The application of a routine moment tensor inversion capability in the development of a new design consideration for the stability of foundations of stabilising pillars in deep level gold mines and pillars in intermediate depth hard rock mines

L.M. Linzer, B.P. Watson, J.S. Kuijpers & E. Acheampong

Research agency: CSIR: Division of Mining Technology
Project number: GAP 604
Date: March 2002
Report number: 2002-0289
Executive Summary

Results of SIMRAC project GAP 223 showed that stabilizing pillar-related back area seismicity was not related to the width of the pillar, nor to the dip spans of the stopes supported by the pillar. Pillar associated seismicity initiated in the back area at Western Deep Levels when the APS was, on average, 1.2 times the UCS of the footwall rock. Earlier work showed that pillar foundation (footwall and hangingwall) associated seismicity occurred in the range 65m – 95m behind the face. In both of these cases, the APS was not the full load that the pillar would receive. It was hypothesized that these histories of “foundation failure”, are, rather, symptoms of the yielding of the pillar foundation system. Thus the point of interest for design purposes could lie in the yield point of the pillar foundation.

The aim of this project therefore was to use a moment tensor inversion technique to establish design criteria for the prediction of the yield point of stabilizing pillar/foundation system in deep level gold mines.

The project consisted of geotechnical and geomechanical analysis of pillar and their foundations, underground instrumentation and monitoring of pillars and their foundations, numerical analysis of pillar punching and foundation failure mechanisms, seismic analysis of failure mechanisms, development of moment tensor inversion program and verification of the hybrid moment tensor inversion technique.

Geomechanical and geotechnical analyses were undertaken to determine the rock mass condition of in situ pillars at Driefontein (dip pillar with backfill) and Tau Tona (strike pillar with backfill) mines. A comparison of the two sites showed similarities in the jointing system. However, the general rock mass conditions in the stope hangingwall of Tau Tona appeared to be better than the Driefontein site.

To allow for characterization of the pillars and rock mass and to determine any deformations caused by stress changes or seismicity, the two sites were monitored.

Detailed numerical modelling work employing FLAC was done to further improve the understanding of foundation failure mechanisms. The dominating effects of boundaries and geological discontinuities on the performance of pillar systems were demonstrated. It was shown that axi-symmetrical punch tests are not representative of typical pillar layouts and a strong need for more realistic laboratory tests has been identified. It was found that typical strength parameters such as friction and cohesion are not sufficient to determine the yield point of a stabilizing pillar system. The post-failure properties need to be accounted for and this, from a practical point of view, is not feasible with current models and techniques. It was also established that in determining the capacity of pillar systems, it is important to detect and analyse the weakest components in the system, which in this case, are bedding planes, joints, faults and weak layers. This may explain the large deformations experienced in the Driefontein pillars.

Using seismic data gathered from the monitored sites, analyses were performed to further improve the understanding of failure mechanisms at the East Driefontein dip-pillar site. The data consisted of waveforms recorded by a micro-seismic system (a blackbox network) installed by Miningtek and of seismograms recorded by the mine-wide seismic system (an ISS network).

Analysis of the spatial and temporal distributions of the events recorded by the micro-seismic network revealed that the GMM data could be grouped into two clusters: a cluster located within
the dip-pillar, and a cluster to the west of the pillar in the abandoned stope that had mined up to the pillar position. Most (58%) of the cluster within the pillar located in the footwall and advanced with the mining face in a face-parallel fashion. Slightly more than half (50%) of the events in the abandoned area were located in the footwall and in a band sub-parallel to the fault system mapped in the area. When the events were filtered in time, it was observed that during the early part of the time sequence, most of the events located in the forming dip-pillar. During the later parts of the time-sequence, the events were no longer confined to the dip pillar, but also located to the west of the pillar in the abandoned working place. These observations possibly lead to the conclusion that the previously clamped fault zone became unclamped towards the end of the formation of the pillar. It is possible that for this site and fault geometry a ‘critical pillar width’ exists: for widths greater than the critical width, the faults remain clamped, and below the critical width, faults may slip.

The same set of seismograms recorded by the mine-wide seismic system was processed on the mine using the ISS software and then reprocessed using AURA, the seismogram processing analysis program written by CSIR Miningtek. It was found that the magnitudes computed using AURA were substantially larger than those computed using the ISS software, whereas comparisons of energy and moment showed the same order of variation as noted by Richardson & Jordan (2001).

