Safety in Mines Research Advisory Committee

Draft Final Report

Reliable practical technique for in-situ rock stress measurements in deep gold mines

T R Stacey

Research agency: Steffen, Robertson and Kirsten
Project number: GAP 314
Date: March 1998
Executive summary

The proposed Primary Output of this research project is the development of a set of equipment and method of analysis of data for a practical method of in situ stress measurement in a high stress environment typical of the deep level gold mines. The method involves:

- a borehole-based system, using percussion boreholes drilled with a conventional jackhammer;
- creating the enlargement, or stress/strain change by drilling parallel, overlapping holes;
- control of the direction of adjacent holes by means of a special borehole guide;
- measurement of deformation changes in the first borehole, as a result of the drilling of the third borehole;
- sequential deformation change measurements down the length of the borehole, alternately moving the deformation meter and advancing the third borehole;
- measurements carried out in three different borehole orientations at each site to provide sufficient data for the complete state of stress to be determined;
- calculation of the in situ stress field by back analysis of monitored deformations using an appropriate numerical stress analysis program;
- optimisation of results making use of the redundancy in number of data.

The theoretical feasibility of the method was proved in the GAP 220 project. Several specific aspects were identified as key issues:

- the development of a suitable drilling guide which could cope with the following:
 - variation in the straightness of the holes;
 - some variation in the diameter of the holes;
 - "wedging" due to some closure of the holes;
 - the impact and vibration action of the drill;
 - packing of the drill chippings.

- development of a suitable borehole deformation measurement device;

- development of the standard back analysis procedure.

The current project, GAP 314, has involved the development of these aspects as described below.
The back analysis system

Back analysis is a technique which has been developing for more than 20 years, and has been made feasible by the availability of computers and numerical stress analysis techniques. The principle of the method is that the in situ stresses and the deformation characteristics of the rock mass interact and thus, when an opening is created, the resulting deformations or stress changes, which are manifestations of this interaction, allow the in situ stresses and rock mass deformation properties to be back-calculated. A direct back analysis procedure/multiple stage has been implemented for the project. A fictitious stress boundary element method program was modified to apply this procedure, and the implementation of the method has been verified.

Calculation of the three dimensional stress tensor

The carrying out of an in situ stress measurement in one borehole set will provide the two dimensional stress tensor in the plane normal to the axis of the borehole set. To determine the complete three dimensional state of stress, measurements in three boreholes sets, with different orientations, at each measurement site are required. The three sets of two dimensional results are then be combined to determine the complete state of stress. A computer program has been prepared to carry out this calculation, and the program has been verified.

Mechanical drilling equipment

The development of the drilling guide proved to be the most challenging aspect of the research project, and was evolutionary. After initial trials in a concrete block had proved to be satisfactory, underground trials with the system were, conversely, completely unsuccessful. The drill jammed in the hole continuously. Trials reverted to the laboratory, with drilling being carried out in a block of nolite. Various geometries of the drilling guide were experimented with, with varying degrees of success.

It was ultimately found that a guide in the form of a tube was successful if a hole in the tube, through which the chips could pass, was present adjacent to the drill bit. Underground trials showed that the drill guide operated satisfactorily. It was also found necessary to develop a suitable guide system to prevent the deviation of the first hole as it passed through fractures or weaker zones.
Measurement of deformations

The deformation instrument developed consists of three pairs of strain-gauged cantilever elements, each pair measuring across a diameter. The cantilevers are pressed out into contact with the rock by means of an hydraulically operated cam action. Hydraulic "jacks" lock the instrument in place during measurements. Laboratory trials of the system showed that the agreement between measured and predicted deformations was very good.

Field trials of the system

Field trials of the complete system have been carried out in a gold mine at a depth of 2050m. The trials have demonstrated that overlapping percussion holes can be drilled very satisfactorily in quartzite at these depths, that the resulting deformations can be measured satisfactorily, and that approximately 6 measurements can be made in one shift. Insufficient numbers of measurements have been made at this stage to evaluate the magnitudes of the stresses. Further measurements are due to be carried out shortly, which will address this deficiency.
Table of contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executive Summary</td>
<td>1</td>
</tr>
<tr>
<td>1. INTRODUCTION</td>
<td>6</td>
</tr>
<tr>
<td>2. Review of the GAP 220 project</td>
<td>7</td>
</tr>
<tr>
<td>2.1 Summary from the review of available methods of in situ stress measurement</td>
<td>7</td>
</tr>
<tr>
<td>2.2 Requirements for a reliable practical technique for in situ ground stress measurements in deep gold mines</td>
<td>12</td>
</tr>
<tr>
<td>2.3 Conceptual development of a reliable practical method of in situ stress measurement</td>
<td>13</td>
</tr>
<tr>
<td>2.4 Stress analyses of the concept</td>
<td>15</td>
</tr>
<tr>
<td>2.5 Conclusions from SIMRAC Project GAP 220</td>
<td>16</td>
</tr>
<tr>
<td>3. Development of a reliable practical technique for in situ rock stress measurements in deep gold mines</td>
<td>16</td>
</tr>
<tr>
<td>3.1 The back analysis system</td>
<td>16</td>
</tr>
<tr>
<td>3.1.1 Theory of the back analysis method</td>
<td>17</td>
</tr>
<tr>
<td>3.1.2 Theoretical verification of the back analysis method</td>
<td>17</td>
</tr>
<tr>
<td>3.1.3 Three dimensional stress tensor</td>
<td>19</td>
</tr>
<tr>
<td>3.2 Mechanical drilling equipment</td>
<td>20</td>
</tr>
<tr>
<td>3.3 Measurement of deformations</td>
<td>22</td>
</tr>
<tr>
<td>3.4 Laboratory trials of the systems</td>
<td>22</td>
</tr>
<tr>
<td>3.5 Field trials of the in situ stress measurement system</td>
<td>24</td>
</tr>
<tr>
<td>4. Conclusions and recommendations</td>
<td>28</td>
</tr>
<tr>
<td>References</td>
<td>29</td>
</tr>
</tbody>
</table>

List of Appendices

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix 1</td>
<td>SIMRAC Research Proposal</td>
</tr>
<tr>
<td>Appendix 2</td>
<td>Implementation of the back analysis method</td>
</tr>
<tr>
<td>Appendix 3</td>
<td>Computer program for back analysis</td>
</tr>
<tr>
<td>Appendix 4</td>
<td>Computer program to calculate the three dimensional stress tensor</td>
</tr>
</tbody>
</table>
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>Conceptual method of in situ rock stress measurement</td>
<td>14</td>
</tr>
<tr>
<td>Figure 2</td>
<td>Drill mounting cradle and holes produced</td>
<td>19</td>
</tr>
<tr>
<td>Figure 3</td>
<td>Layout of deformation meter</td>
<td>23</td>
</tr>
<tr>
<td>Figure 4</td>
<td>Laboratory test block</td>
<td>25</td>
</tr>
<tr>
<td>Figure 5</td>
<td>Laboratory tests - measured and predicted results</td>
<td>26</td>
</tr>
<tr>
<td>Figure 6</td>
<td>Location of stress measurement</td>
<td>27</td>
</tr>
</tbody>
</table>

List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1</td>
<td>Verification of the back analysis program</td>
<td>18</td>
</tr>
<tr>
<td>Table 2</td>
<td>Effect of the assumption of incorrect values of Poisson's ratio</td>
<td>19</td>
</tr>
<tr>
<td>Table 3</td>
<td>Verification of the three dimensional stress tensor program</td>
<td>20</td>
</tr>
</tbody>
</table>
1 INTRODUCTION

Knowledge of the in situ state of stress in a rock mass is essential for the proper planning and design of mine layouts to optimise stability and safety of mining operations. The in situ stresses are essential boundary conditions for all design and analysis methods making use of stress analyses. The use of incorrect boundary conditions will provide invalid design results which could be significant with regard to stability and safety.

The in situ state of stress in a rock mass can be determined by direct measurement, and there are numerous methods of measurement which are currently in use. Although some measurements of in situ stress were carried out prior to 1950, significant research into methods of in situ stress measurement began in the 1950's and has continued to the present time. In South Africa, research in the 1950's and early 1960's led to the development of borehole strain cells for the measurement of both two- and three-dimensional states of stress. This work was completed in mid-1960, and at that stage South African expertise was probably the best available in the world.

It is unfortunate that no significant research in the field of in situ stress measurements has been carried out in South Africa since that time, in spite of the fact that, in the past 30 years, mining has progressed to much greater depths, where stress conditions are even more critical. A consequence of this is that techniques that are appropriate for the very high stress conditions in our deep level mines were not developed.

In 1995 a SIMRAC Research Project (GAP 220) was awarded to Steffen, Robertson and Kirsten entitled "Reliable cost effective technique for in-situ ground stress measurements in deep gold mines". The purpose of this project was to identify a method of in situ stress measurement that would be suitable for deep level mines, and to carry out a conceptual feasibility study of the method. A report on this project was submitted to SIMRAC in July 1995.

The above is background to the present SIMRAC research project entitled "Reliable, practical technique for in situ rock stress measurements in deep gold mines" (GAP 314), which represents the implementation of the findings of Project GAP 220. A copy of the GAP 314 research proposal is contained in Appendix 1 for record purposes. The proposed Primary Output, as indicated in the proposal, is as follows:

- equipment and method of analysis of data for in situ stress measurement in a high stress environment typical of the deep level gold mines.

This project has been carried out by Steffen, Robertson and Kirsten (SRK). The project team included personnel from CSIR Miningtek owing to their expertise with the
carrying out of stress measurements, and their workshop and laboratory facilities. The latter were essential for the critical aspects of development of the mechanical and electronic equipment. SRK was responsible for the concepts, the development of the back analysis system, and the administration of the project.

2 Review of the GAP 220 project

It is considered appropriate to include a brief review of the work carried out under SIMRAC Project GAP 220, since the output from that project formed the basis of the current research. The activities carried out under GAP 220 included the following:

- a review of existing methods of in situ stress measurement as published in the literature;
- identification of those methods which are possibly more appropriate in South African gold mines;
- assessment of the applicability of these more appropriate methods, and identification of the advantages and disadvantages of each of them;
- definition of the requirements, both theoretical and practical, for in situ stress measurements in deep level mines, and, based on these requirements,
- conceptual development of a reliable and cost-effective method of in situ stress measurement.

2.1 Summary from the review of available methods of in situ stress measurement

Most of the existing methods of in situ stress measurement involve the observation of a change in deformation or stress resulting from a change in the geometry of an opening in the rock, and the subsequent calculation of the field stresses from those measured changes. The most common "opening" in the rock mass is a borehole.

Of the available methods it was considered that only a limited number had potential application to the deep level gold mines:

- borehole overcoring methods, including the CSIR doorstopper strain cell, the CSIR triaxial strain cell, and the CSIRO HI cell;
- large diameter overcoring in a bored raise;
- hydrofracturing;
- back analysis from monitored deformations around excavations.

The practical applicability of each of the above four groups in deep level gold mines
was summarised as follows:

Borehole overcoring methods

Borehole overcoring methods rely on the measurement of small changes in strains on the surfaces of the boreholes, or changes in diametral dimensions. The volume of rock involved in each measurement is very small, and the actual measurements made are therefore significantly influenced by the local behaviour of the rock at the measurement location. In fact the measurements can be affected by the grain size in the rock and strain gauges can be of similar size to grains. In addition, the condition of the rock at the measurement location can affect the results considerably. For example, the occurrence of minor micro-cracking beneath a strain gauge or diametral measurement point can affect the magnitude of the strain or deformation reading considerably. This is illustrated very clearly by the results reported by Chandler (1993) - microcracking in "perfect" granite led to large variations in the apparently good quality results obtained (Martin and Christiansson, 1991). In this good quality rock, variations of more than 50% in measured in situ stresses were obtained in a single hole.

Variation in results obtained by different overcoring methods, under laboratory conditions, are presented by Cai et al (1995). These results show a maximum error of about 30%, and a typical error of about 10%, even under the controlled laboratory test conditions. Under high stresses and less perfect rock conditions, large variations in apparently good measurements can be expected. To apply statistical techniques for analysis implies that a large number of results must be obtained. This has a significant disadvantage since overcoring measurements require a diamond drill, special bits, and associated services (water, compressed air and electricity usually) to be on standby for the duration of the measurement programme. An experienced driller and measurement technician are also required for the duration of the programme. Measurements can typically be carried out at the rate of one per shift for triaxials, and about two for doorstoppers. Time is also required after the site work to carry out laboratory core testing and to calculate and interpret the results. In addition to the above, there are many experimental difficulties which can develop, for example, breaking of the core during overcoring; instrumentation problems due to the harsh underground environment; the presence of water in the hole; glue creep and debonding. All of these can result in a failed measurement. It may be concluded that a successful overcoring programme is demanding on time and the provision of facilities.

Overcoring methods measure strain or deformation, and the in situ stress has to be calculated from these strain values. This requires that the deformation properties of the rock be determined, and the assumption that the properties determined are representative.
It may be concluded that, although overcoreing methods are theoretically applicable in
deep level mines, they have many disadvantages which make them non-ideal for this
purpose. In summary, the disadvantages are their variability, the time and facilities
required and the experimental unreliability.

Large diameter overcoreing in a bored raise

Many raises are excavated by raise boring on the deep level gold mines. There is thus
a source of measurement sites for application by this method. The method involves
a much larger volume of rock than the borehole overcoreing method, and thus
overcomes the problem of small scale variability of rock material. In addition, a
considerable amount of redundancy of measurement values can be introduced into the
method, and this will allow dubious individual values to be eliminated, and statistical
optimisation to be applied.

The method is dependent on the location of raise bores, and cannot be carried out at
a specific location at which knowledge of in situ stress magnitudes is required.

The method requires physical access to the actual measurement location, and, for
safety purposes, this may require special support to be installed in the raise. In
addition, special large diameter overcoreing equipment is required, with the associated
services and personnel. Laboratory testing of the overcores, or of cores taken from
the overcore, is required.

As with the borehole overcore methods, the in situ stresses are calculated from the
measured strain relief values. The results are therefore dependent on the measured
rock stress-strain relationships, and on the validity of the solution used for in situ stress
calculation.

In conclusion, the method is likely to provide a more reliable stress measurement result
than borehole overcoreing. However, it is much less flexible, will be very time
consuming and demanding on personnel, and may be difficult to carry out safely.

Hydrofracturing

Hydraulic fracturing is the best known method for determining in situ stress at great
depth. This applies to the determination of crustal stresses in vertical boreholes. If
the method has been applied in deep level gold mines, no results have been
published.

The method requires special equipment, and associated services and personnel, to
carry out a measurement. The borehole must be diamond drilled, or inspected with
a television camera if percussion drilled. Since packers are inserted in the borehole to seal off the test sections, the straightness and wall quality of the borehole are important. In boreholes in which spalling is occurring, there may be a risk of not being able to insert (or recover) the packers, and it may also not be possible to seal off the borehole satisfactorily. In vertical boreholes in the oil industry in which hydrofracturing is usually carried out, drilling fluids are usually present which help to maintain the integrity of the borehole. Special techniques such as this may be necessary if the method was to be applied in the gold mines.

