Structural characterization of vegetation in the Fynbos Biome

B M Campbell, R M Cowling, W Bond and F J Kruger
in collaboration with
D P Bands, C Boucher, E J Moll, H C Taylor and
B W van Wilgen

A report of the Committee for Terrestrial Ecosystems
National Programme for Environmental Sciences

SOUTH AFRICAN NATIONAL SCIENTIFIC PROGRAMMES REPORT NO

52
AUGUST 1981
Issued by
Cooperative Scientific Programmes
Council for Scientific and Industrial Research
P O Box 395
PRETORIA
0001
from whom copies of reports in this series are available on request.

Printed in 1981 in the Republic of South Africa
by the Graphic Arts Division of the CSIR

ISBN 0 7988 2146 9

Authors' addresses -

Mr B M Campbell
Botanical Research Unit
Department of Agriculture & Fisheries
P O Box 471
STELLENBOSCH
7600

Mr R M Cowling
Ecology Laboratory
Department of Botany
University of Cape Town
Private Bag
RONDEBOSCH
7700

Mr W J Bond
Saasveld Forestry Research Station
Department of Water Affairs, Forestry
and Environmental Conservation
Private Bag X6531
GEORGE
6530

Mr F J Kruger
South African Forestry Research
Institute
Department of Water Affairs,
Forestry and Environmental
Conservation
P O Box 727
PRETORIA
0001

+ address since April 1981
Division of Biological Sciences
University of Zimbabwe
Box 167
Mount Pleasant
Salisbury
Zimbabwe
PREFACE

The southern and south-western Cape is occupied by an exceptionally rich flora occurring as sclerophyllous shrublands and heathlands known locally as fynbos. The various fynbos ecosystems, their plants and animals, are of considerable scientific and aesthetic interest, while the mountain catchment areas of the region are of particular economic importance both as a water resource and as recreational areas.

Much research has been conducted in the biome in the past and in order to coordinate current activities, to stimulate new research and to synthesise available scientific information within the region, the Fynbos Biome Project was initiated in 1977.

The project is one of several cooperative scientific programmes within the National Programme for Environmental Sciences administered by the CSIR. The National Programme is a cooperative undertaking of scientists and scientific institutions in South Africa concerned with research related to environmental problems. It includes research designed to meet local needs as well as projects being undertaken in South Africa as contributions to the international programme of SCOPE (Scientific Committee on Problems of the Environment), the body set up in 1970 by ICSU (International Council of Scientific Unions) to act as a focus of non-governmental international scientific effort in the environmental field. The research of participating universities is financed from a central fund administered by the National Committee for Environmental Sciences and contributed largely by the Department of Water Affairs, Forestry and Environmental Conservation.

The first phase (1977 to 1980) of the Fynbos Biome Project has been centred on baseline studies, including the review and synthesis of current knowledge and on broad surveys of climate, soils, vegetation, fauna and land use patterns.

A number of individuals from a variety of disciplines have become involved in attempts to analyse, classify and describe fynbos plant communities on the basis of their structural, functional and physiognomic attributes, and to relate these characteristics to supposed evolutionary or adaptive responses.

The available systems of classification based on one or a combination of features of structure, function and physiognomy were either too broad or too specific for use in the Fynbos Biome. This document represents a system proposed by a group of individuals active in the field. The system is seen as providing standardized structural terms for describing extant vegetation stands or units, irrespective of the manner in which the units were initially delineated and disregarding successional considerations.
SAMEVATTING

'n Voorgestelde sisteem vir die standaardisasië van beskrywende vaktaal vir die strukturele uitbeelding van plantegroeë in die Fynbosbiome word in tabelvorm geïllustreer. Spesifieke aanwendings van die sisteem word beskryf en illustrasies van sommige strukturele tipes wat in die Fynbosbiome voorkom, word ingesluit.