Hybrid moment tensor inversions were performed on two clusters of events. The first cluster analysed consisted of 19 events having relatively large magnitudes (ML > 1.8) recorded in the East Driefontein study area from 1 August 2001 onwards. The second cluster of 101 events was recorded in the vicinity of the East Driefontein dip-pillar from 1 January 2001 to 19 November 2001. The events recorded from 9 to 15 November 2001 were of special interest because these events occurred at the time a jump in the extensometer measurements was observed.

When the fault-plane solutions of the cluster of 19 events were compared with the geological trends, joint orientations, face and pillar geometry, it was found that 8 of the 19 fault-plane solutions could be correlated with the trend of the dyke located 200 m to the west of the pillar line. Since the mining-faces are sub-parallel to the joints and trend of the dyke, it is possible that these geological features became unstable due to mining, resulting in the large events. Four events located to the north of the dip pillar had similar radiation patterns and fault-plane solutions that correlated with the trends of the faulting observed in the area.

Of the 101 moment tensor solutions, over half had radiation patterns indicating strike-slip displacement inferring that the driving stress for these seismic events was sub-horizontal. The high-k-ratio measured in the area and strike-slip patterns indicated that the ambient tectonic stress field played a large role in driving slip on planes of weakness.

A computer program, ‘the moment tensor inversion toolbox’, was developed to perform moment tensor inversions routinely. The program is described in a general sense and the phases in its development are outlined. The several phases of development made to the program during the course of the project are summarised. The program structure, input data file structure are described and the equations implemented in the code are given.

Finally, the hybrid moment tensor inversion technique was verified to assess the performance of the algorithm under various conditions. Several stability tests using synthetic data were carried out, following which the hybrid MTI methods were applied in a case study situation.

As part of this work, and attached as a separate document, a methodology and guidelines has been developed that allows the determination of which two nodal planes, obtained from moment tensor inversion, is the most likely fault plane.
Acknowledgements

Acknowledgement is made to Dr. S. Spottiswoode of Miningtek for his technical guidance.
Table of Contents

Executive Summary ... 2
Acknowledgements .. 4
Table of Contents ... 5
List of Figures .. 8
List of Tables .. 16

1 Geotechnical and geomechanical analysis of the core retrieved from the extensometer boreholes ...
 1.1 Introduction ...
 1.2 Methods used in the evaluation ..
 1.3 Driefontein site ..
 1.3.1 Geotechnical assessment of the hangingwall ...
 1.3.2 Geotechnical assessment of the extensometer boreholes
 1.3.3 Results of the geomechanical testing ...
 1.3.4 Overview of the geotechnical and geomechanical results
 1.4 Tau Tona site ..
 1.4.1 Geotechnical assessment of the immediate hangingwall
 1.4.2 Results of the geomechanical testing ..
 1.5 Comparisons between the geotechnical and geomechanical aspects of the Driefontein and Tau Tona sites

2 Underground instrumentation ..
 2.1 Driefontein site ...
 2.1.1 Introduction ...
 2.1.2 Description of the instrumentation site ... 21
 2.1.3 Overview of the instrumentation results ... 22
 2.1.4 Detailed analysis of results between 9 and 15 November 2001
 2.1.5 Observations made at the instrumentation site at the end of the project

19
2.1.6 Interpretation of the instrumentation results between 9 and 15 November 2001

2.2 Tau Tona site .. Error! Bookmark not defined.
2.2.1 Introduction ... Error! Bookmark not defined.
2.2.2 Description of the instrumentation site Error! Bookmark not defined.
2.2.3 Overview of the instrumentation results Error! Bookmark not defined.
2.2.4 Detailed analysis of the results between 8 and 13 February 2002 Error! Bookmark not defined.