After hydrofracturing, the borehole has to be inspected again, using a television camera, or a special impression taken of its surface, to determine the orientation of the induced fracture.

Interpretation of hydrofracture records can require expert input if the shut-in pressure is not distinct. Interpretation of test results is not a straight-forward activity, and the experience of the interpreter has some effect on the in situ stress values ultimately determined. Different interpreters may derive somewhat different results from the same set of field data.

It is clear that the application of the hydrofracturing method in deep level gold mines would be very demanding on services. Perhaps the most severe restriction, however, is the requirement that the borehole be drilled in the direction of one of the principal stresses. In general in the gold mines this is not known and is one of the in situ stress parameters to be determined. The HTPF variation of the hydrofracture method (Cornet, 1986), which does not have this requirement, is not seen as a practical alternative owing to the number of boreholes required for a full in situ stress measurement.

It may be concluded that the hydrofracture method is not likely to provide a practical method for application in the deep level gold mines. However, the simplified approach (Vik and Tunbridge, 1986; de Witt, 1992), in which the magnitude of the minimum principal stress only is determined, is considered to have significant merit, since it provides a direct measurement of stress rather than a strain from which the stress is calculated. Such a test could be implemented in percussion boreholes with a very limited requirement for services. Although the test will yield only the magnitude of the minimum principal stress and not its orientation, it will provide an absolute stress magnitude which can be used to "calibrate" the results obtained from other in situ stress measurement methods. For this reason it is considered to be a practical addition to any other method of in situ stress measurement.
Back analysis from monitored deformations around excavations

The use of a back analysis technique, based on measured deformation or stress changes around an excavation, has the advantage of testing a large volume of rock. The larger the excavation involved the larger the volume of rock that will be affected. The benefits of such an approach compared with other methods of in situ stress measurement have been outlined by Wiles and Kaiser (1994a).

From a practical point of view, the calculation of in situ stresses requires linearly elastic rock deformation behaviour. This may be restrictive in very high stress environments, but, if required, it should be possible to engineer the enlargement such that the induced deformations being measured are essentially in the elastic regime.

The application of the method is restricted to the availability of sites at which excavation enlargements are being made (unless enlargements are made specifically for the purposes of in situ stress measurement). This will have a large interference factor on mining operations. Sophisticated instrumentation is required, with associated special borehole drilling. The reliability and survivability of instrumentation in deep level gold mines is known to be a serious problem, particularly if it is required over a significant period of time.

It may be concluded that back analysis as a method of in situ stress determination has significant applicability in the deep level gold mining environment if suitable opportunities arise. However, it is inflexible in that it would not, under normal circumstances, be practical to implement the method only for the specific purpose of in situ stress measurement, since the interference factor will be significant.

Conclusions regarding the applicability of existing methods of in situ stress measurement

Of the many available methods of in situ stress measurement the majority were rejected immediately as not being practically applicable in deep level gold mines. Only a few of the methods were identified as being possibly applicable, and their advantages and disadvantages have been dealt with above. In summary, conclusions regarding the applicability of these few methods were as follows:

- borehole overcoring methods: have been and can be used, but suffer from the disadvantages of poor reliability and considerable requirement for services. Applicability was considered to be poor.
- large diameter overcoring: greater reliability, but is inflexible in terms of location, and is demanding in terms of services. Applicability was considered to be poor.
hydrofracturing: demanding in terms of services, specialised equipment and expert interpretation, and has a major drawback in that the borehole must be drilled in the direction of one of the in situ principal stresses. Applicability was considered to be very poor. However, applicability of a simplified method, in which only the magnitude of the minimum principal stress is determined, was considered to be significant. This, however, did not on its own satisfy the requirements of the SIMRAC Project.

back analysis from monitored deformations around excavations: to implement excavation enlargements, with associated instrumentation, specifically for the purposes of in situ stress measurement was not considered to be practically applicable. Where appropriate opportunities arise to use the method, ie, when the excavation is going to be enlarged anyway and instrumentation can be easily installed, it was considered that it could be applicable. General applicability in the deep level gold mines was considered to be poor.

2.2 Requirements for a reliable practical technique for in situ ground stress measurements in deep gold mines

None of the existing methods of in situ stress measurement is considered to have practical applicability in deep gold mines. This is for a variety of reasons which have been outlined above. From experience of involvement in numerous in situ stress measurement programmes in mines and tunnels, using a range of the techniques described above, the following are considered to be the requirements for a reliable, practical technique for in situ stress measurement in deep gold mines:

- the technique must be undemanding on services provided by the mine. It would probably require the provision of compressed air, but should not require water or power. It must have as little impact as possible on mining production and exploration operations, and should require no input of time from these personnel. If possible, it should require no attendance by any mine personnel during the measurement programme;
- the technique should be simple with regard to all aspects - preparation, installation, instrumentation, and economical in terms of time requirements;
- the technique should allow many measurements to be made in a single mining shift. The preference is for a large number of lower accuracy measurements rather than one or a few apparently high accuracy results. This will allow the results to be treated statistically and therefore avoid localised effects;
- the technique should not be sensitive to high stress effects such as spalling and microcracking of the rock;
- the technique should be flexible. It should be possible to implement at very
short notice, require a minimum of preparation, be possible to apply in excavations of limited size, and be non-restrictive in terms of location. It should also be able to be implemented on a stop-start basis, not requiring a long continuous period for a measurement programme, ie it should be able to fit in with the availability of measurement sites, transport, personnel etc;

- the technique should preferably not require the retrieval of rock cores and laboratory testing to determine the deformation properties of the rock or rock mass.

Based on the above requirements, an in situ stress measurement technique which will be practically applicable in the deep gold mines was developed conceptually.

2.3 Conceptual development of a reliable practical method of in situ stress measurement

The method of in situ stress measurement, developed conceptually in SIMRAC Project GAP 220, is as illustrated in Figure 1:

- a borehole-based system, using percussion boreholes drilled using a conventional jackhammer;
- creating the enlargement, or stress/strain change, not by overcoring, but by drilling overlapping holes;
- control of the direction of adjacent holes, and prevention of sideways movement of drill chips, by means of a special drilling guide;
- measurement of deformation changes in the first borehole, as a result of the drilling of the third borehole, by means of a borehole deformation meter;
- sequential deformation change measurements down the length of the borehole, alternately moving the deformation meter and advancing the third borehole, thus obtaining numerous individual results in a single borehole set;
- measurements carried out in three different borehole orientations at each site to provide sufficient data for the complete state of stress to be determined;
- calculation of the in situ stress field by back analysis of monitored deformations using an appropriate numerical stress analysis program. Sufficient data would be obtained to allow the deformation properties to be determined as part of the back analysis procedure;
- optimisation of results making use of the redundancy in number of data.

It is considered that the technique defined by this concept will satisfy all the requirements identified in the sub-section above. Specifically, the use of jackhammers
Figure 1: Conceptual method of in situ rock stress measurement
to drill percussion holes means that the operation will be quick and undemanding on
the mine. The use of percussion drilling also means that many measurements can be
made in one shift.

The use of a reusable deformation meter rather than disposable cells means that
instrumentation problems should be reduced.

2.4 Stress analyses of the concept

Stress analyses of the proposed geometry of the method were carried out with the
following aims:

- to prove that deformations induced around the first borehole by the drilling of
 the third borehole would be of sufficient magnitude to be easily measured;
- to determine the effect of failure around the boreholes due to overstress on the
depositions;
- to determine the length over which the third borehole must be drilled to
 influence completely the measurement location in the first borehole.

The results showed that the net closure across the diameter of the first borehole as
a result of the drilling of the third borehole is of the order of 0.04 mm. This order of
magnitude can easily be measured with the required accuracy for back analysis
purposes.

Analyses were carried out allowing rock failure to develop. In this "failure" situation,
the deformation across the first borehole is increased by less than 5% compared with
the elastic results. This is less than the likely measured variations in deformation
owing to local variations in rock behaviour and experimental factors. The implication
of the above is that the method is not sensitive to the occurrence of rock failure due
to overstress in high field stress conditions. The extent of rock failure can also be
restricted by appropriate choices of orientations of the borehole sets, that is, so that
their axes are not normal to the probable orientation of the maximum principal stress.

Three dimensional analyses showed that, per measurement, the minimum length of
percussion drilling required in the third borehole is about 200 mm. The implication of
this is that about five measurements can be made per metre length of borehole.

The requirement for a large number of measurements in a single shift is therefore met
on the basis of the theoretical analyses.
2.5 Conclusions from SIMRAC Project GAP 220

The method of in situ stress measurement, developed in concept, and based on the percussion drilling of a set of three overlapping boreholes, with back analysis of the in situ stresses from measured borehole deformations, overcomes the disadvantages of most of the available methods of in situ stress measurement. It should therefore be reliable, and is aimed at being specifically applicable under the conditions which occur in deep mines. It was recommended that the physical development of the system should proceed.

3 Development of a reliable practical technique for in situ rock stress measurements in deep gold mines

From the GAP 220 Project several specific aspects were identified as needing development to ensure that the method can be applied practically. These were:

- the development of a suitable drilling guide which can cope with the following:
 - variation in the straightness of the holes;
 - some variation in the diameter of the holes;
 - "wedging" due to some closure of the holes;
 - the impact and vibration action of the drill;
 - packing of the drill chippings.

This was considered to be the most significant physical challenge;

- development of a suitable borehole deformation measurement device;

- development of the standard back analysis procedure;

Project GAP 314 involves the above developments and the laboratory and in situ testing of the system.

3.1 The back analysis system

Back analysis is a technique which has been developing for more than 20 years, and has been made feasible by the availability of computers and numerical stress analysis techniques. The principle of the method is that the in situ stresses and the
deformation characteristics of the rock mass interact and thus, when an opening is created, the resulting deformations or stress changes, which are manifestations of this interaction, allow the in situ stresses and rock mass deformation properties to be back-calculated.

3.1.1 Theory of the back analysis method

When an excavation is made, or an excavation enlarged, in a rock mass under a stress field, displacements of the surfaces of the excavation occur in response to the action of the stresses. The relationship between the displacements and the stresses can be represented by a simple equation:

\[\{u\} = [F]\{\sigma\} \]

where \(\{u\} \) is a matrix of displacements
\(\{\sigma\} \) is a matrix of the in situ stresses
\([F]\) is the flexibility matrix, which is a function of the deformation properties of the rock, and the geometry and dimensions of the excavation

If the displacements can be measured, then the in situ stresses can be calculated (back analysed) by rearranging the equation as follows:

\[\{\sigma\} = ([F]^T[F])^{-1}[F]^T\{u_m\} \]

where \(\{u_m\} \) is the matrix of the measured displacements

This approach is well suited to the application of numerical stress analysis methods, which have developed along with the development of digital computers, and are now widely used.

The method of implementation of the back analysis approach to the proposed in situ stress measurement technique is given in Appendix 2. The computer programs for back analysis are given in Appendix 3.

3.1.2 Theoretical verification of the back analysis method

Diametral convergences for the first borehole in the borehole set were calculated for two in situ stress fields:

- \(\sigma_x = -37.5 \text{ MPa}; \sigma_y = -75.0 \text{ MPa}; \sigma_{xy} = 0.0 \text{ MPa} \)
- \(\sigma_x = -37.5 \text{ MPa}; \sigma_y = -75.0 \text{ MPa}; \sigma_{xy} = 10.0 \text{ MPa} \)
A modulus of elasticity of 70 GPa and a Poisson's ratio of 0.2 were used in these calculations.

These calculated convergences were then assumed to be the measured convergences and the in situ stresses back analysed using the procedure described above. The results of the back analysis are given in Table 1. It can be seen that the procedure is exact within the limits of numerical rounding off errors.

Table 1. Verification of the back analysis program

<table>
<thead>
<tr>
<th></th>
<th>Correct</th>
<th>Calculated</th>
<th>Correct</th>
<th>Calculated</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_{xx}</td>
<td>-37.5</td>
<td>-37,509</td>
<td>-37.5</td>
<td>-37.592</td>
</tr>
<tr>
<td>σ_{yy}</td>
<td>-75</td>
<td>-74,999</td>
<td>-75.0</td>
<td>-74.999</td>
</tr>
<tr>
<td>σ_{yx}</td>
<td>0</td>
<td>-0.001</td>
<td>-1.0</td>
<td>-1.001</td>
</tr>
</tbody>
</table>

The back analysis procedure requires the modulus of elasticity E and Poisson's ratio of the rock to be determined. These could be determined from laboratory tests. However, it is probable that the stress magnitudes determined from the measurements will be moderated so that the vertical stress corresponds with the overburden stress. In this case the back analysis can be carried out using assumed values for the deformation parameters. This is completely valid for the modulus of elasticity since stress magnitudes are directly proportion to the value of E, but is not the case for Poisson's ratio. Therefore, back analysis calculations were carried out for a range of Poisson's ratio values to determine the sensitivity of the back analysed stresses to incorrect assumptions (the correct value of Poisson's ratio in this case is 0.2). The results of these calculations are given in Table 2 and show that an incorrect assumption is unlikely to lead to an error exceeding approximately 10%. The values in brackets in the table are the percentage errors.
Table 2. Effect of the assumption of incorrect values of Poisson's ratio

<table>
<thead>
<tr>
<th></th>
<th>Exact</th>
<th>0,1</th>
<th>0,15</th>
<th>0,2</th>
<th>0,25</th>
<th>0,3</th>
<th>0,35</th>
<th>0,4</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_x</td>
<td>-37,5 (8,2)</td>
<td>-34,43 (4,4)</td>
<td>-35,84 (4,4)</td>
<td>-37,51 (0,0)</td>
<td>-39,36 (5,0)</td>
<td>-41,66 (11,1)</td>
<td>-44,47 (18,6)</td>
<td>-47,89 (27,7)</td>
</tr>
<tr>
<td>σ_y</td>
<td>-75,0 (1,9)</td>
<td>-73,06 (1,6)</td>
<td>-73,83 (1,6)</td>
<td>-75,00 (0,0)</td>
<td>-76,60 (2,1)</td>
<td>-78,68 (4,9)</td>
<td>-81,32 (8,4)</td>
<td>-84,60 (12,8)</td>
</tr>
<tr>
<td>σ_z</td>
<td>0 (0,0)</td>
<td>-0,00 (0,0)</td>
</tr>
</tbody>
</table>

3.1.3 Three dimensional stress tensor

As shown in the above description of the implementation of the back analysis method, the two dimensional stress tensor in the plane normal to the axis of the borehole will be determined. To determine the complete three dimensional state of stress, measurements in three sets of boreholes with different orientations at each measurement site will be required. The three sets of two dimensional results will then be combined to determine the complete state of stress. The computer program prepared for this is listed in Appendix 4, and is based on the publications of Panek (1966) and Smith (1982).

The inputs required by the program are the bearing and inclination of each borehole set, and the corresponding two dimensional stress tensor. There is redundancy in the amount of data and the program performs a least squares fit for the three dimensional stress tensor. The outputs from the program are:

- the six stress tensor components and their standard deviations;
- statistical parameters of the least squares fit;
- the three principal stresses, their bearing and inclination angles, and their standard deviations.