ABSTRACT

A proposed system for the standardization of descriptive terminology for structural characterization of vegetation in the Fynbos Biome is presented in tabular form. Specific applications of the system are described and illustrations of some structural types occurring in the Fynbos Biome are included.
TABLE OF CONTENTS

PREFACE... iii
SAMEVATTING... iv
ABSTRACT.. iv

INTRODUCTION... 1

THE PROPOSED SYSTEM... 1

Table 1: proposed structural formations in the Fynbos Biome. 2
Height and cover classes... 3
Using the system.. 3

SOME APPLICATIONS OF THE PROPOSED SYSTEM................. 4

FIGURES 1-10: illustrations of some structural types occurring in the Fynbos Biome................................. 7-11

REFERENCES.. 12

GLOSSARY... 13

COLLABORATORS' ADDRESSES...................................... 15

TITLES IN THIS SERIES... 16
INTRODUCTION

In recent years a number of different systems for describing structural formations in the Fynbos Biome (sensu Kruger 1978) have been formulated (e.g. Taylor and van der Meulen in press; Kruger 1979; Department of Forestry). A great deal of plant community-oriented work is presently being undertaken by various workers as part of the Fynbos Biome Project (Kruger 1978) and this underlies the importance of having a standardized structural system applicable to the full range of vegetation within and adjacent to the Biome.

In this paper we propose a system and provide justification for its use. Two major considerations have been implicit in formulating this system: (1) it should be comparable with the system of Specht (1979) thus facilitating global comparisons of heathlands and (2) it should be capable of describing non-heathland vegetation (i.e. not only fynbos) within and adjacent to the Fynbos Biome.

We see the proposed system as providing standardized structural terms for describing vegetation stands or vegetation units, irrespective of the manner in which the units were initially delineated (e.g. floristic or structural methods, aerial photography). It is not envisaged that the system be used to name vegetation units; it is primarily for descriptive purposes. In assigning a descriptive term to a vegetation stand or unit, successional considerations are ignored; vegetation extant at the time of observation is described.

THE PROPOSED SYSTEM

The system is essentially that of Specht (1979), which was originally devised for Australian heathlands. Specht's system has major limitations when applied to vegetation types in and adjacent to the Fynbos Biome. It cannot, for example, accommodate certain non-heath shrublands such as Coastal Rhenosterbosveld, Karroid Broken Veld and Succulent Karoo (Acock 1975). We have generalized this system so that it can incorporate non-heath shrublands while still retaining overall comparability with Specht's (1979) original system. In the case of forests and woodlands, which are limited in extent in the study area, we have followed the system of D Edwards which is being used by the syntaxonomists in the Botanical Research Institute (cf Boucher and Jarman 1977).

Our proposed system is given in Table 1 together with notes on its use.

In the scheme four basic formation classes are recognized: forest, woodland, shrubland, herbland. Unfortunately these terms have inherent problems since any single term can be used in a variety of senses. For example, in the broadest sense shrubland refers to all woody communities comprised of shrubs, including heathlands, for heaths are shrubs. In a narrower sense shrubland refers to all non-heath shrublands (Specht 1979). It is not easy to skirt this problem and we suggest that each user of the scheme is explicit about the way he uses the terms.
Table 1. Structural formations in the Fynbos Biome