2.3 Comments on the two instrument sites Error! Bookmark not defined.

3 Pillar punching (foundation failure) mechanisms Error! Bookmark not defined.

3.1 Introduction ... Error! Bookmark not defined.

3.2 Punch strength .. Error! Bookmark not defined.
3.2.1 Large scale strength Error! Bookmark not defined.
3.2.2 Plane Strain ... Error! Bookmark not defined.
3.2.3 Large scale plane strain strength Error! Bookmark not defined.
3.2.4 Effect of boundary conditions in plane strain ... Error! Bookmark not defined.
3.2.5 Numerical modeling results Error! Bookmark not defined.
3.2.6 Yielding and load shedding Error! Bookmark not defined.
3.2.7 Effect of discontinuities Error! Bookmark not defined.
3.2.8 Strain softening parameters Error! Bookmark not defined.

3.3 Summary ... Error! Bookmark not defined.

4 Seismic analysis of failure mechanisms . Error! Bookmark not defined.

4.1 East Driefontein dip-stabilising pillar site Error! Bookmark not defined.
4.1.1 Blackbox data .. Error! Bookmark not defined.
4.1.2 Mine-wide seismic data Error! Bookmark not defined.

4.2 Tau Tona strike stabilising pillar site Error! Bookmark not defined.
4.2.1 Blackbox data .. Error! Bookmark not defined.

5 Moment tensor inversion program Error! Bookmark not defined.

5.1 Moment Tensor Inversion Toolbox Error! Bookmark not defined.
5.1.1 Phase 1 - Fortran 90 using PSS input data files Error! Bookmark not defined.
5.1.2 Phase 2 – Visual Basic interface and Fortran DLL using PSS input data files Error! Bookmark not defined.
5.1.3 Phase 3 – Visual Basic interface and Fortran DLL using AURA input data files Error! Bookmark not defined.
5.1.4 Phase 4 – MTI toolbox written in Delphi 5 using AURA input data files Error! Bookmark not defined.

5.2 Overview of enhancements to MTI toolbox ... Error! Bookmark not defined.
5.3 MTI toolbox program structure....................... Error! Bookmark not defined.
5.4 Equations implemented in MTI toolbox program Error! Bookmark not defined.

5.4.1 Absolute moment tensor inversion................... Error! Bookmark not defined.
5.4.2 Relative MTI with a reference mechanism........ Error! Bookmark not defined.
5.4.3 Relative MTI without a reference mechanism... Error! Bookmark not defined.
5.4.4 Hybrid MTI... Error! Bookmark not defined.
5.4.5 Parameters used in interpretation of the output moment tensor solutions Error! Bookmark not defined.
5.5 Input data file generation................................. Error! Bookmark not defined.

6 Verification of Hybrid MTI......................... Error! Bookmark not defined.

6.1 Stability tests using synthetic data Error! Bookmark not defined.
6.2 Case study ... Error! Bookmark not defined.

7 References ... Error! Bookmark not defined.

8 Appendices... Error! Bookmark not defined.
List of Figures

Figure 1.1 Plan showing the location of the instrumentation site used in the geotechnical and geomechanical assessment............................

Figure 1.2 Photograph showing the hangingwall where the geotechnical logging took place, note also the brittle paint on the hangingwall (see section 2.1.2)

Figure 1.3 Lower hemisphere, equal area stereo net showing the orientations of the three major joint sets and the reef, in panel 50-26/5E

Figure 1.4 Sketch of a strike section through the instrumentation site, showing the instrumented boreholes

Figure 1.5 Photograph showing the core from the pillar borehole (Borehole 1)

Figure 1.6 Photograph showing the core from the borehole drilled at 45^0 into the hangingwall (Borehole 2)

Figure 1.7 Photograph showing the core from the borehole drilled vertically into the hangingwall (Borehole 3)

Figure 1.8 Photograph showing the core from the borehole drilled 45^0 into the footwall (Borehole 4)

Figure 1.9 Photograph showing the core from the borehole drilled vertically into the footwall (Borehole 5)

Figure 1.10 Results of the triaxial tests performed on light grey, fine-grained quartzite from the reef (Borehole 1; 25,9 m to 26,78 m)

Figure 1.11 $\sigma_1 - \sigma_3$ curve for the triaxial tests performed on quartzite from the reef (Borehole 1), showing the effect of confinement and the degree of confidence

Figure 1.12 Results of the triaxial tests performed on siliceous quartzite from the hangingwall

Figure 1.13 $\sigma_1 - \sigma_3$ curve for the triaxial tests, showing the effect of confinement and the degree of confidence

Figure 1.14 Results of the triaxial tests performed on the Green Bar
Figure 1.15 $\sigma_1 - \sigma_3$ curve for the triaxial tests, showing the effect of confinement and the degree of confidence.................................Error! Bookmark not defined.