The program has been tested using theoretical data and has been shown to be correct. In this verification process, a three dimensional stress tensor was assumed. The two dimensional stress tensors for each of three borehole orientations (corresponding with the orientations of the stress measurement borehole sets) were calculated using elastic theory. These calculated two dimensional stresses and the borehole bearings and inclinations then constituted the input data for the program. A
comparison of the assumed and calculated three dimensional stress tensors for two examples is summarised in Table 3.

Table 3. Verification of the three dimensional stress tensor program

<table>
<thead>
<tr>
<th></th>
<th>Assumed Stress Tensor</th>
<th>Example 1</th>
<th>Standard Deviation</th>
<th>Assumed Stress Tensor</th>
<th>Example 2</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_x</td>
<td>-50</td>
<td>-52,2</td>
<td>10,7</td>
<td>-50</td>
<td>-50,0</td>
<td>0,0</td>
</tr>
<tr>
<td>σ_y</td>
<td>-45</td>
<td>-46,3</td>
<td>6,5</td>
<td>-25</td>
<td>-25,0</td>
<td>0,0</td>
</tr>
<tr>
<td>σ_z</td>
<td>-60</td>
<td>-59,9</td>
<td>0,2</td>
<td>-25</td>
<td>-25,0</td>
<td>0,0</td>
</tr>
<tr>
<td>σ_{xy}</td>
<td>-12,5</td>
<td>-14,2</td>
<td>8,6</td>
<td>-2</td>
<td>-2,0</td>
<td>0,0</td>
</tr>
<tr>
<td>σ_{yz}</td>
<td>-10,1</td>
<td>-10,2</td>
<td>0,5</td>
<td>-3</td>
<td>-3,0</td>
<td>0,0</td>
</tr>
<tr>
<td>σ_{zx}</td>
<td>-5,5</td>
<td>-5,5</td>
<td>0,6</td>
<td>-4</td>
<td>-4,0</td>
<td>0,0</td>
</tr>
</tbody>
</table>

In the results in Table 3 it can be seen that there is considerably more variation in Example 1 than in Example 2. This is due to the assumption, in Example 1, of borehole set orientations close to each other. The bearing/inclination assumptions were 60/3, 45/-5, 56/7. These similarly orientated holes do not produce data which is well conditioned. Nevertheless, the output results are acceptable. For Example 2 the bearing/inclination inputs were 100/-2, 25/-3 and 156/-10. These more widely distributed orientations produced almost exact results with negligible deviations.

3.2 Mechanical drilling equipment

Drilling trials were initially carried out in a cast concrete block. After initial trials with the drill hand held, a drill cradle structure for the percussion drill was constructed, which allowed an air leg to be used. This considerably improved penetration rates and drilling accuracy. This structure is shown in Figure 2.

The development of the drilling guide, as expected, proved to be the most challenging aspect of the research project. After initial trials in the concrete block had proved to be satisfactory, underground trials with the system at Hartebeestfontein Gold Mine were, conversely, completely unsuccessful. It was found that the drill jammed in the hole continuously, and hole lengths greater than 1m were not possible to achieve. Trials therefore reverted to the laboratory, with drilling being carried out in a block of
FIGURE 2: DRILL MOUNTING CRADLE AND HOLES PRODUCED
norite. Various geometries of the drilling guide were experimented with, with varying
degrees of success. It was also found that the stability of the system is critically
dependent on the extent of overlap of the adjacent holes, and that the ideal overlap
might be different for different sites.

It was ultimately found that a guide in the form of a tube was successful if a hole,
through which the chips could pass, was present adjacent to the drill bit. Underground
trials were carried out with this system at Oryx Mine. These showed that the drill guide
operated satisfactorily, but an additional problem was experienced. It was found that
the first percussion hole deviated when it crossed a weaker zone or stress induced
fracture. The resulting lack of straightness of the borehole prevented the drilling guide
from passing down this first hole. It was therefore necessary to develop a suitable
guide system to prevent the deviation of the first hole. The overall system proved to
be very successful, and high quality holes were achieved, as shown in Figure 2.

3.3 Measurement of deformations

The deformation measurement system envisaged at proposal stage involved the
scanning of the surface of the first borehole using a laser scanner. This scanning
system was chosen since it would allow the deformation of a large number of points
around the surface of the borehole to be measured. This availability of redundant data
would provide security for the measurement - if a value at the exact required location
is clearly invalid (such as due to spall fragments, joints, fractures, porous conditions
etc) measurements at alternative adjacent locations would be available. A
considerable amount of time and effort was spent on the development of this
equipment. However, the required stability of the system could not be achieved, and
it was necessary to develop a simpler, more conventional instrument for measurement
of the borehole deformations.

The deformation instrument developed consists of three pairs of strain-gauged
cantilever elements, each pair measuring across a diameter. The cantilevers are
pressed out into contact with the rock by means of an hydraulically operated "cam
action. Hydraulic "jacks" lock the instrument in place during measurements. The
instrument is shown in Figure 3.

3.4 Laboratory trials of the systems

Before the stress measurement system was subjected to underground conditions, its
performance was tested in the laboratory under controlled conditions.

The system was tested in large blocks under known applied stress conditions.
Figure 3: Layout of deformation meter
Boreholes were drilled into the blocks which were loaded in a standard laboratory compression testing machine. The initial plan was to use cast cement blocks for the verification purpose, and this plan was implemented. However, the cement blocks did not have the required strength, and developed cracks in the initial tests. In further tests, loads were therefore limited, and the corresponding deformations induced were small. This was considered to be unsatisfactory, and an aluminium block was used instead.

When the back analysis was applied to the measured deformations, it was found that the agreement between the applied stresses and the back analysed stresses was very poor. This was very disappointing, and an explanation was sought. The explanation proved to be the small dimensions of the aluminium block, which resulted in the assumption of infinite boundaries (appropriate in the real application of the back analysis system) being incorrect. The holes in the block were substantially within the influence of the boundaries, as shown in Figure 4.

When the actual boundaries of the block were taken into account in the analyses, the agreement between measured and calculated borehole deformations proved to be excellent, as shown in Figure 5. The percentage values given in the tabular portion of this figure are the errors as a percentage of the average measured values. It can be seen that the agreement is excellent when the correct boundary conditions are taken into account, but the error is about 30% when infinite boundary conditions are assumed. It should be noted that little account should be taken of measurement 3 values since these were not diametral change values.

It is concluded that the adequacy of the measurement system has been proved.

3.5 Field trials of the in situ stress measurement system

Initial drilling trials were carried out at Hartebeestfontein Mine as indicated above. This site was subsequently unavailable, and an alternative site at Oryx Mine was offered.

Figure 6 shows the location and geometry of the site. This location is 2050m below surface. The rock type in which the drilling was carried out is quartzite with a rock material strength of between 45 MPa and 145 MPa based on the results of uniaxial compressive strength tests. The borehole set was drilled at an upward inclined angle of 6° on a bearing of N55°E. Three measurements were carried out in the borehole set at depths down the hole of 1.45m, 2.9m and 3.2m during a single shift. Based on the experience gained from these activities, it has been estimated that a full set of measurements can be carried out in one borehole set in two mining shifts. This includes the setup of the drill, including the mounting of the drill support frame, the drilling of the overlapping holes, and the "leap frog" process of drilling and
Figure 4: Laboratory test block
Aluminium Block calibration tests
Measurement taken in centre hole

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual boundaries</td>
<td>-0.2738 0%</td>
<td>-0.1285 2.3%</td>
<td>-0.0812 42.2%</td>
</tr>
<tr>
<td>Infinite boundaries</td>
<td>-0.1895 30.8%</td>
<td>-0.0896 31.9%</td>
<td>-0.0692 21.2%</td>
</tr>
<tr>
<td>Measured</td>
<td>-0.2740</td>
<td>-0.1315</td>
<td>-0.0571</td>
</tr>
</tbody>
</table>

cantilever pairs

Figure 5: Laboratory tests - measured and predicted results
Figure 6: Location of stress measurement
measurement in the third hole.

Insufficient numbers of measurements have been made at this stage to evaluate the magnitudes of the stresses. Further measurements are due to be carried out shortly, which will involve three borehole sets and the use of a data logger to record deformation changes continuously as the drilling progresses. These additional measurements should address the deficiency in numbers of data.

4 Conclusions and recommendations

The following conclusions can be drawn from the research which has been carried out:

- a method of in situ stress measurement has been developed which has been shown to be practical for application in deep gold mines;
- a drilling guide which allows the satisfactory drilling of overlapping percussion boreholes was developed;
- a borehole deformation measurement meter was developed, and its adequacy proved in laboratory tests;
- a back analysis system, based on a boundary element numerical stress analysis program, was developed, and its application proved;
- based on the overall simplicity of the approach, and the fact that all the components of the system have been developed satisfactorily, the method should be reliable.
- application of the approach has shown that a full stress measurement in one borehole set can be carried out in two mining shifts, and that about 6 deformation measurements in one borehole set can be carried out in a single shift.

It is recommended that as much use as possible should now be made with the new method of stress measurement, to gain experience with the method, and to identify any further improvements that could be made to the equipment and the process.
References

APPENDIX 1

SIMRAC RESEARCH PROPOSAL

RELIABLE, PRACTICAL TECHNIQUE FOR IN-SITU ROCK STRESS MEASUREMENTS IN DEEP GOLD MINES
DEPARTMENT OF MINERAL AND ENERGY AFFAIRS
PROPOSAL FOR A PROJECT TO BE FUNDED IN TERMS OF
THE MINERALS ACT
-CONFIDENTIAL-

REVISED

DMEA REFERENCE NUMBER

GAP 314
(FOR OFFICE USE ONLY)

1. PROJECT SUMMARY

PROJECT TITLE: RELIABLE PRACTICAL TECHNIQUE FOR IN SITU ROCK STRESS MEASUREMENTS IN DEEP GOLD MINES.

PROJECT LEADER: TR STACEY

ORGANISATION: STEFFEN, ROBERTSON AND KIRSTEN

ADDRESS: PO BOX 55291, NORTHLANDS, 2116

TEL: (011) 441 1143 TELEFAX: (011) 880 8086 TELEX:

PRIMARY OUTPUT
Equipment and method of analysis of data for in situ stress measurement in a high stress environment typical of the deep level gold mines.

HOW USED
The equipment and method could be used directly in the mines.

BY WHOM
Rock mechanics practitioners and technicians.

CRITERIA FOR USE
Some understanding of rock mechanics and use of electronic instruments.

POTENTIAL IMPACT
Reliable field stress data for input to design analyses, making for better designed and safer working conditions.

<table>
<thead>
<tr>
<th>FUNDING REQUIREMENTS (R000s)</th>
<th>YEAR 1</th>
<th>YEAR 2</th>
<th>YEAR 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL PROJECT COST</td>
<td>383</td>
<td>284</td>
<td></td>
</tr>
<tr>
<td>TOTAL SUPPORT REQUESTED FROM SIMRAC</td>
<td>383</td>
<td>284</td>
<td></td>
</tr>
</tbody>
</table>

DURATION (YY/MM) 1996 TO 1997

SIMRAC SUB-COMMITTEE:

AUPT X COAL OTHER GENERIC
2. PROJECT DETAILS

2.1 Primary Output

A prototype set of equipment and a report detailing the insitu rock stress measurement method and the method of analyses the results.

2.2 Other Outputs (deliverables)

None

2.3 Enabling Outputs

<table>
<thead>
<tr>
<th>NO.</th>
<th>ENABLING OUTPUT</th>
<th>MILESTONE DATE</th>
<th>MAN DAYS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Development of electronic measuring equipment</td>
<td>Month 6</td>
<td>35</td>
</tr>
<tr>
<td>2</td>
<td>Development of mechanical equipment</td>
<td>Month 6</td>
<td>25</td>
</tr>
<tr>
<td>3</td>
<td>Development of method of analysis of data</td>
<td>Month 6</td>
<td>63</td>
</tr>
<tr>
<td>4</td>
<td>Laboratory testing of electronic measuring equipment</td>
<td>Month 9</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>Laboratory testing of mechanical equipment</td>
<td>Month 9</td>
<td>15</td>
</tr>
<tr>
<td>6</td>
<td>Laboratory trials of system</td>
<td>Month 12</td>
<td>20</td>
</tr>
<tr>
<td>7</td>
<td>Field trials in underground mine</td>
<td>Month 15</td>
<td>30</td>
</tr>
<tr>
<td>8</td>
<td>Modifications as appropriate to equipment</td>
<td>Month 17</td>
<td>14</td>
</tr>
<tr>
<td>9</td>
<td>Further field trials</td>
<td>Month 20</td>
<td>40</td>
</tr>
<tr>
<td>10</td>
<td>Preparation of report and instruction manual</td>
<td>Month 24</td>
<td>35</td>
</tr>
</tbody>
</table>
Methodology

<table>
<thead>
<tr>
<th>NO. OF ENABLING OUTPUT</th>
<th>STEP NO.</th>
<th>METHODOLOGY TO BE USED TO ACCOMPLISH THE ENABLING OUTPUT (INDICATE STEPS/ACTIVITIES)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>i) Define measurement requirement, accuracy and identify suitable instruments</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ii) Design measurement <code>cell</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td>iii) Manufacture prototype <code>cell</code></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>i) Define mechanical requirements (mainly re drilling)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ii) Design mechanical components</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iii) Manufacture prototype mechanical components</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>i) Develop theory for analysis of results</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ii) Write or modify computer program</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iii) Test method on theoretical results</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>i) Test measurement <code>cell</code> in sample rock in laboratory press</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ii) Modify prototype if necessary</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>i) Test operation of mechanical components in the laboratory or externally under easily controlled conditions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ii) Modify prototype mechanical equipment if necessary</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>i) Carry out trial measurements with the system in the laboratory (stressed cement block)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ii) Analysis results and compare with imposed stresses</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>i) Carry out trials in a <code>convenient</code> underground mine where access is easy and facilities convenient</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ii) Analyses results and compare with <code>reasonability</code></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>i) Modify equipment as appropriate</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>i) Carry out trials in a deep level mine</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ii) Analyze results and compare with reasonability</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>i) Prepare report and instruction manual</td>
</tr>
</tbody>
</table>

Key facilities and Procedures to be used in the Project

1. Input from the existing SIMRAC project GAP 220
2. Workshop and laboratory facilities, and experience, of CSIR EMATEK
3. Computer and analytical skills from Steffen, Robertson and Kirsten
4. Experience of having carried out a large number of insitu stress measurements using several different techniques.
5. The project will be carried out as a joint Steffen, Robertson and Kirsten/ CSIR EMATEK project.
3. FINANCIAL DETAILS