<table>
<thead>
<tr>
<th>GROWTH FORM OF THE DOMINANT STRATUM (3)</th>
<th>100-75 INTERLOCKING CROWN</th>
<th>75-50 CROWNS NOT INTERLOCKING</th>
<th>50-25</th>
<th>25-5</th>
<th>5-0.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tall Trees >10 m</td>
<td>Tall Forest</td>
<td>Closed Woodland</td>
<td>Open Woodland</td>
<td>Sparse Woodland</td>
<td></td>
</tr>
<tr>
<td>Low Trees <10 m</td>
<td>Low Forest</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tall Shrubs >2 m</td>
<td>Tall Closed Shrubland (1)</td>
<td>Tall Mid-density Shrubland</td>
<td>Mid-high Open Shrubland</td>
<td>Mid-high Sparse Shrubland</td>
<td></td>
</tr>
<tr>
<td>Mid-high Shrubs 1-2 m</td>
<td>Mid-high Closed Shrubland</td>
<td>Mid-high Mid-density Shrubland</td>
<td>Mid-high Open Shrubland</td>
<td>Mid-high Sparse Shrubland</td>
<td></td>
</tr>
<tr>
<td>Low Shrubs 25-100 cm</td>
<td>Low Closed Shrubland</td>
<td>Low Mid-density Shrubland</td>
<td>Low Open Shrubland</td>
<td>Low Sparse Shrubland</td>
<td></td>
</tr>
<tr>
<td>Dwarf Shrubs <25 cm</td>
<td>Dwarf Closed Shrubland</td>
<td>Dwarf Mid-density Shrubland</td>
<td>Dwarf Open Shrubland</td>
<td>Dwarf Sparse Shrubland</td>
<td></td>
</tr>
<tr>
<td>Shrubs and Graminoids codominant (5)</td>
<td>Closed Graminoid Shrubland (2)</td>
<td>Mid-density Graminoid Shrubland</td>
<td>Open Graminoid Shrubland</td>
<td>Sparse Graminoid Shrubland</td>
<td></td>
</tr>
<tr>
<td>Graminoids >1,0 m</td>
<td>Tall Closed Herbland (2)</td>
<td>Tall Mid-density Herbland</td>
<td>Tall Open Herbland</td>
<td>Tall Sparse Herbland</td>
<td></td>
</tr>
<tr>
<td>Graminoids <1,0 m</td>
<td>Closed Herbland</td>
<td>Mid-density Herbland</td>
<td>Open Herbland</td>
<td>Sparse Herbland</td>
<td></td>
</tr>
</tbody>
</table>

(1) When greater sophistication is required the terms Small-leaved, Large-leaved, Succulent, Proteoid and Ericoid can be appended to Shrubland (e.g., Low Open Small-leaved Shrubland).

(2) The term Graminoid can be replaced by Restiod, Crassyl or Cyperoid, depending on the dominant graminoid. Similarly, Herbland can be replaced by Restioland, Crassyled or Sedgefield.

(3) When one wishes to refer to strata other than the dominant stratum, one can use the same terminology for canopy cover and height but the suffix 'land' will be dropped, and the term Overstorey or Understorey can be used if necessary. Some examples are as follows: Closed Graminoid Shrubland with an Open Restiol understorey; Tall Closed Proteoid Shrubland with a Low Mid-density Shrub Understorey (many of the Protea communities).

(4) When one wishes to refer to low-cover shrubs or graminoids (less than five per cent) then one should use 'Very Sparse' or, if the components are emergent, then 'Emergent' should be used. For example, S. amarifolia fynbos is often Low Mid-density Shrubland with Tall Emergent Proteoids.

(5) The Graminoid Shrubland formations should be given a height class description as for the Shrubland formations, e.g., Low Mid-density Grassly Shrubland.
We suggest the use of capitalized terms when following the definitions implicit in Table 1. For example forest denotes all types of forest whereas Tall Forest denotes a vegetation where there are trees greater than 10 m tall with interlocking canopies.

In the shrubland concept as we use it in Table 1 we include heathlands and non-heath shrublands. As indicated in the glossary there are problems with the use of 'Heathland,' and in the structural system we do not recommend the use of this term for all fynbos communities.

Height and cover classes

When assigning a structural description to a vegetation type, it is unlikely that a single structural formation will suffice to describe the type if the height and cover classes are followed strictly. We feel that a deviation of 25% in height or cover is permissible. Thus, for example, a map unit designated as Low Closed Shrubland usually has a dominant stratum of shrubs 0.25 to 1.0 m high with a canopy cover greater than 75%. In some areas this unit could have shrubs as tall as 1.25 m and the shrubs could have cover as low as 60%.

