the credibility of the documentation
Facilitating the movement of people and aid [2]

- Need to facilitate the movement of legitimate humanitarian workers, aid and victims
 - While not at the same time facilitating the movement of criminals and contraband!
 - Are disasters magnets for criminals?
 - Facilitation/control not only of what goes into the disaster area, but also what comes out of it, such as stolen goods
 - Eg: the looting of the Iraqi Museum in Baghdad
 - Spectators at disasters and crowd control
Producing 'before' and 'after' pictures of disaster areas [1]

- ‘Before' and 'after' pictures of a disaster help to determine what has happened and the extent of the damage
 - Applies particularly to disasters happening over a wide area
 - Earthquakes, floods and landslides
 - In remote areas, authorities can take days to determine where the damage has occurred
 - Repository of satellite imagery is available for the 'before' pictures
 - Frequency of revisits by the satellites
 - Images are geocoded and hence readily comparable
 - Need multiple sensors, because of cloud cover, etc, particularly for the ‘after’ pictures
Producing 'before' and 'after' pictures of disaster areas [2]

- On a smaller scale, data bases of buildings
 - Eg: for a fire or a hostage taking
 - Eg: USA building detailed data bases about schools
 - Facilitate the movement of people in and out of the schools should a disaster occur
 - Locate people in the buildings
 - Locations of hazardous materials, etc
Predicting or preventing disasters

- Much is being done to measure the earth and combine the measurements with models to provide warnings of natural disasters
 - Earthquakes, volcanoes, tsunamis, floods, droughts, veld fires, etc
 - Eg: a warning was given for the Indian Ocean tsunami, but it did not get through to the appropriate people
 - Eg: CSIR’s Advanced Fire Information System (AFIS)
- Could we develop models for predicting 'social' disasters?
 - War, civil unrest, famine, epidemics, building fires, hostage taking, etc
 - Vulnerability maps
 - Enable interventions to be made
GIS to support humanitarian logistics

- Geographical information systems (GIS)
 - Basic mapping of where everything is (or was before the disaster)
 - Trafficability, mobility constraints, alternative supply routes
 - Optimise use of transport resources
 - Availability of resources
 - Water, food, shelter, health care, etc
 - Planning and managing programmes such as demining
- GIS allows one to combine multiple data bases and data sources and to present information coherently
- Location-based services (LBS)
 - Track the movement of people, goods and vehicles
 - To reroute traffic around obstructions, etc
Inappropriate donations

• Unfortunately, many well-intentioned people make inappropriate donations in responding to calls for aid
 • Wrong clothing for the climate or season
 • Cultural differences
 • Perishables that expire too quickly
• Places an unnecessary burden on the humanitarian logistics
 • Could these be redirected to more appropriate beneficiaries?
 • Would need a data base of what is needed by whom
 • Reverse logistics problem
 • Return the donation to its sender
• Could inappropriate donations could be stopped early in the supply chain?
 • Reduce the cost of processing them
 • Ensure that the donor gets the message quickly
 • Prevent further inappropriate donations
Preventing looting and pilfering

• Is looting and pilfering of aid a major problem?
 • One has to balance the control of the storage and movement of goods, with the need to get them where needed as quickly as possible

• Does the problem lie with the politicians and local leaders?
 • Is a supply chain that they do not control a threat to their authority in the area?
 • Do they distribute resources fairly?
 • Do they steal in bulk?

• Needs an efficient policing capability on the ground to investigate and prosecute such theft quickly as a deterrent
 • Could be a mismatch of cultural norms
Deployable logistics systems

- Can one build portable generic logistics systems that can be deployed into disaster areas and set up quickly?
- What are the key parts of the logistics problem that could provide maximum benefit while needing minimum customisation?
- Could one use computers such as the XO-1 laptop of the One Laptop per Child association (OLPC)?
 - Low cost, rugged, wind up power, wireless broadband
- One won't get perfection in a disaster areas, but a few tweaks to the logistics system could make a big difference
Logistics of information flow [1]

- Panic seems to be the norm with disasters
 - Even slow moving ones such as the Asian bird flu crisis!
- Authorities then tend to target the wrong measures
 - Eg: killing wild birds as vectors of bird flu
- Instead of dealing with the root causes
 - In this case, unsanitary poultry farming and shipping contaminated poultry manure all over the world
- Panic is probably driven by the lack of accurate and credible information
 - Eg: often, when discussing a breaking news story about a disaster, news anchors and reporters on radio or TV:
 - Do not listen to one another
 - Contradict one another
 - Exaggerate the problem
Logistics of information flow [2]

• The logistics of information flow in humanitarian logistics tends to focus on the supply chain only
• How can one improve information flow about other aspects?
 • Into, out of, and within a disaster area
 • Sharing success stories and information resources with other agencies, the media and the public
 • Standardization of the information to streamline information flow
 • Validating the information flow
• Pre-disaster information flow
 • Eg: people with chronic diseases should know what to do in an emergency
 • Eg: substitute medicines
Scales, indices or indicators

- Scale or index for the severity of a disaster
 - Tailor the response appropriately
 - Determine the level of the authority responsible for managing the disaster
 - Allocate resources between 'competing' disasters
 - Educate the public about the type of response they could expect to the disaster
- Index could decay (reduce) as the effects of the disaster are dealt with
 - Or some other index used to indicate the response still needed
 - Indeed, it might be useful to have several different indices
- Indicators for refugee situations and aid effectiveness
 - Assess how well they are being managed
 - Health, access to water and food, schooling disruption, etc.
 - Millennium Development Goals (MDGs)
Scales, indices or indicators

- **Examples**
 - FAO/FSAU’s Integrated Food Security and Humanitarian Phase Classification (IPC)
 - Aims at comparability, rigour, transparency, relevance and close linkage with action
 - NOAA’s Northeast Snowfall Impact Scale (NESIS)
 - Ranks storms by size, amount of snowfall and number of people affected
 - Determined retrospectively after the storm
 - Saffir-Simpson Hurricane Scale
 - Based on the hurricane's present intensity
 - Used to estimate potential property damage and flooding
Conclusions and the way forward

- Considered here some research issues in humanitarian logistics and quantitative methods
 - Identifying people in a disaster
 - Facilitating movement of people and aid
 - Producing 'before' and 'after' pictures of disaster areas
 - Predicting or preventing disasters
 - GIS to support humanitarian logistics
 - Inappropriate donations
 - Preventing looting and pilfering
 - Deployable logistics systems
 - Logistics of information flow
 - Scales, indices or indicators of disaster severity, aid effectiveness, refugee conditions, etc

- Are these research issues relevant and of interest?
Thank you!

Antony Cooper
CSIR
Telephone: +27 12 841 4121
Email: acooper@csir.co.za