3.1 Financial Summary

<table>
<thead>
<tr>
<th></th>
<th>R000s</th>
</tr>
</thead>
<tbody>
<tr>
<td>YEAR 1</td>
<td>YEAR 2</td>
</tr>
<tr>
<td>Project staff costs</td>
<td>262</td>
</tr>
<tr>
<td>Operating costs</td>
<td>19</td>
</tr>
<tr>
<td>Capital & plant costs</td>
<td>55</td>
</tr>
<tr>
<td>Sub-contracted work</td>
<td></td>
</tr>
<tr>
<td>Value added tax*</td>
<td>47</td>
</tr>
<tr>
<td>Total cost of project</td>
<td>383</td>
</tr>
<tr>
<td>Less funding from other sources (from 3.6)</td>
<td></td>
</tr>
<tr>
<td>Support requested from SIMRAC</td>
<td>383</td>
</tr>
</tbody>
</table>

*Only for VAT registered concerns

3.2 Project Staff Costs

<table>
<thead>
<tr>
<th>NAME AND DESIGNATION</th>
<th>MAN DAYS</th>
</tr>
</thead>
<tbody>
<tr>
<td>T R Stacey Project Manager</td>
<td>YEAR 1</td>
</tr>
<tr>
<td>SJ Coetzer, Rock Mechanics Technologist</td>
<td>YEAR 2</td>
</tr>
<tr>
<td>Mining/ Numerical analysis Engineer</td>
<td>YEAR 3</td>
</tr>
<tr>
<td>Rock Mechanics Technician</td>
<td></td>
</tr>
<tr>
<td>Electronics Specialist</td>
<td>13</td>
</tr>
<tr>
<td>Tracer/ Draftsperson</td>
<td>10</td>
</tr>
<tr>
<td>TOTAL (R000s)</td>
<td>262</td>
</tr>
</tbody>
</table>
3.3 Operating Costs (Running)

<table>
<thead>
<tr>
<th>ACTIVITY/ EQUIPMENT (Items above R10 000)</th>
<th>YEAR 1</th>
<th>YEAR 2</th>
<th>YEAR 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Travelling</td>
<td>4</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Photography</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Photocopies, documentation etc</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Cement test blocks</td>
<td>7</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Other miscellaneous items</td>
<td>6</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>19</td>
<td>24</td>
<td></td>
</tr>
</tbody>
</table>

3.4 Capital and Plant Costs\(^*\)

<table>
<thead>
<tr>
<th>ITEM TO BE PURCHASED OR DEPRECIATED FOR MORE THAN R10 000 PER ITEM</th>
<th>YEAR 1</th>
<th>YEAR 2</th>
<th>YEAR 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displacement measuring transducer</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data capture system</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drilling equipment</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other miscellaneous items</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>55</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
(ii) Items to be Manufactured with Assembled Cost of More Than R10000 Including Material and Labour

<table>
<thead>
<tr>
<th></th>
<th>COST (R000s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>YEAR 1</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Other miscellaneous items

TOTAL

TOTAL (i) and (ii)

3.5 Sub-contracted Work

<table>
<thead>
<tr>
<th>SUB-CONTRACTOR</th>
<th>ACTIVITY</th>
<th>COST (R000s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>YEAR 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL

3.6 Other Funding

<table>
<thead>
<tr>
<th>ORGANISATION</th>
<th>NATURE OF SUPPORT/ COMMITMENT</th>
<th>AMOUNT (R000s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4. MOTIVATION

(Provide a clear and quantified motivation or justification for the proposal, as well as the main conclusions of a literature survey and the findings of related local and international research. The motivation should include a synthesis of previous work in the project area, both locally and overseas, why the project is proposed, what the primary output will achieve and a cost benefit analysis, if applicable. Use continuation pages where necessary but in most cases it should be possible to clearly present the key and arguments in the space provided).

IN SITU STRESS MEASUREMENTS

Reliable values of the in situ stress are essential inputs to be able to obtain reliable output results from numerical design and layout analyses such as MINSIM-D and FLAC. The reliability of these methods of design is very important with regard to the safety of the underground operations.

A SIMRAC research project is currently in progress with the aim of identifying, conceptually, a reliable and cost effective method of in situ rock stress measurement applicable to the high stress conditions in deep level mines. The duration of this project is only for the 1995 year. Results obtained to date are believed to be very encouraging, and it is proposed that the approach should be investigated further to take the method from the conceptual stage to the practical implementation stage.

The proposed method is planned to have the following features:

- it will make use of percussion drilled boreholes. This will have the following benefits as far as mining operation are concerned:
 - it will require only compressed air, which is usually available in most mining areas
 - measurements, and their preparation, can be carried out quickly and without any significant interruption to production activities, and even without significant assistance from the mine itself
 - the costs of preparation, and the skills required for preparation, will be low

- multiple measurements can be made in a single hole, the aim being to obtain about 10 results in one shift.

- the large number of results obtained will allow data to be treated statistically, thus improving confidence in their reliability.

- reduction of results will be computer based, making use of numerical methods and techniques which were not available when previous in situ stress measurement methods were developed, but which are now commonly available.
5. CURRICULA VITAE OF PROJECT LEADER AND RESEARCH STAFF

5.1 Summary Information

Project leader

NAME & INITIALS: T R Stacey
AGE: 51
QUALIFICATIONS (eg. degree/ diploma, issuing institution and date):
See attached CV

SPECIAL AWARDS:

Principal Project Team Members

NAME & INITIALS: S J Coetzer
AGE: 47
QUALIFICATIONS (eg. degree/ diploma, issuing institution and date):
See attached CV

SPECIAL AWARDS:

NAME & INITIALS:
AGE:
QUALIFICATIONS (eg. degree/ diploma, issuing institution and date):
SPECIAL AWARDS:

NAME & INITIALS:
AGE:
QUALIFICATIONS (eg. degree/ diploma, issuing institution and date):
SPECIAL AWARDS:

NAME & INITIALS:
AGE:
QUALIFICATIONS (eg. degree/ diploma, issuing institution and date):
SPECIAL AWARDS:

Use a continuation sheet if necessary
5.2 Relevant Experience and Publications (one page for each individual listed in 5.1)

NAME: TR Stacey

Relevant Experience:

1. Hands on experience with CSIR doorstopper and triaxial strain cells in-situ stress measurements.

2. Developed computer programme to calculate 3D state of stress from 3 doorstopper measurements.

3. Involvement in stress measurement programmes, in a supervisory and evaluation position, with doorstopper, CSIRO HI cell, and borehole slotter methods.

4. Involved, at an expert consultant level, with hydrofracture stress measurements and large diameter overcore measurements (in a bored tunnel).

5. Familiarity with literature on all the above methods, as well as other lesser used methods such as borehole deepening, back analysis from measured deformations, flat jacks, and others.

6. Project leader on SIMRAC project GAP 220 'Reliable cost effective technique for insitu ground stress measurements in deep level gold mines'.

Relevant Publications:

5.2 Relevant Experience and Publications (one page for each individual listed in 5.1)

NAME: SJ COETZER

Relevant Experience:

1. Hands on experience with CSIR doorstopper and triaxial stain cells, CSIRO H1 cell and borehole slotter, and in situ stress measurements.
2. Involvement in the development and upgrading of computer programs to calculate 3D state of stress from stress measurement projects.
3. Involvement in stress measurement projects and evaluation of results with doorstopper, CSIRO H1 cell, and borehole slotter methods.
4. Involved with hydrofracture stress measurement projects and evaluation of results.
5. Familiar with literature on all the above methods.
6. Project leader CSIR step projects and improvement of existing stress measurement techniques.

Relevant Publications:

1. Numerous stress measurement project reports for various clients.
2. Several presentations/lectures on stress measurement at universities and various society meetings.
6. DECLARATION BY THE PROPOSING ORGANISATION

I, the undersigned, being duly authorized to sign this proposal, herewith declare that:

- The information given in this proposal is true and correct in every particular.
- This Organisation has the basic expertise and facilities required for satisfactory completion of the project and will adhere to the program of activities as set out in this proposal.
- The costs quoted are in accordance with the normal practice of this Organisation and can be substantiated by audit.

Signed on this 3rd day of August 1995 for

and on behalf of Steffen, Robertson and Kirsten

SIGNATURE

NAME T R STACEY

DESIGNATION DIRECTOR
APPENDIX 2

IMPLEMENTATION OF THE BACK ANALYSIS METHOD
IMPLEMENTATION OF THE BACK ANALYSIS METHOD

The direct back analysis procedure/multiple stage has been implemented for the project. In order to calculate the initial stress (in situ stress)

\[
\{\sigma\} = [\sigma_{xx}, \sigma_{yy}, \sigma_{zz}]^T
\]

from measurements taken during the \(i^{th}\) excavation stage, the essential task is the computation of the flexibility matrix \([F]\) for the \(i^{th}\) excavation stage. The fictitious stress boundary element method program, published by Crouch and Starfield (1983), has been modified to allow the flexibility matrix to be calculated. The listing of the computer program which has been prepared is included in Appendix 3 for record purposes.

The steps in the flexibility calculation process are as follows:

Step 1

For the two-borehole configuration geometry shown in Figure B1a, and referred to as Excavation A, the convergences across the three diameters \(d_1, d_2, d_3\) (see Figure 2.1) are calculated for the unit applied stress field in the \(x\) direction

\[
\{\alpha\} = [-1, 0, 0]^T
\]

These convergences constitute the first column of the flexibility matrix \([F_A]\)

\[
[F_A] = \begin{bmatrix}
U_{Ax, x, d_1} & * & * \\
U_{Ax, x, d_2} & * & * \\
U_{Ax, x, d_3} & * & * \\
\end{bmatrix}
\]

where

- \(A\) refers to excavation stage A
- \(x\) refers to the unit stress field in the \(x\) direction
- \(d_1\) to \(d_3\) refer to the convergence locations
- * are elements of the flexibility matrix still to be calculated

Step 2

Calculate the convergences along the diameters \(d_1\) to \(d_3\) under the unit applied stress field in the \(y\) direction

\[
\{\alpha\} = [0, -1, 0]^T
\]

These convergences constitute the second column of the flexibility matrix \([F_A]\)
$$\begin{bmatrix}
F_A
\end{bmatrix} =
\begin{bmatrix}
U_{A,x,d} & U_{A,y,d} & \ast
\end{bmatrix}
\begin{bmatrix}
U_{A,x,d} & U_{A,y,d} & \ast
\end{bmatrix}
\begin{bmatrix}
U_{A,x,d} & U_{A,y,d} & \ast
\end{bmatrix}
$$

Step 3

Repeat the procedure for the applied unit xy stress to determine the third column of the flexibility matrix \([F_A] \).

Step 4

For the three-borehole configuration geometry shown in Figure B1b, referred to as excavation B, the three steps above are repeated to calculate the flexibility matrix \([F_B] \):

$$\begin{bmatrix}
F_B
\end{bmatrix} =
\begin{bmatrix}
U_{B,x,d} & U_{B,y,d} & U_{B,xy,d}
\end{bmatrix}
\begin{bmatrix}
U_{B,x,d} & U_{B,y,d} & U_{B,xy,d}
\end{bmatrix}
\begin{bmatrix}
U_{B,x,d} & U_{B,y,d} & U_{B,xy,d}
\end{bmatrix}
$$

Step 5

Subtract matrix \([F_A] \) from matrix \([F_B] \) to obtain the flexibility matrix \([F] \) relevant to the convergence increments \(\Delta u_{B,x,d} \ldots \) due to the drilling of the third borehole - that is, the change in configuration geometry from excavation A to excavation B.

$$\begin{bmatrix}
F
\end{bmatrix} =
\begin{bmatrix}
\Delta U_{B,x,d_1} & \Delta U_{B,y,d_1} & \Delta U_{B,xy,d_1}
\end{bmatrix}
\begin{bmatrix}
\Delta U_{B,x,d_2} & \Delta U_{B,y,d_2} & \Delta U_{B,xy,d_2}
\end{bmatrix}
\begin{bmatrix}
\Delta U_{B,x,d_3} & \Delta U_{B,y,d_3} & \Delta U_{B,xy,d_3}
\end{bmatrix}
$$

Step 6

When the in situ stress measurement is carried out, the diametral changes \(Au_{d1m}, Au_{d2m} \) and \(Au_{d3m} \) resulting from the drilling of the third borehole are measured. Making use of the flexibility matrix calculated above, the in situ stresses can be calculated (back analysed). The relationship is as follows:
Figure 2.1a: Two borehole geometry

Figure 2.1b: Three borehole geometry
\[
\begin{align*}
\left[\Delta u_{\theta_x x_1}, \Delta u_{\theta_y x_1}, \Delta u_{\theta_{xy} x_1}, \sigma_{xx}, \sigma_{yy}, \sigma_{xy} \right] & = \\
\left[\Delta u_{\theta_x x_2}, \Delta u_{\theta_y x_2}, \Delta u_{\theta_{xy} x_2}, \sigma_{xx}, \sigma_{yy}, \sigma_{xy} \right] & = \\
\left[\Delta u_{\theta_x x_3}, \Delta u_{\theta_y x_3}, \Delta u_{\theta_{xy} x_3}, \sigma_{xx}, \sigma_{yy}, \sigma_{xy} \right]
\end{align*}
\]

Where the subscript m refers to measurements.

In matrix form:

\[
[F]\{\sigma\} = \{\Delta u\}
\]

The in situ stresses can then be determined by inversion of the flexibility matrix:

\[
\{\sigma\} = [F]^{-1}\{\Delta u\}
\]

This is a system of simultaneous linear equations which are easily solved.
APPENDIX 3

COMPUTER PROGRAM FOR BACK ANALYSIS
PROGRAM BACKANAL.FOR
INCLUDE 'C:\FORT\LIBCOMPS\FGRAPH.FI'
INCLUDE 'C:\FORT\LIBCOMPS\FGRAPH.FD'
TO COMPILE FL BACKANAL.FOR /link GRAPHICS.LIB
THIS PROGRAM WAS WRITTEN FOR A MICROSOFT FORTRAN 77 COMPILER.
MINOR CHANGES WAS MADE BY J. WESSELOO ON 16/1/98.
THE PROGRAM ASKS
THE USER FOR THE POSITIONS OF THE MEASURING POINTS WITH RESPECT TO
THE X-AXIS. DEFAULT VALUES ARE 45, 90 AND 135 DEG. CHANGES MADE BY
J. WESSELOO IS MARKED WITH **** BEFORE AND AFTER CHANGES.

THIS PROGRAM BACK-CALCULATES THE TWO NORMAL AND ONE SHEAR STRESS
TENSOR COMPONENTS, ON A PLANE NORMAL TO THE BOREHOLE SET AXIS FROM
CONVERGENCE MEASUREMENTS OF THREE BOREHOLE DIAMETERS.
THE BOREHOLE SET AXIS CAN HAVE ANY DIP AND DIP DIRECTION ANGLE.

THE BACK ANALYSIS ALGORITHM IMPLEMENTED IN THE PROGRAM IS THE
DIRECT BACK ANALYSIS PROCEDURE MULTIPLE STAGE ALGORITHM PRESENTED IN:
SHINICHI AKUTAGAWA. A BACK ANALYSIS PROGRAM SYSTEM FOR GEOMECHANICS
APPLICATIONS, PARAGRAPH 6.3. PhD THESIS, UNIVERSITY OF QUEENSLAND
NOVEMBER 1991.