The height classes are those of Specht (1979) but we have used projected canopy cover rather than Specht's projected foliage cover. No published work in the Fynbos Biome has used the latter variable. Our cover classes have been chosen to correspond with those of the Braun-Blanquet cover abundance scale.

Using the system

Each vegetation unit should be characterized by its dominant stratum and where greater sophistication is required, by its understorey and overstorey.

We use Waboomveld (Taylor 1978) to illustrate the varying degree of sophistication that is possible. A course characterization of much Waboomveld would be Sparse Woodland; at a more sophisticated level this same type could be termed a Sparse Woodland with a Low Mid-dense Grass and Shrub Understorey. We do not feel it necessary to provide strict rules for the recognition of the dominant strata (eg there is little difference between Tall Open Shrubland with a Closed Grassly Understorey and a closed Grassland with a Tall Shrub Overstorey). Where the upper stratum has low cover the understorey must be considered as the dominant stratum and the upper stratum as the overstorey. For example, Waboomveld is often Low Mid-dense Grassly Shrubland with a Sparse Low Tree Overstorey.

In certain instances mosaics of two formations may occur. An example is certain dune communities along the south coast where a Mid-high Mid-dense Large-leaved Shrubland (Euclea, Rhus) occurs in a mosaic with a Low Mid-dense Small-leaved Shrubland (Passerina, Metalasia). Since it is not possible to use the terms understorey and overstorey for these situations we suggest that the above type could be described as a Mid-high Mid-dense Large-leaved Shrubland/Low Mid-dense Small-leaved Shrubland where the oblique denotes a mosaic complex.
Where the dominant stratum consists equally of shrubs and graminoids which do not occur in a mosaic then 'Graminoid Shrubland' is used (see Table 1).

SOME APPLICATIONS OF THE PROPOSED SYSTEM

We demonstrate the application of the proposed system by providing structural characterizations of some communities described by Acocks (1975) and Kruger (1979). Descriptions of some structural types occurring in the Fynbos Biome are given in Figures 1 to 10.

Acocks's (1975) Veld Types are essentially agro-ecological units and are by no means structurally uniform. Coastal Rhenosterbosveld, for example, includes Low Forest, Tall Closed Large-leaved Shrubland, Mid-high Closed Large-leaved Shrubland, Low Open Small-leaved Shrubland, Low Mid-dense Grassy Small-leaved Shrubland, etc. Veld Types occurring within and adjacent to the Fynbos Biome include a great variety of structural types. For comparative purposes we have chosen only the dominant structural type within each Veld Type (see Table 2). Kruger (1979) on the other hand describes a range of true fynbos structural types which are compared more easily with suggested structural formations in Table 3.
Table 2. Comparison of some dominant structural types within Acocks's Veld Types occurring in and adjacent to the Fynbos Biome with suggested structural formations.

<table>
<thead>
<tr>
<th>Veld Type (no.)</th>
<th>Structural Formation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knysna Forest (4)</td>
<td>Forest</td>
</tr>
<tr>
<td>Eastern Province Thornveld (7b)</td>
<td>Closed Grassland and sometimes an Open Woodland (eg Acacia karroo)</td>
</tr>
<tr>
<td>Valley Bushveld (23)</td>
<td>Tall Closed Succulent and Large-leaved Shrubland</td>
</tr>
<tr>
<td>Spekboomveld (25)</td>
<td>Mid-high Mid-dense Succulent Shrubland</td>
</tr>
<tr>
<td>Karroid Broken Veld (26)</td>
<td>Low Open Succulent Shrubland (with Tall Emergent Shrubs or Low Trees eg Euclea undulata)</td>
</tr>
<tr>
<td>Strandveld (34a)</td>
<td>Mid-high Mid-dense Large-leaved Shrubland (sometimes with a Sparse Restioid Overstorey)</td>
</tr>
<tr>
<td>Coastal Rhenosterbosveld (46)</td>
<td>Low Mid-dense Small-leaved Shrubland</td>
</tr>
</tbody>
</table>
Table 3. Comparison of Kruger's (1979) fynbos structural types with suggested structural formations.