Figure 1.16 Results of the triaxial tests performed on the footwallError! Bookmark not defined.

Figure 1.17 $\sigma_1 - \sigma_3$ curve for the triaxial tests, showing the effect of confinement and the degree of confidence.................................Error! Bookmark not defined.

Figure 1.18 Results of the data analysis performed using the criterion-2 evaluationError! Bookmark not defined.

Figure 1.19 Mine plan showing the instrumentation site and the location of the geotechnical and geomechanical evaluation.................................Error! Bookmark not defined.

Figure 1.20 Photograph showing the hangingwall where the geotechnical assessment was made at Tau Tona ...Error! Bookmark not defined.

Figure 1.21 Equal area stereo net showing the orientations of the three major joint sets and the reef, in panel 104-82-E3.................................Error! Bookmark not defined.

Figure 1.22 Photograph showing footwall conditions at the Tau Tona siteError! Bookmark not defined.

Figure 1.23 Photograph showing the footwall conditions at the Driefontein siteError! Bookmark not defined.

Figure 2.1 Mine plan showing the location of the instrumentation siteError! Bookmark not defined.

Figure 2.2 Sketch of a strike section through the instrumentation site, showing the instrumented boreholes...Error! Bookmark not defined.

Figure 2.3 Photograph of the instrumentation site in panel 50-26/E8Error! Bookmark not defined.

Figure 2.4 Deformation measured on all the instrumentation between 18 June and 5 November...Error! Bookmark not defined.

Figure 2.5 Photograph showing the potentiometric closuremeter and the pillar face (taken on 27/7/2001)...Error! Bookmark not defined.

Figure 2.6 Deformation measured on the closuremeters located in panels in the 50/27 stopeError! Bookmark not defined.

Figure 2.7 Section showing that the seismic locations recorded between 24 and 30 October 2001 plotted in the footwall, below the pillar and the 50/27 stopeError! Bookmark not defined.
Figure 2.8 Geological plan showing seismic locations between 24 and 30 October 2001.

Figure 2.9 Deformation measured on all the instrumentation between 5 and 20 November 2001.

Figure 2.10 Deformation measured on all the instrumentation over the duration of the monitoring period.

Figure 2.11 Results of the seismicity measured at the instrumentation site.

Figure 2.12 Results of the vertical footwall extensometer between 5 and 20 November 2001.

Figure 2.13 Photographs taken of the pillar before and after the 9 to 12 November 2001 event.

Figure 2.14 Closure results between 5 and 20 November 2001.

Figure 2.15 Results of the 45°-footwall extensometer between 5 and 20 November 2001.

Figure 2.16 Strike section showing the borehole locations and possible positions of shear planes.

Figure 2.17 Results of the 45° hangingwall-extensometer between 5 and 20 November 2001.

Figure 2.18 Strike section showing the borehole locations and possible positions of shear planes.

Figure 2.19 Sketch showing a side view of the extensometer holes drilled in the pillar at the top of panel 104-82-E3.

Figure 2.20 Mine plan showing the instrumentation site in the 104-82-E3 panel at Tau Tona.

Figure 2.21 Photograph showing the instrumentation site at Tau Tona.

Figure 2.22 Photograph showing the installation of a closuremeter in the strike gully below the pillar.

Figure 2.23 Deformation measured on all the instrumentation over the duration of the monitoring period.

Figure 2.24 Results of the extensometer installed in the pillar hole.
Figure 2.25 Results of the extensometer installed in the hole drilled at 20° above the pillar, into the hangingwall.
Figure 2.26 Results of the extensometer installed in the hole drilled at -27° below the pillar, into the footwall.
Figure 2.27 Results of the closuremeters.
Figure 2.28 Results of the loadcell installed at the edge of the pillar, showing stress change.