THIS PROGRAM IS BASED ON THE FICTITIOUS STRESS BOUNDARY ELEMENT
METHOD AND Follows CLOSER THE "TWOFS" PROGRAM DESCRIBED IN:
S.L. CROUCH AND A.M. STARFIELD 1974. BOUNDARY ELEMENT METHODS IN
SOLIDS MECHANICS. LONDON GEORGE ALLEN & UNWIN.
MOST OF THE VARIABLES AND ARRAYS USED IN THIS PROGRAM ARE EXPLAINED
IN THE AFOREMENTIONED REFERENCE. WHEREVER NEW VARIABLES ARE INTRODUCED
THE ARE COMMENTED SEPARATELY. THE AUTHOR TRIED TO FOLLOW CROUCHES
ORIGINAL CODE AS CLOSELY AS POSSIBLE.

THIS PROGRAM REQUIRES TWO INPUT ASCII FILES TO RUN. THESE FILES
ARE NAMED 'CYCLO2' AND 'CYCLO3'. THE FORMAT OF THESE FILES
FOLLOWS CLOSELY WITH CROUCHES INPUT FILE FORMAT.
THE TWO FILES CONTAIN:
RECORD 1, FORMAT 1
1) TITLE
RECORD 2, FORMAT 3
2) NUMBER OF BOUNDARY SEGMENTS NECESSARY TO DISCRETIZE THE BOREHOLE
CONFIGURATIONS. BECAUSE OF THE GEOMETRY OF THE BOREHOLES THE
NUMBER OF BOUNDARY ELEMENTS COINCIDES WITH THE NUMBER OF BOUNDARY
SEGMENTS. VARIABLE NUMS.
3) SYMMETRY LINES, VARIABLE KSYM. DESPITE THE LACK OF ANY SYMMETRY
LINES (i.e. KSYM = 1) THE PROGRAM CONTINUES TO TAKE INTO ACCOUNT
VARIABLE KSYM IN AN EFFORT NOT TO MODIFY THE ORIGINAL PROGRAM.
RECORD 3, FORMAT 4
4) LINES OF SYMMETRY. VARIABLES XSYM, YSYM. NO LINES OF SYMMETRY
EXIST. HOWEVER THE VARIABLES ARE RETAINED FOR CONFORMITY.
RECORDS NUMBS, FORMAT 14
5) BOUNDARY ELEMENT NUMBER. VARIABLE NUM
6) ELEMENT COORDINATES. VARIABLES XBEG, YBEG, XEND, YEND. EACH ELEMENT
ELEMENT COINCIDES WITH A STRAIGHT LINE BOUNDARY SEGMENT.
7) TYPE OF PRESCRIBED STRESS OR DISPLACEMENT 'RESULTANT' BOUNDARY
CONDITIONS FOR EACH BOUNDARY ELEMENT. VARIABLE KDE. THE BOREHOLES
HAVE ZERO SURFACE TRactions. KDE IS THEREFORE 1. THE VARIABLE IS
RETAINED.
8) PRESCRIBED 'RESULTANT' BOUNDARY CONDITION VALUES FOR EACH ELEMENT.
VARIABLES BVS (SHEAR) AND BVN (NORMAL).
FOR ZERO SURFACE TRACTIONS THE SHEAR AND NORMAL STRESSES ON EACH
BOUNDARY ELEMENT ARE ZERO. THE VARIABLES BNS, BVN ARE RETAINED AND
SET TO ZERO.

INPUT ARGUMENTS
THE PROGRAM REQUIRES POISSON'S RATIO, YOUNG'S MODULUS AND
THREE CONVERGENCE MEASUREMENTS ALONG THREE DIAMETERS OF THE FIRST
BOREHOLE. THE THREE DIAMETERS OF THE FIRST BOREHOLE JOIN MIDPOINTS
OF BOUNDARY ELEMENTS. THE BOUNDARY ELEMENTS NUMBERS DIFFER FOR THE
TWO CONFIGURATIONS. THE CONVERGENCE OF ONE DIAMETER
IS THE SUM OF THE NORMAL DISPLACEMENTS OF THE MIDPOINTS OF THE TWO
DIOMETRICALLY OPPOSED BOUNDARY ELEMENTS.

COMMON BLOCKS USED
COMMON/S1/FI, PR, PR1, PR2, PR3, CON, COND
COMMON/S2/SXXS, SXXN, SYYS, SYYN, SXYS, SXYN, UXN, UYN
COMMON/S3/C(100,100), B(100), P(100) ! USED IN SUBROUTINE SOLVE
 ! IN THE ORIGINAL 'TWOFS' PROGRAM.

VARIABLE DECLARATIONS

DIMENSION C(200,200), B(200), P(200) ! EXPLAINED IN 'TWOFS'; ALSO
EQUATIONS (4.7.3) IN CROUCH.
ARRAY C CONTAINS INFLUENCE COEFFICIENTS
MATRIX B CONTAINS KNOWN BOUNDARY VALUES OF STRESS OR DISPLACEMENT
MATRIX P CONTAINS THE FICTITIOUS NORMAL AND SHEAR STRESS
COMPONENTS FOR EACH BOUNDARY ELEMENT. INITIALLY UNKNOWN

DIMENSION XM(200), YM(200), A(200), COSBET(200), SINBET(200), KOD(200)
MATRICES XM, YM CONTAIN MIDPOINT COORDINATES FOR EACH BOUNDARY
ELEMENT.
MATRIX A CONTAINS ELEMENT HALF LENGTH.
MATRICES COSBET, SINBET DESCRIBE THE ORIENTATION OF EACH BOUNDARY
ELEMENT.
MATRIX KOD CONTAINS THE 'TYPE' OF BOUNDARY CONDITIONS.

THE FOLLOWING VARIABLES ARE NOT CONTAINED IN 'TWOFS'

DIMENSION BDN(3,200) ! CONTAINS NORMAL DISPLACEMENTS AT ELEMENT
 MIDPOINTS FOR EACH OF THE THREE RUNS.

DIMENSION STR(3) ! CONTAINS THE APPLIED STRESS FIELD PXX, PYY, PXY
 ! FOR THE THREE RUNS. FOR EACH RUN, ONE COMPONENT IS UNIT STRESS
 ! AND THE OTHER TWO ARE ZERO.
 ! THEREFORE FOR RUN ONE PXX=UNIT STRESS, PYY=PXY=ZERO;
 ! THEREFORE FOR RUN TWO PYY=UNIT STRESS, PXX=PXY=ZERO;
 ! THEREFORE FOR RUN THREE PXY=UNIT STRESS, PYY=PXX=ZERO;
 ! IT IS USED IN THE COMPUTATION OF THE FLEXIBILITY MATRIX FLEX(3,3).
DIMENSION FLEX(3,3) ! FLEXIBILITY MATRIX

DIMENSION CONS_ME(3) ! CONVERGENCE MEASUREMENTS, INPUT

DIMENSION TASSIS(3) ! MATRIX OF BACK CALCULATED IN SITU STRESS
COMPONENTS IN THE PLANE NORMAL TO THE AXES OR THE THREE BOREHOLES.
DIMENSION TITLE(20)
REAL*8 STR, CON_MES, FLEX, TASI5, C, B, P, BDN

INTEGER FSN, DS ! FSN Variable to open input files

CHARACTER*8 FILENAME, FNAME

VARIBLE_INITIALIZATIONS

WRITE (*, 700)
FORMAT (' ENTER THE ANGLES BETWEEN THE X-AXIS AND THE SAMPLING PO
+INTS',//)
WRITE (*, 710)

710 FORMAT (//,' ENTER 1ST ANGLE (45 DEG) -> ', \)
READ (*,'(F6.0)') A1
IF (A1.EQ.0) A1=45 ! DEFAULT VALUE

WRITE (*, 720)
FORMAT (//,' ENTER 2ST ANGLE (90 DEG) -> ', \)
READ (*,'(F6.0)') A2
IF (A2.EQ.0) A2=90 ! DEFAULT VALUE

WRITE (*, 730)
FORMAT (//,' ENTER 3ST ANGLE (135 DEG) -> ', \)
READ (*,'(F6.0)') A3
IF (A3.EQ.0) A3=135 ! DEFAULT VALUE

INDEX_1=NINT((A1-45)/9)+1 ! SERIAL NUMBERS OF BOUNDARY ELEMENTS WITH
INDEX_2=INDEX_1+20 ! DIAMETRICALLY OPPOSED MIDPOINTS IN THE FIRST

INDEX_3=NINT((A2-45)/9)+1 ! BOREHOLE. CORRESPOND TO 45,90,135 DEGREES
INDEX_4=INDEX_3+20 ! ANGLES FROM X AXIS, COUNTERCLOCKWISE.

INDEX_5=NINT((A3-45)/9)+1
INDEX_6=INDEX_5+20

THSE LOCATIONS CORRESPOND WITH THE LOCATIONS OF PHYSICAL CONVERGENCE MEASUREMENTS IN THE ACTUAL STRESS MEASUREMENT PROCESS.

DATA STR/ 0.,0., 0./ ! INITIALIZE IN SITU STRESS FIELD

FILENAME = 'CYCOIL2' ! FIRST FILE FOR DATA INPUT. TWO BOREHOLES.

Input POISSON'S and YOUNG'S moduli

CALL clearscreen($GCLEARSSCREEN)

609 WRITE (*, 610)
610 FORMAT (//,' ENTER POISSON''S RATIO -> ', \)
READ (*, '*') PR
IF (PR .LT. 0.0 .OR. PR .GT. 0.5) GOTO 609 ! CHECK VALIDITY

WRITE (*, 620)
FORMAT (/'//,' ENTER YOUNG"S MODULUS IN MPa -> ', \
READ (*,*) E
WRITE (*,'(///,5X,A,2X, F6.4,///,/)') 'POISSON"S RATIO IS ', PR
WRITE (*,'(5X,A,2X, E10.5,A3,///,/)') 'YOUNG"S MODULUS IS ',
+ E,''MPa'
PAUSE 'CHECK INPUT VALUES, PRESS ENTER TO CONTINUE'

C
C---
C Input convergence measurements
CALL clearscren($GCLEARSCREEN)

WRITE (*, '(/,///, 10X,A,///,/)') 'INPUT CONVERGENCE MEASUREMENTS
+ IN mm'
WRITE (*, 630)
FORMAT (///,' ENTER FIRST VALUE IN mm -> ' \
READ (*,'(E16.9)'') CON_MES(1)
WRITE (*, 640)
FORMAT (///,' ENTER SECOND VALUE IN mm -> ' \
READ (*,'(E16.9)'') CON_MES(2)
WRITE (*, 650)
FORMAT (///,' ENTER THIRD VALUE IN mm -> ' \
READ (*,'(E16.9)'') CON_MES(3)
WRITE (*, '+') ' CONVERGENCE MEASUREMENTS,'
WRITE (*,'(/,15X,E16.9)'') (CON_MES(I), I=1,3)
WRITE (*, '*')
PAUSE 'CHECK INPUT VALUES, PRESS ENTER TO CONTINUE'
C
C---
C REQUEST USER FOR OUTPUT FILE NAME
C
CALL clearscren($GCLEARSCREEN)
WRITE (*, '(A35,\\)') ' ENTER FILE NAME FOR OUTPUT -> '
READ (*, '(A)') FNAME
OPEN (4, FILE = FNAME, ACCESS='SEQUENTIAL', STATUS='NEW')
C
C---
DO FSN = 8,9 ! FSN FILE SPECIFICATION NUMBER
OPEN (UNIT=FSN, FILE=FILENAME)
WRITE (4, '(A12,\\)') 'THIS IS FILE', FILENAME
READ (FSN, 1) (TITLE(I), I=1,20)
WRITE (4, 2) (TITLE(I), I=1,20)
READ (FSN, 3) NUMBS, KSYM
READ (FSN, 4) XSYM, YSYM
C
C---
READ (3, 5) PXX, PYY, PXY ! INITIAL STRESS FIELD IN 'TWOFS'
C IN 'BACKANAL' THE INITIAL STRESS FIELD IS ASSUMED FOR THE CALCULATION
C OF THE FLEXIBILITY MATRIX.
C
WRITE (4, 6) NUMBS
GO TO (80, 85, 90, 95), KSYM
80 WRITE (4, 7)
GO TO 100
85 WRITE (4, 8) XSYM
GO TO 100
90 WRITE (4, 9) YSYM
GO TO 100
95 WRITE (4, 10) XSYM, YSYM
CONTINUE
WRITE (4, 11) PR, E
WRITE (4, 12) PXX, PYY, PXY
PI=4.*ATAN(1.)
COND = (1.+PR)/E
PR1 =1.-2.*PR
PR2 =2.*(1.-PR)
PR3 = 3.-4.*PR

DEFINE LOCATION, SIZES, ORIENTATIONS AND BOUNDARY CONDITIONS OF BOUNDARY ELEMENTS

NUMBE =0
DO 110 N=1, NUMBS ! NUMBER OF BOUNDARY LINE SEGMENTS
READ (FSN, 14) NUM, XBEG, YBEG, XEND, YEND, KODE, BVS, BVN
WRITE (4, 14) NUM, XBEG, YBEG, XEND, YEND, KODE, BVS, BVN
XD= (XEND-XBEG)/NUM
YD= (YEND-YBEG)/NUM
SW= SQRT(XD*XD + YD*YD) ! Element length

DO 110 NE=1, NUM ! Number of elements in each straight line b. seg
NUMBE= NUMBE +1
M=NUMBE ! Start from first element
XM(M) =XBEG +0.5 *(2.*NE-1.)*XD
YM(M) =YBEG +0.5 *(2.*NE-1.)*YD ! Element midpoint coordinates
A(M)=0.5*SW ! element half length
SINBET(M)=YD/SW
COSBET(M)=XD/SW
KOD(M)=KODE ! TYPE OF BOUNDARY CONDITIONS
MN=2*M
MS=MN-1
B(MS)=BVS ! Stores total shear disp. or stress for the element
B(MN)=BVN ! Stores total normal disp. or stress for the element

IF (A1.LT.(45.-4.5)) INDEX_1 = (NUMBE+1)-NINT((45.-A1)/9)

WRITE (4,13)
DO 115 M=1, NUMBE
SIZE=2.*A(M)
ANGLE =180.*ATAN2(SINBET(M),COSBET(M))/PI !beta angle for element
WRITE (4, 15) M, KOD(M), XM(M), YM(M), SIZE, ANGLE,B(2*M-1), B(2*M)
CONTINUE