<table>
<thead>
<tr>
<th>Kruger's (1979) Fynbos Types</th>
<th>Structural Formation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broad sclerophyllous scrub or open scrub (Protea spp)</td>
<td>Tall Closed Proteoid Shrubland or Tall Mid-dense Proteoid Shrubland</td>
</tr>
<tr>
<td>Tall broad-sclerophyllous shrubland or open shrubland with heathland (Waboomveld)</td>
<td>Tall Sparse Proteoid Shrubland or Open Woodland with a Low Mid-dense Shrub Understorey</td>
</tr>
<tr>
<td>Low ericoid open heath or open graminoid heath (Erica and Restionaceae)*</td>
<td>Low Mid-dense Small-leaved Shrubland or Low Mid-dense Restioid Small-leaved Shrubland</td>
</tr>
<tr>
<td>Broad-sclerophyllous closed shrubland (riparian scrub; Meterosideros–Brachylaena community)</td>
<td>Tall Closed Large-leaved Shrubland</td>
</tr>
<tr>
<td>Restioid herbland</td>
<td>Tall Closed Restioland; Closed Restioland, Mid-dense Restioland with a Low Sparse Small-leaved Shrub Overstorey</td>
</tr>
<tr>
<td>Low graminoid heathland (eastern mountains and hills)</td>
<td>Low Open Small-leaved Shrubland with a Closed Grass Understorey</td>
</tr>
<tr>
<td>Coastal Fynbos on limestone</td>
<td>Tall Mid-dense Proteoid Shrubland with a Low Sparse Shrub Understorey</td>
</tr>
<tr>
<td>Fynbos on coastal sands (Euca racemosa, Rhus lucida–Passerina vulgaris, Metalasia muricata)</td>
<td>Mid-high Mid-dense Large-leaved Shrubland/Low Mid-dense Small-leaved Shrubland</td>
</tr>
</tbody>
</table>
Figure 1. Low Open Succulent Shrubland (with a Tall Sparse Shrub Overstorey). Karroid Broken Veld near Calitzdorp.

Figure 2. Mid-high Open Small-leaved Shrubland (with a Tall Sparse Shrub Overstorey and a Sparse Restiooid Understorey). Arid Fynbos near Pakhuis.
Figure 3. Low Mid-dense Small-leaved Shrubland. Mountain Renosterbosveld near Calitzdorp.

Figure 4. Low Closed Grassy Shrubland (with a Mid-high Sparse Shrub Overstorey). False Karroid Broken Veld near Ann's Villa, Zuurb erg.
Figure 5. Tall Closed Large-leaved Shrubland (with an Open Succulent Low Tree Overstorey). Valley Bushveld near Addo.

Figure 6. Background: Low Forest and Tall Closed Large-leaved Shrubland. Groot Winterhoek Mountains.
Figure 7. Low Closed Small-leaved Graminoid Shrubland/Mid-high Closed Large-leaved Shrubland. Dune Fynbos near Groenvlei.

Figure 8. Mid-dense Restiolands (with a Mid-high Sparse Proteoid Shrub Overstorey). Mountain Fynbos, Cedarberg.
Figure 9. Mid-high Closed Proteoid and Ericoid Shrubland (with a Tall Open Proteoid Overstorey). Mountain Fynbos, Robinson's Pass.

Figure 10. Mid-high Closed Ericoid Shrubland (with an Open Restioid Understorey). Mountain Fynbos, Cedarberg.
REFERENCES

Taylor H C and van der Meulen F (in press). Structural and floristic classifications of Cape Mountain Fynbos on Rooiberg, southern Cape. Bothalia.
GLOSSARY

Cover

Our cover classes are expressed in percentage cover. Often easier to measure is the distance between plant crowns, measured in terms of crown diameters apart. A rough conversion of some of our class limits is as follows:

- $25\% = 1$ crown diameter apart
- $5\% = 3$ crown diameters apart
- $0,1\% = 30$ crown diameters apart

Cyperoid see Graminoid

Dominant growth form

As a rough rule, a growth form is dominant if it has three times more cover than another growth form. Thus a vegetation type is Restioid if restioids have three times more cover than shrubs in the same stratum. If shrubs have three times more cover than restioids then it is a Shrubland. In intermediate situations the formation name Restioid Shrubland is applied. Similarly restioids must have three times more cover than grasses or sedges for the name Restioid Shrubland to be applied in preference to Grassy Shrubland or Cyperoid Shrubland.