Figure 3.1 Punch strength in axi symmetric tests (after Wagner and Schümann and Cook et al.).
Figure 3.2 Theoretical asymptotes in addition to the test results.
Figure 3.3 In-plane wedge fracturing in laboratory tests on pillar foundation failure (no out-of-plane confinement).
Figure 3.4 Fixed boundaries, representative of an infinite row of pillars; displacement-controlled loading.
Figure 3.5 Infinite boundaries, representing a single pillar; Loading is by field stresses.
Figure 3.6 Point of failure: failure contours merging at the centerline to form a wedge or, alternatively, initiation of splitting along the centerline.
Figure 3.7 Pillar performance associated with the indicated boundary conditions without (top) and with in situ horizontal stresses.
Figure 3.8 Pillar performance associated with the indicated boundary conditions without (top) and with in situ horizontal stresses.
Figure 3.9 Pillar performance associated with the indicated boundary conditions without (top) and with in situ horizontal stresses.
Figure 3.10 Pillar performance associated with the indicated boundary conditions without (top) and with in situ horizontal stresses.
Figure 3.11 Failure contours for a solid (left) and a layered (right) models subjected to the same conditions.
Figure 3.12 Magnified deformations for punching into solid material (left) and into layered material (right).
Figure 3.13 Effect of joints on pillar behaviour.
Figure 3.14 Effect of confinement on pillar stress (horizontal asymptote is elastic) Error! Bookmark not defined.

Figure 3.15 Effect of confinement on pillar stress (horizontal asymptote is elastic) Error! Bookmark not defined.

Figure 3.16 Effect of confining pressure on punch strength Error! Bookmark not defined.

Figure 3.17 Effect of in situ stress on punch strength, with and without horizontal interfaces Error! Bookmark not defined.

Figure 3.18 Failure contours and APS against vertical deformation for a non-dilating material with (right) and without (left) horizontal interface... Error! Bookmark not defined.

Figure 3.19 Failure contours and APS against vertical deformation for a dilating material with (right) and without (left) horizontal interface........ Error! Bookmark not defined.

Figure 3.20 Effect of dilation angle on punch strength for various softening rates (the numbers indicate cohesion in MPa and friction angle in degrees) Error! Bookmark not defined.

Figure 3.21 Medium-strain softening in a non-dilating material. Localisation of failure (left) and Average Pillar Stress (right) Error! Bookmark not defined.

Figure 3.22 Medium-strain softening in a dilating material. Localisation of failure (left) and Average Pillar Stress (right) Error! Bookmark not defined.

Figure 3.23 Strong-strain softening in a non-dilating model. Localisation of failure (left) and Average Pillar Stress (right) Error! Bookmark not defined.

Figure 3.24 Strong-strain softening in a dilating model. Localisation of failure (left) and Average Pillar Stress (right) Error! Bookmark not defined.

Figure 3.25 Failure in a non-dilating (left) and a dilating (right) material. Perfectly plastic, 10MPa horizontal confinement........................ Error! Bookmark not defined.

Figure 3.26 Average Pillar Strength in perfectly plastic materials subjected to a horizontal confinement of 10MPa. Non-dilating (left) and dilating (right) Error! Bookmark not defined.

Figure 4.1 Layout of micro-seismic system installed at East Driefontein 5#. Square symbols denote geophone positions Error! Bookmark not defined.

Figure 4.2 Example of waveforms recorded by the blackbox network installed at the East Driefontein dip pillar site......................... Error! Bookmark not defined.

Figure 4.3 Plan view showing located events (all magnitudes). Note the clustering of the events ... Error! Bookmark not defined.

Figure 4.4 Variation in spatial distribution of events with time Error! Bookmark not defined.
Figure 4.5 Variation in spatial distribution of events in Cluster B (filtered) with time.

Figure 4.6 Event locations of cluster A. The dashed line represents the reef plane. Note that the mine plan has been offset upwards for clarity.

Figure 4.7 Event locations of cluster A. The dashed line represents the reef plane. Note that the mine plan has been offset upwards for clarity.

Figure 4.8 (left) Plan view of the dip-pillar between the 50-26 and 50-27 stopes showing the trends of major geological features. (right) Equal area lower-hemisphere stereographic projection of the joint sets mapped in panel 50-26/E8. Plane orientations are given using the dip/dip direction convention.

Figure 4.9 Network layout of the mine-wide seismic system at East Driefontein 5# (plan view).

Figure 4.10 Network layout of the mine-wide seismic system at East Driefontein 5# (section view).