ADJUST STRESS BOUNDARY VALUES TO ACCOUNT FOR INITIAL STRESSES

DO 1000 ST=1,3
STR(ST) = 1. ! IN EACH RUN ONLY ONE IN SITU STRESS COMPONENT ! HAS THE VALUE OF UNITY. THE TWO OTHERS ARE ZERO
DS = ST-1
IF (DS .GE. 1.) STR(DS) = 0.
PXX= STR(1) ! IN SITU STRESS FIELD
PYY= STR(2)
PXY= STR(3)
C
WRITE (4, 12) PXX, PY, PX
C
DO 150 N=1, NUMBE
NN=2*N
NS=NN-1
COSB=COSBET(N)
SINB=SINBET(N)
SIGS=(PYY-PXX)*SINB*COSB+PX*Y*(COSB*COSB-SINB*SINB)
SIGN=PX*Y*SINB*SINB-2.*PX*Y*SINB*COSB+PY*COSB*COSB
GO TO (120, 150, 130, 140), KOD(N)
120 B(NS)=0.-SIGS ! induced = resultant - initial
B(NN)=0.-SIGN
GO TO 150
130 B(NN)=B(NN)-SIGN
GO TO 150
140 B(NS)=B(NS)-SIGS
150 CONTINUE
C
COMPUTE INFLUENCE COEFFICIENTS AND SET UP SYSTEM OF ALGEBRAIC
EQUATIONS.
C
DO 300 I=1, NUMBE
IN=2*I
IS=IN-1
XI=XM(I) ! element i midpoint coordinates
YI=YM(I)
COSBI=COSBET(I)
SINBI=SINBET(I)
KODE=KOD(I)
C
DO 300 J=1, NUMBE
JN=2*J
JS=JN-1
CALL INITL
XJ=XM(J)
YJ=YM(J)
COSBJ=COSBET(J)
SINBJ=SINBET(J)
AJ= A(J) ! element half length
CALL COEFF(XI,YI,XJ,YJ,AJ,COSBJ,SINBJ,+1)
GO TO (240, 210, 220, 230), KSYM
C
210 XJ=2.*XSYM-XM(J)
CALL COEFF(XI,YI,XJ,YJ,AJ,COSBJ,-SINBJ,-1)
GO TO 240
C
220 YJ=2.*YSYM-YM(J)
CALL COEFF(XI,YI,XJ,YJ,AJ,-COSBJ,SINBJ,-1)
GO TO 240
C
230 XJ=2.*XSYM-XM(J)
CALL COEFF(XI,YI,XJ,YJ,AJ,COSBJ,-SINBJ,-1)
XJ=XM(J)
YJ=2.*YSYM-YM(J)
CALL COEFF(XI,YI,XJ,YJ,AJ,-COSBJ,SINBJ,-1)
XJ=2.*XSYM-XM(J)
CALL COEFF(XI,YI,XJ,YJ,AJ,-COSBJ,-SINBJ,+1)

C 240 CONTINUE
GO TO (250, 260, 270, 280), KODE
C
C 250 C(IS, JS) = (SYYS-SXXS)*SINBI*COSBI+SXYS*(COSBI*COSBI-SINBI*SINBI)
C(IS, JN) = (SYYN-SXXN)*SINBI*COSBI+SYYN*(COSBI*COSBI-SINBI*SINBI)
C(IN, JS) = SXXS*SINBI*SINBI-2.*SXYS*SINBI*COSBI+SYYS*COSBI*COSBI
C(IN, JN) = SXXN*SINBI*SINBI-2.*SYYN*SINBI*COSBI+SYYN*COSBI*COSBI
GO TO 300
C
C 260 C(IS, JS) = UXS*COSBI+ UYS*SINBI
C(IS, JN) = UXN*COSBI+ UYN*SINBI
C(IN, JS) = -UXS*SINBI +UYS*COSBI
C(IN, JN) = -UXN*SINBI + UYN*COSBI
GO TO 300
C
C 270 C(IS, JS) = UXS*COSBI +UYS*SINBI
C(IS, JN) = UXN*COSBI + UYN*SINBI
C(IN, JS) = SXXS*SINBI*SINBI-2.*SXYS*SINBI*COSBI+SYYS*COSBI*COSBI
C(IN, JN) = SXXN*SINBI*SINBI-2.*SYYN*SINBI*COSBI+SYYN*COSBI*COSBI
GO TO 300
C
C 280 C(IS, JS) = (SYYS-SXXS)*SINBI*COSBI+SXYS*(COSBI*COSBI-SINBI*SINBI)
C(IS, JN) = (SYYN-SXXN)*SINBI*COSBI+SYYN*(COSBI*COSBI-SINBI*SINBI)
C(IN, JS) = -UXS*SINBI +UYS*COSBI
C(IN, JN) = -UXN*SINBI + UYN*COSBI
C
C 300 CONTINUE
C
C SOLVE SYSTEM OF EQUATIONS
C
N=2*NUMBE
CALL SOLVE(N, C, B, P)
C
C COMPUTE BOUNDARY DISPLACEMENTS AND STRESSES
C
WRITE (4, 16)
DO 600 I=1, NUMBE
XI =XM(I)
YI =YM(I)
COSBI=COSBET(I)
SINBI=SINBET(I)

UX= 0.
UY= 0.
SIGXX = PXX
SIGYY = PYY
SIGXY = PXY
C
DO 570 J= 1, NUMBE
JN = 2*J
JS = JN-1
CALL INITL
XI = XM(J)
YJ = YM(J)
AJ = A(J)
C
COSBJ = COSBET(J)
SINBJ = SINBET(J)
CALL COEFF(XI,YI,XJ,YJ,AJ,COSBJ,SINBJ,+1)
GO TO (540, 510 , 520, 530), KSYM
C
510 XJ=2.*XSYM-XM(J)
CALL COEFF(XI,YI,XJ,YJ,AJ,COSB,-SINBJ,-1)
GO TO 540
C
520 YJ=2.*YSYM-YM(J)
CALL COEFF(XI,YI, XJ,YJ, AJ, -COSBJ,SINBJ, -1)
GO TO 540
C
530 XJ=2.*XSYM-XM(J)
CALL COEFF(XI,YI, XJ,YJ, AJ, COSBJ,-SINBJ, -1)
XJ=XM(J)
YJ=2.*YSYM-YM(J)
CALL COEFF(XI,YI, XJ,YJ, AJ, -COSBJ,SINBJ, -1)
XJ=2.*XSYM-XM(J)
CALL COEFF(XI,YI, XJ,YJ, AJ, -COSBJ,-SINBJ, +1)
C
540 CONTINUE
C
UX = UX + UXS*P(JS) + UXN*P(JN)
UY = UY + UYS*P(JS) + UYN*P(JN)
SIGXX = SIGXX + SXS*P(JS) + SXN*P(JN)
SIGYY = SIGYY + SYS*P(JS) + SYN*P(JN)
SIGXY = SIGXY + SXS*P(JS) + SXN*P(JN)
C
570 CONTINUE
C
US = UX*COSBI + UY*SINBI
UN =-UX*SINBI + UY*COSBI
BDN(ST,I) = UN
SIGS= (SIGYY-SIGXX)*SINBI*COSBI+SIGXY*(COSBI*COSBI-SINBI*SINBI)
SIGN= SIGXX*SINBI*SINBI-2.*SIGXY*SINBI*COSBI+SIGYY*COSBI*COSBI
SIGT= SIGXX*COSBI*COSBI+SIGXY*SINBI*COSBI
C
WRITE (4, 17) I,UX,UY,US,UN,SIGXX,SIGYY,SIGXY,SIGS,SIGN,SIGT
C
600 CONTINUE
C
CALCULATION OF FLEXIBILITY MATRIX 3-2
FLEX(1,ST) = -FLEX(1,ST) + (BDN(ST, INDEX_1) + BDN(ST,INDEX_2))
FLEX(2,ST) = -FLEX(2,ST) + (BDN(ST, INDEX_3) + BDN(ST,INDEX_4))
FLEX(3,ST) = -FLEX(3,ST) + (BDN(ST, INDEX_5) + BDN(ST,INDEX_6))
1000 CONTINUE ! END OF THE THREE RUNS FOR THIS INPUT FILE
! TWO BOREHOLES
C
PREPARE FOR THE THREE RUNS OF THE SECOND FILE
C
THREE BOREHOLES
FILENAME = 'CYCLOI3' ! SPECIFY FILE FOR INPUT
STR(3)= 0. ! Initialize PXI to 0 for second file run

END DO !END FLEXIBILITY MATRIX CALCULATION
PRINT FLEXIBILITY MATRIX
CALL clearsreen($GCLEARSCREEN)
WRITE (*,'(15X,A,/)') 'FLEXIBILITY MATRIX'
WRITE (*,660) ((FLEX(FF, GG), GG=1,3), FF=1,3)
FORMAT (3(5X, 3(E10.4,4X,/))
PAUSE 'PRESS ENTER TO CONTINUE'

(Dqi) = [Fi] (sigma o) EQUATION (6.3.25) PAGE 175 AKUTAGAWA
CALL SOLVE_2(3, FLEX, CON_MES, TASI)

CALL clearsreen($GCLEARSCREEN)
WRITE TO SCREEN
WRITE (*,'(5X,A,2X, F6.4,4X,/)') 'POISSON'S RATIO IS ', PR
WRITE (*,'(5X,A,2X, E10.5,A3,4X,/)') 'YOUNG'S MODULUS IS ',
+ E,'MPa'
WRITE (*,'(5X,A,E14.0,A3,4X,/)') 'SXX=', TASI(1), 'MPa'
WRITE (*,'(5X,A,E14.0,A3,4X,/)') 'SYY=', TASI(2), 'MPa'
WRITE (*,'(5X,A,E14.0,A3,4X,/)') 'SXY=', TASI(3), 'MPa'
PAUSE '

FORMAT STATEMENTS

FORMAT (20A4)
FORMAT (1H,1,25X,20A4,/)
FORMAT (2I4)
FORMAT (2F12.4)
FORMAT (3E11.4)
FORMAT (/109H NUMBER OF STRAIGHT-LINE SEGMENTS (EACH CONTAINING A +T LEAST ONE BOUNDARY ELEMENT) USED TO DEFINE BOUNDARIES =,,I3,/)
FORMAT (/32H NO SYMMETRY CONDITIONS IMPOSED.)
FORMAT (/18H THE LINE X = XS =,F12.4,23H IS A LINE OF SYMMETRY.)
FORMAT (/16H THE LINE Y = YS =,F12.4,23H IS A LINE OF SYMMETRY.)
FORMAT (/19H THE LINES X = XS =,F12.4,13H AND Y = YS =,F12.4, +23H ARE LINES OF SYMMETRY.)
FORMAT (/16H POISSON'S RATIO = F6.2,/,18H YOUNG'S MODULUS =,E11. +4)
FORMAT (/31H XX-COMPONENT OF FIELD STRESS =,E11.4,/,31H YY-COMPON +ENT OF FIELD STRESS =,E11.4,/,31H XY-COMPONENT OF FIELD STRESS = +,E11.4)
FORMAT (1H,1,27H BOUNDARY ELEMENT DATA.,/,,96H ELEMENT K +ODE X (CENTER) Y (CENTER) LENGTH ANGLE US OR SIGMA-S + UN OR SIGMA-N,/)
FORMAT (I4,4F12.6,I4,2E11.4)
FORMAT (219,3P12.4,F12.2, 2E15.4)
FORMAT (1H,1,66H DISPLACEMENTS AND STRESSES AT MIDPOINTS OF B +OUNDARY ELEMENTS.,/,,40H ELEMENT UX UY US , +60H UN SIGXX SIGYY SIGXY SIGMA-S SIGM-N, +10H SIGMA-T,/)
FORMAT (I10,4E10.4, 6F10.5)
FORMAT (1H,1,64H DISPLACEMENTS AND STRESSES AT SPECIFIED POIN +TS IN THE BODY.,/,,93H POINT X CO-ORD Y CO-ORD U +X UY SIGXX SIGYY SIGXY,/)
END
! Main program end
SUBROUTINE INITL

COMMON/S2/SXXS,SXXN,SYYS,SYYN,SXYS,SXYN,UXS,UXN,UY5,UYN

SXXS = 0.
SXXN = 0.
SYYS = 0.
SYYN = 0.
SXYS = 0.
SXYN = 0.
UXS = 0.
UXN = 0.
UY5 = 0.
UYN = 0.

RETURN
END

SUBROUTINE COEFF(X,Y,CX,CY,A,COSB,SINB,MSYM)

COMMON/S1/PI,PR,PR1,PR2,PR3,CON,COND
COMMON/S2/SXXS,SXXN,SYYS,SYYN,SXYS,SXYN,UXS,UXN,UY5,UYN

COS2B = COSB*COSB - SINB*SINB
SIN2B = 2.*SINB*COSB

XB = (X-CX)*COSB + (Y-CY)*SINB
YB = -(X-CX)*SINB + (Y-CY)*COSB

R1S = (XB-A)*(XB-A)+YB*YB
R2S = (XB+A)*(XB+A)+YB*YB
FL1 = 0.5*ALOG(R1S)
FL2 = 0.5*ALOG(R2S)
FB2 = CON*(FL1-FL2)
IF (YB .NE. 0.) GO TO 10
FB3 = 0.
IF (ABS(XB) .LT. A) FB3 = CON*PI
GO TO 20

FB3 = -CON* (ATAN((XB+A)/YB) - ATAN((XB-A)/YB))
FB4 = CON* ((XB-A)*FL1 - (XB+A)*FL2)
FB5 = CON* ((XB-A)/R1S - (XB+A)/R2S)

UXPS = CON* (PR3*COSB*FB1 + YB*(SINB*FB2 + COSB*FB3))
UXPN = CON* (-PR3*SINB*FB1 - YB*(COSB*FB2 - SINB*FB3))
UYPS = CON* (PR3*SINB*FB1 - YB*(COSB*FB2 - SINB*FB3))
UYPN = CON* (PR3*COSB*FB1 - YB*(SINB*FB2 + COSB*FB3))

SXXPS = FB2+PR2*(COS2B*FB2 - SIN2B*FB3)+YB*(COS2B*FB4+SIGN2B*FB5)
SXXPN = FB3-PR1*(SIN2B*FB2 + COS2B*FB3)+YB*(COS2B*FB4-COS2B*FB5)
SYyps = FB2-PR2*(COS2B*FB2 - SIN2B*FB3)-YB*(COS2B*FB4+SIGN2B*FB5)
SYyPN = FB3+PR1*(SIN2B*FB2 + COS2B*FB3)-YB*(COS2B*FB4-COS2B*FB5)
SXyps = PR2*(SIN2B*FB2 + COS2B*FB3)+YB*(COS2B*FB4-COS2B*FB5)
SXYN = PRI*(COS2B*FB2 - SIN2B*FB3) - YB*(COS2B*FB4 + SIN2B*FB5)

UXS = UXS + MSYM*UXPS
UXN = UXN + UXPN
UYS = UYS + MSYM*UYPS
UYN = UYN + UYPN

SXXS = SXXS + MSYM*SXXPS
SXXN = SXXN + SXXPN
SYYS = SYYS + MSYM*SYYPS
SYYN = SYYN + SYYPN
SXXS = SXXS + MSYM*SXXPS
SXXN = SXXN + SXXPN

RETURN
END
END OF SUBROUTINE COEF

SUBROUTINE SOLVE(N, A, B, X)

DIMENSION A(200,200), B(200), X(200)

REAL*8 A,B,X
NB = N-1
DO 20 J=1,NB
L = J+1
DO 20 JJ =L,N
XM = A(JJ,J)/A(J,J)
DO 10 I=J,N
A(JJ,I) = A(JJ,I) - A(J,I)*XM
B(JJ) = B(JJ) - B(J)*XM

X(N) = B(N)/A(N,N)
DO 40 J=1,NB
JJ = N-J
L = JJ+1
SUM = 0.
DO 30 I=L,N
SUM = SUM +A(JJ,I)*X(I)
10 X(JJ) = (B(JJ) - SUM)/A(JJ,JJ)

RETURN
END
END OF SUBROUTINE SOLVE

SUBROUTINE SOLVE_2(N, A, B, X)

THIS SUBROUTINE DIFFERS FROM THE PREVIOUS ONE ONLY IN THE
ARRAY SIZES

DIMENSION A(3,3), B(3), X(3)

REAL*8 A,B,X
NB = N-1
DO 20 J=1,NB
L = J+1
DO 20 JJ = L, N
XM = A(JJ, J) / A(J, J)
DO 10 I = J, N
 10 A(JJ, I) = A(JJ, I) - A(J, I) * XM
 20 B(JJ) = B(JJ) - B(J) * XM
C
X(N) = B(N) / A(N, N)
DO 40 J = 1, NB
 JJ = N - J
 L = JJ + 1
 SUM = 0.
 DO 30 I = L, N
 30 SUM = SUM + A(JJ, I) * X(I)
 40 X(JJ) = (B(JJ) - SUM) / A(JJ, JJ)
C
RETURN
END
C
END OF SUBROUTINE SOLVE_2
C
C-----------------------------
APPENDIX 4

COMPUTER PROGRAM TO CALCULATE THE THREE DIMENSIONAL STRESS TENSOR
INCLUDE 'C:\FORT\LIBCOMPS\FGRAPHA.FI'
INCLUDE 'C:\FORT\LIBCOMPS\FGRAPHF.DF'
TO COMPILE FL MODIF.FOR /link GRAPHICS.LIB
THIS PROGRAM HAS BEEN WRITTEN FOR A FORTRAN 77 COMPILER.