Ericoid

Narrow sclerophyllous leaves with lower surface deeply grooved (Specht 1979).

Graminoid

We recognize three floristic types: Grasses (Poaceae - as in Grassland, Grassy Shrubland, 'with a Grassy Understorey'); Restioids (Restionaceae: Restioid, Restioid Shrubland, 'with a Restioid Understorey') and Sedges (Cyperaceae: Sedgeal, Cyperoid Shrubland, 'with a Cyperoid Understorey').

Grasses see Graminoid
Heathland

Some users may wish to use the term heathland to distinguish fynbos shrublands from non-fynbos shrublands. This term, however, is not without problems. In many fynbos communities true heaths (Ericales) are lacking (e.g., much of the Arid Fynbos, grassy fynbos and Restioland). Some Cape workers would prefer to restrict the term heathland to those fynbos communities which have a high ericaceous component (W. Bond personal observation; B. M. Campbell personal observation; R. M. Cowling personal observation). Furthermore, the Australian usage of heathland does not include proteoid formations (Specht 1979). These are termed Proteoid Shrublands.

Height

The height of a vegetation is measured to the highest vegetative organ.

Leaf-size

We use 'small-leaved' for indicating leaves <25 mm2 and 'large-leaved' for leaves >25 mm2. We have no objection to the direct use of Raunkiaer's (1934) terminology:

- Leptophyll <25 mm2
- Nanophyll 25-225 mm2
- Microphyll 2-20 cm2
- Mesophyll 20-182 cm2

Proteoid

We reserve this term to describe the isobilateral, broad, sclerophyllous leaves of most Proteaceae (cf. Taylor 1978).

Restioid see Graminoid

Sedges see Graminoid

Shrub

Any woody plant under 2 m is a shrub. Woody plants between 2-5 m are shrubs if they are multi-stemmed (branch below 0.5 m) or if they have a diameter at breast height <10 cm, and are trees if they are single-stemmed and have a diameter at breast height >10 cm. Plants above 5 m are trees unless they have very small diameters at breast (<5 cm). Thus in fynbos there are very few trees. Occasionally the southern Cape proteoid communities are Closed Woodlands (e.g., Protea mundii, and sometimes P. aurea and Leucadendron eucalyptifolium). Waboomveld is often a Sparse Woodland. See Kruger's (1979) discussion of trees in fynbos.

Tree see Shrub.
COLLABORATORS' ADDRESSES

Mr D P Bands
Jonkershoek Forestry Research Station
Department of Water Affairs, Forestry and Environmental Conservation
Private Bag 5011
STELLENBOSCH
7600

Mr C Boucher
Botanical Research Unit
Department of Agriculture and Fisheries
P O Box 471
STELLENBOSCH
7600

Professor E J Moll
Department of Botany
University of Cape Town
Private Bag
RONDEBOSCH
7700

Mr H C Taylor
Botanical Research Unit
Department of Agriculture and Fisheries
P O Box 471
STELLENBOSCH
7600

Mr B W van Wilgen
Jonkershoek Forestry Research Station
Department of Water Affairs, Forestry and Environmental Conservation
Private Bag 5011
STELLENBOSCH
7600

ACKNOWLEDGEMENT

All illustrations of structural types (Figs 1 to 10) supplied by Mr H C Taylor, Botanical Research Unit, Stellenbosch.
TITLES IN THIS SERIES

*Out of print.