Figure 4.11 Event 1010105010 (recorded by the mine-wide seismic network on 05/01/2001 at 15:02:46).

Figure 4.12 Event 1010104000 (recorded by the mine-wide seismic network on 04/01/2001 at 13:53:55).

Figure 4.13 Event 1010529002 (recorded by the mine-wide seismic network on 29/05/2001 at 16:14:40).

Figure 4.14 (top) Typical velocity seismograms. Velocity spectra calculated from the raw traces (solid line), spectral fits (dotted lines) and noise spectra for the P-wave (left) and S-wave (right) for three geophones at one site. Cosine tapering was applied and spectra were smoothed with 3-point averaging.

Figure 4.15 Gutenberg-Richter frequency-magnitude distribution for the study area using data recorded between 01/01/2001 and 24/11/2001.

Figure 4.16 Comparison of local magnitudes (ML) computed using the ISS software and AURA for the data recorded in the study area during September 2001.

Figure 4.17 Comparison of seismic moments (Mo) computed using the ISS software and AURA for the data recorded in the study area during September 2001.

Figure 4.18 Comparison of seismic energy computed using the ISS software and AURA for the data recorded in the study area during September 2001.
Figure 4.19 Plan view showing located events (all magnitudes) for 01/01/2001 to 19/11/2001.

Figure 4.20 Variation in spatial distribution of events with time (approximately 2 month time steps) for events recorded between 01/01/2001 to 19/11/2001.

Figure 4.21 Scattergram of event magnitude versus time.

Figure 4.22 Comparison of Gutenberg-Richter frequency-magnitude distributions for the time periods: 01/01/2001 to 30/07/2001 and 01/08/2001 to 19/11/2001.

Figure 4.23 Comparison of the ratio of the standard error of the solution to the scalar seismic moment computed using the absolute MTI and hybrid MTI methods.

Figure 4.24 Modified strain ellipsoid showing orientations of structures formed during left-lateral (sinistral) strike-slip motion (from Kuang, 1988).

Figure 4.25 Radiation patterns and fault-plane solutions for events recorded at East Driefontein having ML > 1.8.

Figure 4.26 Radiation patterns and fault-plane solutions for events recorded at East Driefontein for January 2001.

Figure 4.27 Radiation patterns and fault-plane solutions for events recorded at East Driefontein for February 2001.

Figure 4.28 Radiation patterns and fault-plane solutions for events recorded at East Driefontein for March 2001.

Figure 4.29 Radiation patterns and fault-plane solutions for events recorded at East Driefontein for April 2001.

Figure 4.30 Radiation patterns and fault-plane solutions for events recorded at East Driefontein for May 2001.

Figure 4.31 Radiation patterns and fault-plane solutions for events recorded at East Driefontein for June 2001.

Figure 4.32 Radiation patterns and fault-plane solutions for events recorded at East Driefontein for July 2001.

Figure 4.33 Radiation patterns and fault-plane solutions for events recorded at East Driefontein for August 2001.

Figure 4.34 Radiation patterns and fault-plane solutions for events recorded at East Driefontein for September 2001.
Figure 4.35 Radiation patterns and fault-plane solutions for events recorded at East Driefontein for October 2001 .. Error! Bookmark not defined.

Figure 4.36 Radiation patterns and fault-plane solutions for events recorded at East Driefontein for November 2001 .. Error! Bookmark not defined.

Figure 4.37 Dip-pillar study area .. Error! Bookmark not defined.

Figure 4.38 Layout of micro-seismic system installed in the 104-82-E3 panel at Tau Tona. Square symbols denote geophone positions........ Error! Bookmark not defined.

Figure 5.1 (left) Interface of the moment tensor inversion toolbox. (right) About box Error! Bookmark not defined.

Figure 5.2 Schematic representation of the moment tensor inversion program (without a reference mechanism) .. Error! Bookmark not defined.

Figure 5.3 An example of an image generated by the MTI toolbox. The images can be saved to disc as bitmaps or copied to the Windows clipboard and pasted into documents. Shaded areas indicate compressional P-wave first motions Error! Bookmark not defined.

Figure 5.4 An example of an output file displayed by the text viewer Error! Bookmark not defined.

Figure 5.5 Flowchart illustrating the main computational steps (units) in the MTI toolbox Error! Bookmark not defined.