THIS PROGRAM COMPLEMENTS THE BACK ANALYSIS PROGRAM USED TO
CALCULATE THE IN SITU STRESS TENSOR COMPONENTS ON A PLANE NORMAL
TO THE BOREHOLE SET AXES.

REFERENCES
1. LOUIS A. PANEK. CALCULATION OF THE AVERAGE GROUND STRESS
COMPONENTS FROM MEASUREMENTS OF THE DIAMETRAL DEFORMATION OF A
DRILL HOLE. REPORT OF INVESTIGATIONS 6732. UNITED STATES DEPARTMENT
2. WILLIAM K. SMITH. TWO BASIC COMPUTER PROGRAMS FOR THE DETERMINATION
OF IN-SITU STRESSES USING THE CSIRO HOLLOW INCLUSION STRESS CELL
UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY.

COORDINATE SYSTEMS.
THE COORDINATE SYSTEMS USED IN THIS PROGRAM ARE EXPLAINED IN SMITH
PAGES 4-6 AND FIGURE 1 IN PARTICULAR. THE BOREHOLE SET AXIS IS DEFINED
BY THE BEARING AND INCLINATION ANGLES OF THE BOREHOLE SET, IN TERMS
OF THE MINE COORDINATE SYSTEM XYZ AND CORRESPONDS TO THE h2 AXIS IN
FIGURE 1.
THE OUTPUT OF THE BACK ANALYSIS PROGRAM IS THE THREE IN SITU STRESS
TENSOR COMPONENTS ON THE PLANE NORMAL TO THE h2 AXIS IN Figure 1.
THESE STRESS COMPONENTS ARE SIGMA-1 SIGMA-3 AND TAU-13; FORMULAE (13),
(15) AND (16) ON PAGE 8 IN PANEK AND FIGURE 1 IN SMITH.
THE OUTPUT OF THE BACK ANALYSIS PROGRAM IS SXX, SYY AND SKY. HOWEVER
XYZ IS NOT THE MINE COORDINATE SYSTEM (Y NORTH, Z VERTICAL, X EAST)
OF THIS PROGRAM BUT THE COORDINATE SYSTEM 123. THE CONNECTIONS BETWEEN
THE BACK ANALYSIS PROGRAM OUTPUT AND THIS PROGRAM STRESS COMPONENTS ARE:
BACK ANALYSIS PROGRAM THIS PROGRAM
SXX SIGMA-1
SYY SIGMA-3
SKY TAU-13 (SHEAR)

THIS PROGRAM PERFORMS A LEAST SQUARE FIT FOR THE STRESS TENSOR BASED
ON DATA OF THREE BOREHOLE SETS.

PROGRAM INPUT
THE USER IS PROMPTED FOR THE FOLLOWING DATA INPUT:
1. BEARING ANGLE OF THE BOREHOLE SET.
2. INCLINATION ANGLE OF THE BOREHOLE SET.
3. SIGMA-1
4. SIGMA-3
5. TAU-13 (SHEAR)

PROGRAM OUTPUT
1. THE SIX STRESS TENSOR COMPONENTS AND THEIR STANDARD DEVIATIONS.
2. STATISTICAL PARAMETERS OF THE LEAST SQUARES FIT.
3. THE THREE PRINCIPAL STRESS VECTORS, THEIR BEARING AND INCLINATION
 ANGLES IN TERMS OF THE MINE COORDINATE SYSTEM AND THEIR STANDARD
 DEVIATIONS.
PARAMETERS USED
PARAMETER (R1=57.29578) ! CONVERTS DEGREES TO RADIANS

VARIABLE DECLARATIONS

ARRAYS, MATRICES

REAL*8 BE(3), INCL(3) ! BEARING AND INCLINATION ANGLE MATRICES
 ! OF THE THREE BOREHOLE SETS
REAL*8 J(9,6) ! ARRAY OF J FACTORS
REAL*8 BAI(9) !BAI(1)=STRESS1,BAI(2)=STRESS2,BAI(3)=SHEAR13;
 ! STRESS VALUES. INPUT FROM THE BACK ANALYSIS PROGRAM
REAL*8 DCOS(3,9) ! DIRECTION COSINES OF BOREHOLE SETS
REAL*8 A(6,12) ! A(i,j) = Sum(C(n,i)*J(n,j)) n=1,9
 ! WHERE A(6,12) APPEARS IN EQUATION [A]x[B]=E0
 ! IN THE EQUATION ONLY THE FIRST 6 COLUMNS OF A(6,12) APPEAR;
 ! A(6,12) HAS THE UNIT DIAGONAL MATRIX IN THE SIX AUGMENTATION
 ! COLUMNS IN ORDER TO FIND IT'S INVERSE C(6,6)
REAL*8 G(6) ! G(j) = Sum(BAI(n)*J(n,j)) n=1,9
REAL*8 B(6) ! MATRIX OF UNKNOWN STRESS TENSOR COMPONENTS
REAL*8 V(6) ! MATRIX OF STANDARD DEVIATIONS OF STRESS COMPONENTS
 ! STORES ALSO STANDARD DEVIATIONS OF PRINCIPAL STRESSES
REAL*8 S(3,3) ! STRESS TENSOR IN ARRAY FORM
REAL*8 Z(3,3) ! Z(N,1) PRINCIPAL STRESS, Z(N,2) BEARING ANGLE,
 ! Z(N,3) INCLINATION. N=1,3 LABEL.
REAL*8 Y(3,3) ! Y(3,3) = S(3,3) - Z(N)*[1] FOR CALCULATION OF
 ! DIRECTION COSINES OF STRESS TENSOR COMPONENTS
REAL*8 P(3,3) ! ARRAY OF DIRECTION COSINES OF PRINCIPAL STRESS
 ! VECTORS
REAL*8 PR DCOS(3,9) ! ARRAY OF DIRECTION COSINES OF BOREHOLE SETS
 ! WITH RESPECT TO THE PRINCIPAL STRESS DIRECTIONS

NON-ARRAY VARIABLES

REAL*8 S1,S2,S3,R2,R4 ! STATISTICAL PARAMETERS
REAL*8 I1,I2,I3 ! INvariants OF THE STRESS TENSOR
REAL*8 K0, K1, K2, K3, K4, K5, K6, K7, K8, K9, K10
REAL*8 B5, I5 ! TEMPORARY VARIABLES STORING BEARING AND INCLINATION
 ! ANGLES OF PRINCIPAL STRESSES
REAL*8 Z1,Z2 ! TEMPORARY VARIABLES SORTING PRINCIPAL STRESSES
REAL*8 CHECK, FF ! FOR CHECKING PRINCIPAL STRESSES
CHECK (FF) = -FF**3 + 11*FF**2 -12*FF + 13 ! STATEMENT FUNCTION

INITIALIZATIONS
DATA J /54*0.0/ ! INITIALIZE J(9,6)
DATA A /36*0.0, 1.0, 6*0.0, 1.0, 6*0.0, 1.0, 6*0.0, 1.0, 6*0.0, 1.0 / ! INITIALIZE AUGMENTED MATRIX A

--

COORDINATE SYSTEMS AND CONVENTIONS FOR BEARING AND INCLINATION ANGLES
CALL clearscreen($CROSCREEN)
WRITE (*,'(//,A)') ! COORDINATE SYSTEMS AND CON
+VENTIONS ' WRITE (*,'(//,A)') ! Two right-handed coordinate systems are
+used in the analysis of stress determinations. The first of these
+is a local, or borehole coordinate system, h1, h2, h3, as define
+d by Panek (1966) and Smith (1982). The h2 axis coincides with the
+axis of the borehole. The h1 axis is horizontal and extends to th
+e right as the observer looks into the borehole. The h3 axis lies
+in a vertical plane and generally points upward. The h3 axis is t
+ruly vertical only if the borehole is horizontal; it is horizontal
+i for a vertical drill hole.' WRITE (*,'(//,A)') ! The second coordinate system is the glob

--
*al, or geographic system, x,y,z, which gives a common base to which
the computations are referred. The system used is x is positive
east, y is positive north, and z is positive up.

WRITE ('*(///,A)*') 'Bearings are given in degrees clockwise from
north, and inclinations are in degrees from the horizontal, positive
upwards.'
PAUSE 'PRESS ENTER TO CONTINUE'

DATA INPUT
DO N = 1,3
CALL clearscreen($GCLEARSCREEN)$
WRITE (*, '(/,10X,A(11))') 'BOREHOLE SET ', N
WRITE (*, '(//,10X,A())') 'ENTER BEARING (Degrees) --> ','
READ (*,*)) BE(N)
WRITE (*, '(//,10X,A())') 'ENTER INCLINATION ANGLE (Degrees)'
+ --> ','
READ (*,*) INCL(N)

WRITE (*, '(//,10X,A())') 'ENTER STRESS ONE (SXX) (MPa) --> ','
READ (*,*) BAI(3*N-2)
WRITE (*, '(//,10X,A())') 'ENTER STRESS THREE (SYY) (MPa) --> ','
READ (*,*) BAI(3*N-1)
WRITE (*, '(//,10X,A())') 'ENTER SHEAR STRESS (TXY) (MPa) --> ','
READ (*,*) BAI(3*N)
ENDDO

ECHO PRINT THE INPUT DATA

CALL clearscreen($GCLEARSCREEN)$
WRITE (*, '(//,16X,A(10),/)') 'INPUT DATA'
+ '
WRITE (*, '(//,16X,A(13),/)') 'BOREHOLE 1', 'BOREHOLE 2',
+ 'BOREHOLE 3'
WRITE (*, '(A16, 3F13.4)') 'BEARING |', (BE(LL), LL=+1,3)
WRITE (*, '(A16, 3F13.4)') 'INCLINATION |', (INCL(LL),
+ LL = 1,3)
WRITE (*, '(A16, 3F13.4)') 'STRESS 1 |', (BAI(LL),
+ LL=1,9,3)
WRITE (*, '(A16, 3F13.4)') 'STRESS 3 |', (BAI(LL),
+ LL=2,9,3)
WRITE (*, '(A16, 3F13.4,/)') 'SHEAR 13 |', (BAI(LL),
+ LL=3,9,3)
PAUSE ' '

WRITE (*, '(//,F8.3, 1X))') ((J(L,J), JJ=1,6), L=1,9)

DO N=1,3
BE(N) = BE(N)/R1 ' CONVER TO RADIANS BEARING
INCL(N) = INCL(N)/R1 ' AND INCLINATION ANGLES
CALCULATE DIRECTION COSINES
DCOS(N,1) = COS(BE(N)) ' L1
DCOS(N,2) = SIN(BE(N))*COS(INCL(N)) ' L2
DCOS(N,3) = -SIN(BE(N))*SIN(INCL(N)) ' L3
DCOS(N,4) = -SIN(BE(N)) ' M1
DCOS(N,5) = COS(BE(N))*COS(INCL(N)) ! M2
DCOS(N,6) = -COS(BE(N))*SIN(INCL(N)) ! M3
DCOS(N,7) = 0.0 ! N1
DCOS(N,8) = SIN(INCL(N)) ! N2
DCOS(N,9) = COS(INCL(N)) ! N3

CALL JCALC(DCOS, N, J) I CALCULATE J ARRAY FACTORS
BE(N) AND INCL(N) ARE ALTERED; THEY ARE IN RADIANS
ENDDO

CALL clearscreen($GCLEARSCREEN)
WRITE (*, *) ' RETURN FROM SUB JCALC, J ARRAY FACTORS'
WRITE (*, '*(6(F10.6, 1X))') (J(J,JJ), JJ=1,6), L=1,9)
PAUSE ' '

PREPARE SYSTEM OF EQUATIONS [A]x[B] = [G]

CALL clearscreen($GCLEARSCREEN)
CALL SYST_EQ(BAI, J, A, G)
CALL clearscreen($GCLEARSCREEN)
WRITE (*, '*) ' RETURNED FROM SYST_EQ '
WRITE (*, '*) ' A(6,12) ARRAY'
WRITE (*, '*(12(F10.4,1X))') (A(I,JJ), JJ=1,12), L=1,6)
WRITE (*, '*) ' G(6) ARRAY'
WRITE (*, '*(6(F8.3,1X))') (G(JJJ), JJJ=1,6)
PAUSE 'CALL ELIM NOW '

INVERT AUGMENTED MATRIX A(6,12)
CALL ELIM (A, 6, 12, 6)
RETURNING FROM SUBROUTINE ELIM MATRIX A CONTAINS ITS INVERSE
MATRIX C(6X6) IN IT'S AUGMENTATION COLUMNS. HOWEVER THE
ORIGINAL FIRST SIX COLUMNS OF A HAVE BEEN CORRUPTED.
CALL clearscreen($GCLEARSCREEN)
PAUSE ' RETURNED FROM ELIM NOW AUGMENTED A(6,12) ARRAY'
WRITE (*, '*(12(F10.4,1X))') (A(I,JJ), JJ=7,12), L=1,6)
WRITE (*, '*) ' C(6,6) ARRAY IS THE AUGMENTED COLUMNS OF A(6,12)'
WRITE (*, '*(6(F10.4,1X))') (A(I,JJ), JJ=7,12), L=1,6)
PAUSE ' '