Figure 5.6 Variation in residuals of event 1, component 1 and the P-phase for five recording sites for (a) Scheme A - mean correction, (b) Scheme B - median correction, and, (c) Scheme C - weighted mean correction.... Error! Bookmark not defined.

Figure 5.7 Example of data file created by AURA for input into the moment tensor inversion toolbox.............................. Error! Bookmark not defined.

Figure 5.8 Example of a data file created by hand for input into the moment tensor inversion toolbox.. Error! Bookmark not defined.

Figure 6.1 Coverage of the focal sphere for synthetic event cluster Error! Bookmark not defined.

Figure 6.2 Focal mechanism diagrams of synthetic cluster. The set of six events are pure double-couple sources consisting of vertically dipping fault planes with a North strike. The rake varies from 0° to 75° in 15° increments. Circle symbols represent positive (compressional) P-wave first motions. Circle size indicates the amplitude of the wave field at that point in the radiation pattern Error! Bookmark not defined.

Figure 6.3 Focal sphere coverage................................. Error! Bookmark not defined.
Figure 6.4 Velocity waveforms as recorded by site 1, component 2. Note similarity between events 991014004, 991118076, 991123066, 991127024, 991206128 and 1000316107. Only 13 of the 14 events are displayed since site 1 was inactive when event 1000225001 occurred..........................Error! Bookmark not defined.

Figure 6.5 Radiation patterns and fault plane solutions for the cluster computed with an absolute moment tensor inversion..........................Error! Bookmark not defined.

Figure 6.6 Radiation patterns and fault plane solutions for the cluster computed with the hybrid moment tensor inversion..........................Error! Bookmark not defined.

Figure 6.7 Radiation patterns and fault plane solutions for the cluster computed with the hybrid moment tensor inversion. Events 1000316107 and 1000512000 were not included in the inversion..........................Error! Bookmark not defined.

Figure 6.8 Graph showing the variation of normalised standard error with iteration number (first hybrid moment tensor inversion)..................Error! Bookmark not defined.

Figure 6.9 Graph showing the variation of normalised standard error with iteration number (second hybrid moment tensor inversion).............Error! Bookmark not defined.
List of Tables

<table>
<thead>
<tr>
<th>Table 1.1</th>
<th>Values required for Equation 1.4 to Equation 1.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1.2</td>
<td>Geotechnical log of the hangingwall in panel 50-26/E8</td>
</tr>
<tr>
<td>Table 1.3</td>
<td>A comparison between rock mass ratings determined from the geotechnical assessment</td>
</tr>
<tr>
<td>Table 1.4</td>
<td>Geotechnical results of the pillar borehole (borehole 1)</td>
</tr>
<tr>
<td>Table 1.5</td>
<td>Geotechnical results of the borehole drilled 45° into the hangingwall (borehole 2)</td>
</tr>
<tr>
<td>Table 1.6</td>
<td>Geotechnical results of the borehole drilled vertically into the hangingwall (Borehole 3)</td>
</tr>
<tr>
<td>Table 1.7</td>
<td>Geotechnical results of the borehole drilled 45° into the footwall (Borehole 4)</td>
</tr>
<tr>
<td>Table 1.8</td>
<td>Geotechnical results of the borehole drilled vertically into the footwall (Borehole 5)</td>
</tr>
<tr>
<td>Table 1.9</td>
<td>Results of the uniaxial tests performed on reef samples from the pillar hole (Borehole 1)</td>
</tr>
<tr>
<td>Table 1.10</td>
<td>Results of the confined tests performed on reef samples from the pillar hole (Borehole 1 - Figure 1.4)</td>
</tr>
<tr>
<td>Table 1.11</td>
<td>Results of the Mohr-Coulomb analyses performed on the triaxial tests</td>
</tr>
<tr>
<td>Table 1.12</td>
<td>Results of the uniaxial tests performed on hangingwall samples from the vertical hole (Borehole 3)</td>
</tr>
<tr>
<td>Table 1.13</td>
<td>Results of the confined tests performed on hangingwall samples from the vertical hole (Borehole 3)</td>
</tr>
<tr>
<td>Table 1.14</td>
<td>Results of the Mohr-Coulomb analyses performed on the triaxial tests</td>
</tr>
<tr>
<td>Table 1.15</td>
<td>Results of the confined tests performed on the Green Bar</td>
</tr>
<tr>
<td>Table 1.16</td>
<td>Results of the Mohr-Coulomb analyses performed on the triaxial tests</td>
</tr>
</tbody>
</table>
Table 1.17 Results of the uniaxial tests performed on footwall samples.

Table 1.18 Results of the confined tests performed on footwall samples.

Table 1.19 Results of the Mohr-Coulomb analyses performed on the triaxial tests.

Table 1.20 Average geotechnical results of the extensometer boreholes.

Table 1.21 Summary of the average geomechanical properties determined by laboratory tests.

Table 1.22 Calculated input values for criterion-1.

Table 1.23 Calculated input values for criterion-2.

Table 1.24 Geotechnical log of the hangingwall in panel 104-82-E3.

Table 1.25 A comparison between rock mass ratings determined from the geotechnical assessment.

Table 2.1 Depths of the extensometer anchors at the instrumentation site in panel 50-26/E8.

Table 2.2 Deformation recorded on the instruments at the Driefontein site before 9 November 2001.

Table 2.3 Deformation recorded during the November event.

Table 2.4 Deformations recorded in the footwall extensometer between 9 and 12 November 2001.

Table 2.5 Deformations recorded in the 45° hangingwall-extensometer between 12 and 13 November 2001.

Table 2.6 Results of the pillar extensometer between 8 and 13 February 2002.

Table 2.7 Results of the pillar extensometer between 8 and 19 February 2002.
Table 2.8 Results of the hangingwall extensometer between 8 and 13 February 2002

Table 2.9 Results of the footwall extensometer between 8 and 13 February 2002

Table 2.10 Results of the footwall extensometer between 6 and 8 February 2002

Table 2.11 Results of the closuremeters between 6 and 13 February 2002

Table 3.1 APS/UPS for different material parameters

Table 3.2 APS/UCS values associated with various parameter combinations for rigid boundaries

Table 4.1 Coordinates and channel numbering of geophones connected to blackbox 1

Table 4.2 Coordinates and channel numbering of geophones and extensometers connected to blackbox 2

Table 4.3 Comparison of event magnitudes and moments for data recorded for September 2001

Table 4.4 Comparison of radiation patterns and fault-plane solutions calculated using absolute and hybrid MTI methods

Table 4.5 Events recorded between 9 and 15 November 2001

Table 4.6 Events recorded on 8 November 2001

Table 4.7 Coordinates and channel numbering of geophones connected to blackbox at Tau Tona strike-pillar site

Table 5.4.1 (a) Moment tensor solutions of six synthetic events computed using the multi-step iterative process at $w_{iter} = 0.5$ (iteration 8)

Table 6.1 Average %DC source component for the cluster (noise free data)

Table 6.2 Average %DC source component for the cluster (10% random noise)

Table 6.3 Average %DC source component for the cluster (20% random noise)
Table 6.4 Average %DC source component for the cluster (30% random noise)
Error! Bookmark not defined.

Table 6.5 Average %DC source component for the cluster (40% random noise)
Error! Bookmark not defined.

Table 6.6 Average %DC source component for the cluster (100% systematic noise applied to site 1, channel 1 for all events in cluster)..............Error! Bookmark not defined.

Table 6.7 Average %DC source component for the cluster (100% systematic noise applied to sites 1 and 3, channels 1 and 7 for all events in cluster)Error! Bookmark not defined.

Table 6.8 Event parameters ..Error! Bookmark not defined.

Table 6.9 Qualitative assessment of seismogramsError! Bookmark not defined.

Table 6.10 Source parameters for the cluster (absolute moment tensor inversion)Error! Bookmark not defined.

Table 6.11 Source parameters for the cluster (hybrid moment tensor inversion)Error! Bookmark not defined.

Table 6.12 Source parameters for the cluster (hybrid moment tensor inversion)Error! Bookmark not defined.

Table 6.13 Standard error normalised to scalar seismic moment for the cluster (first hybrid moment tensor inversion)..................................Error! Bookmark not defined.

Table 6.14 Standard error normalised to scalar seismic moment for the Oryx cluster (second hybrid moment tensor inversion).........................Error! Bookmark not defined.
References