CALCULATE STRESS TENSOR COMPONENTS B(6) = [C][G]

CALL STR_CALC(A,G,B)

COMPUTE STATISTICAL PARAMETERS
CALL clearscreen($GCLEARSCREEN)
CALL STATS(BAI, A, B, G ,V)

PRINT RESULTS
CALL clearscreen($GCLEARSCREEN)
WRITE (*, '*) ' STRESS COMPONENTS STANDARD DEVIATIONS '
WRITE (*, '*(A,F9.3,5X,F9.3)') ' NORMAL N-S = ', B(2), V(2)
WRITE (*, '*(A,F9.3,5X,F9.3)') ' NORMAL VER = ', B(3), V(3)
WRITE (*, '*(A,F9.3,5X,F9.3)') ' SHEAR HOR = ', B(4), V(4)
WRITE (*, '*(A,F9.3,5X,F9.3)') ' SHEAR E-V = ', B(6), V(6)
PAUSE ' '

CALL clearscreen("$GCLEARSCREEN")

WRITE (*,*) ' THIS IS S(3,3) ARRAY'
WRITE (*,*(SF9.3)) ((S(K,N), N=1,3), K=1,3)

COMPUTE INVARIANTS OF THE STRESS TENSOR
11 = S(1,1) + S(2,2) + S(3,3)
WRITE (*,*(A,F15.6)) ' 11=', 11
12 = S(1,1)*S(3,3) + S(2,2)*S(3,3) + S(1,1)*S(2,2)
WRITE (*,*(A,F15.6)) ' 12=', 12
14 = S(2,3)**2 + S(1,2)**2 + S(1,3)**2
WRITE (*,*(A,F15.6)) ' 14=', 14
12 = 12 - 14
WRITE (*,*(A,F15.6)) ' 12=', 12
13 = S(1,1)*S(2,2)*S(3,3) + 2*S(1,2)*S(2,3)*S(1,3) -
2*S(1,1)*S(3,2)*S(3,3) - S(1,2)*S(3,3) - S(1,3)*S(2,1)*S(2,2)
WRITE (*,*(A,F15.6)) ' 13=', 13

SOLVE CUBIC EQUATION BY TRIGONOMETRIC SUBSTITUTION
Q1 = -11
Q2 = 12
Q3 = -13
Q4 = (3*Q2-Q1*Q1)/3
WRITE (*,*(A,F15.6)) ' Q4=', Q4
Q5 = (2*Q1**3 - 9*Q1*Q2 + 27*Q3)/27
WRITE (*,*(A,F15.6)) ' Q5=', Q5
Q6 = -Q5/2/SQRT(-Q4**3/27)
WRITE (*,*(A,F12.6)) ' Q6=', Q6
Q7 = ACOS(Q6)/3
WRITE (*,*(A,F12.6)) ' Q7=', Q7
X1 = 2*SQRT(-Q4/3)*COS(Q7)
X2 = 2*SQRT(-Q4/3)*COS(Q7 + 120/R1)
X3 = 2*SQRT(-Q4/3)*COS(Q7 + 240/R1)
Z(1,1) = X1 - Q1/3
Z(2,1) = X2 - Q1/3
Z(3,1) = X3 - Q1/3

WRITE (*,*(//,A,F14.6)) ' 11=', 11
WRITE (*,*(A,F14.6)) ' 12=', 12
WRITE (*,*(A,F14.6)) ' 13=', 13
WRITE (*,*) ' ARRAY OF PRINCIPAL STRESSES:
WRITE (*,*(F12.6)) (Z(N,1), N=1,3)
PAUSE '
WRITE (*,*) ' THIS IS A CHECK'
WRITE (*,*(A,F12.6)) ' FIRST INVARIANT =', Z(1,1)+Z(2,1)+
+ Z(3,1)
WRITE (*,*(A,F14.6)) ' FIRST CHECK =', CHECK(Z(1,1))
WRITE (*,*(A,F14.6)) ' SECOND CHECK =', CHECK(Z(2,1))
WRITE (*,*(A,F14.6)) ' THIRD CHECK =', CHECK(Z(3,1))
PAUSE '

END OF CUBIC SOLUTION
SORT PRINCIPAL STRESSES
Z1 = MAX (Z(1,1),Z(2,1),Z(3,1))
Z3 = MIN (Z(1,1),Z(2,1),Z(3,1))
Z(1,1) = Z1
Z(2,1) = 11 - Z1-Z3
Z(3,1) = Z3
WRITE (*, *) 'ARRAY OF PRINCIPAL STRESSES'
WRITE (*, '(F12.6)') (Z(N,1), N=1,3)
PAUSE ' ' END OF SORT

COMPUTE DIRECTION COSINES FOR PRINCIPAL STRESSES

CALL clearscreend(GCLEARSCREEN)
DO 410 N=1,3
 Y = S
 WRITE (*, '(3F9.3)') (Y(K,NN), NN=1,3), K=1,3
 DO 420 I=1,3
 Y(I,1) = Y(I,1) - Z(N,1) ! (Y) = [S] - EIGENVALUE*{I}
 CONTINUE
 WRITE (*, *) 'THIS IS Y(3,3) ARRAY'
 WRITE (*, '(3F9.3)') (Y(K,NN), NN=1,3), K=1,3
 PAUSE ' ' N3 = Y(I,1)*Y(2,2)*Y(2,1)**2/(Y(1,2)*Y(2,3)*Y(2,2)*Y(1,3))
 WRITE (*, '(A,F15.6)') ' N3=', N3
 N2 = -(Y(I,1) + Y(1,3)*N3)/Y(1,2)
 WRITE (*, '(A,F15.6)') ' N2=', N2
 N4 = SORT(1*N2*N2 + N3*N3)
 WRITE (*, '(A,F15.6)') ' N4=', N4
 P(1,N) = 1/N4 ! N IS THE PRINCIPAL STRESS VECTOR LABEL
 WRITE (*, '(A,F15.6)') ' P(1,N)=' P(1,N)
 P(2,N) = N2/N4 ! DIRECTION COSINES
 WRITE (*, '(A,F15.6)') ' P(2,N)=' P(2,N)
 P(3,N) = N3/N4
 WRITE (*, '(A,F15.6)') ' P(3,N)=' P(3,N)
 CALL DIRCOS(P,N,15, B5)
 Z(N,2) = B5
 Z(N,3) = 15
 WRITE (*, '(A,F12.4)') ' BEARING =', Z(N,2)
 WRITE (*, '(A,F12.4)') ' INCLINATION = ', Z(N,3)
 PAUSE ' ' 0 CONTINUE
 WRITE (*, *) 'PRINCIPAL STRESS BEARING INCLINATION'
 WRITE (*, '(F12.4,6X, ZF15.4)') (Z(N, K), K=1,3), N=1,3
 PAUSE ' '

CALCULATION OF STANDARD DEVIATIONS OF PRINCIPAL STRESSES

RE-COMPUTE DIRECTION COSINES OF THE THREE BOREHOLE SETS
WITH RESPECT TO PRINCIPAL AXES.

CALL DC_IN_PS (DCOS, P, PR_DCOS)

CALL clearscreend(GCLEARSCREEN)
WRITE (*, *) 'DIRECTION COSINES OF BOREHOLE SETS'
WRITE (*, *) 'IN XYZ COORDINATE SYSTEM'
WRITE (*, '(3F10.6)') (DCOS(N,JJ), N=1,3), JJ=1,9
PAUSE ' '
WRITE (*, *) 'DIRECTION COSINES OF BOREHOLE SETS'
WRITE (*, *) 'IN NDC COORDINATE SYSTEM'
WRITE (*, '(3F10.6)') (PR_DCOS(N,JJ), N=1,3), JJ=1,9
PAUSE

CALCULATE J ARRAY FACTORS AGAIN
DO N=1,3
 CALL JCALC(DIRC, DCOS, N, J) ! CALCULATE J ARRAY FACTORS
ENDDO

PREPARE SYSTEM OF EQUATIONS [A]x[B] = [G]
CLEAN UP A, G, B AND V ARRAYS
A = 0.0
G = 0.0
B = 0.0
V = 0.0
CREATE UNIT MATRIX IN AUGMENTATION COLUMNS OF ARRAY A FOR
MATRIX INVERSION
DO W=1,6
 A(W, W+6) = 1.0
ENDDO

CALL SYST_EQ(BAI, J, A, G)
WRITE (*, '(12(F12.4, 1X)') (A(R,F), F=1,12),R=1,6)
PAUSE ' A ARRAY'

INVERT AUGMENTED MATRIX A(6,12)
CALL ELIM (A, 6, 12, 6)
CALL clearsreen(%GCLEARSREEN)
PAUSE ' RETURNED FROM ELIM NOW AUGMENTED A(6,12) ARRAY'
WRITE (*, '(12(F10.5, 1X)') ((A(L,JJ), JJ=1,12), L=1,6)
WRITE (*, 'C(6,6) ARRAY IS THE AUGMENTED COLUMNS OF A(6,12)'
WRITE (*, '(6(F12.5, 1X)') ((A(L,JJ), JJ=7,12), L=1,6)
PAUSE '

CALCULATE STRESS TENSOR COMPONENTS B(6) = [C][G]
CALL STR_CALC(A,G,B)
WRITE (*, '(F12.4)') (B(F), F=1,6)

COMPUTE STATISTICAL PARAMETERS
CALL clearsreen(%GCLEARSREEN)
CALL STATS(BAI, A, B, G, V)

STOP
END ! OF MAIN

SUBROUTINE JCALC(DIRC, L, K)
THIS SUBROUTINE CALCULATES THE J ARRAY FACTORS FOR THE
LEAST SQUARES FIT

INPUT ARGUMENTS
REAL *B DIRC(3,9) ! IS THE MATRIX OF DIRECTION COSINES OF THE
! BOREHOLES; DCOS IS THE MATRIX IN THE MAIN PROGRAM
OUTPUT ARGUMENTS
REAL*8 K(9,6) I IS THE J FACTOR ARRAY IN THE MAIN PROGRAM

LOCAL VARIABLES

INTEGER L ! L IS THE BOREHOLE SET COUNTER L=1,3
C IS THE ROW OF THE ARRAY
INTEGER C ! ROW COUNTER
DATA C /1/
SAVE C ! NOT NECESSARY. STATIC BY DEFAULT

SUBROUTINE BODY

CALCULATE J ARRAY FACTORS

EQUATIONS USED ARE DERIVED FROM PANEK 13-15-16 PAGE 8

STRESS1=SX*L^2+SY*M^1*L+SZ*N^1*L+2*TXY*L*M+2*TYZ*M*N+1
2*TXZ*N^1*L^1 E013

K(C,1) = DIRC(L,1)*DIRC(L,1) ! COS(B)*COS(B) B:BEARING
K(C,2) = DIRC(L,4)*DIRC(L,4) ! SIN(B)*SIN(B) I:INCLINATION
K(C,3) = DIRC(L,7)*DIRC(L,7) ! 0.0
K(C,4) = 2*DIRC(L,1)*DIRC(L,4) ! -2*COS(B)*SIN(B)
K(C,5) = 2*DIRC(L,4)*DIRC(L,7) ! 0.0
K(C,6) = 2*DIRC(L,7)*DIRC(L,1) ! 0.0
STRESS3=SX*L^3+SY*M^3^2+SZ*N^3^2+2*TXY*L*M^3+2*TYZ*M*N^3+1
2*TXZ*N^3*L^3 E015

C=C+1

K(C,1) = DIRC(L,3)*DIRC(L,3) ! (SIN(B)*SIN(I))^2
K(C,2) = DIRC(L,6)*DIRC(L,6) ! (COS(B)*COS(I))^2
K(C,3) = DIRC(L,9)*DIRC(L,9) ! COS(I)^2
K(C,4) = 2*DIRC(L,3)*DIRC(L,6) ! 2*[SIN(B)*SIN(I)]*[COS(B)*COS(I)]
K(C,5) = 2*DIRC(L,6)*DIRC(L,9) ! 2*[COS(B)*SIN(I)]*[COS(I)]
K(C,6) = 2*DIRC(L,9)*DIRC(L,3) ! 2*[COS(B)*SIN(I)]*[COS(I)]

3 SHEAR15= SX*L^1*L^3 + SY*M^1*M^3 + SZ*N^1*N^3 + TXY*L*M^3 + TYZ*M*N^3 +
TYZ*(M*N^3+M^3*N)+ TXZ*(N^3*L^3 + N^3*L^1) E015

C = C+1

K(C,1) = DIRC(L,1)*DIRC(L,3) ! COS(B)*[-SIN(B)*SIN(I)]
K(C,2) = DIRC(L,4)*DIRC(L,6) ! -SIN(B)*[-COS(B)*SIN(I)]
K(C,3) = DIRC(L,7)*DIRC(L,9) ! 0.
K(C,4) = DIRC(L,1)*DIRC(L,6) + DIRC(L,3)*DIRC(L,4)
! COS(B)*[-COS(B)*SIN(I)]*[-SIN(B)*SIN(I)]
K(C,5) = DIRC(L,6)*DIRC(L,9) + DIRC(L,6)*DIRC(L,7)
! -SIN(B)*COS(I) + 0.
K(C,6) = DIRC(L,7)*DIRC(L,3) + DIRC(L,9)*DIRC(L,1)
! 0. + COS(I)*COS(B)

C=C+1

IF (C .EQ. 10) C=1

WRITE (*) ! TO EXIT SUB JCALC'
WRITE (*) ! (A,12)' ! C =', C
PAUSE '
WRITE (*) ! (6(F8.3, 1X)) ! (K(L,L), JJ=1,6), LL=1,9)
PAUSE

RETURN
END ! OF SUBROUTINE JCALC

SUBROUTINE SYST_EQ(SYBAI, SYJ, SYA, SYG)

PREPARES SYSTEM OF EQUATIONS [A]x(B) = (G)

INPUT ARGUMENTS
REAL*8 SYBAI(9) ! MATRIX OF BACK ANALYSIS INPUT
REAL*8 SYJ(9,6) ! ARRAY OF J COMPONENTS

OUTPUT ARGUMENTS
REAL*8 SYA(6,12) ! A(6,12) ARRAY
REAL*8 SYG(6) ! G(6) MATRIX

FUNCTION BODY

CALL clearscreen($GCLEARSCREEN)
WRITE ('*', '*') ' INSIDE SYST_EQ'
WRITE ('*', '*') ' A(6,12) ARRAY INITIALLY'
WRITE ('*', '('12(F6.3,1X))') (SYA(I,JJ), JJ=1,12, I=1,6)
WRITE ('*', '*') ' G(6) ARRAY INITIALLY'
WRITE ('*', '('6(F8.3, 1X))') (SYG(JJ), JJ=1,6)
PAUSE ' '

COMPUTE A AND G ARRAYS
DO 130 K=1,9
 DO 120 JJ=1,6
 SYG(JJ) = SYG(JJ) + SYBAI(K)*SYJ(K, JJ)
 END DO 120
 SYA(I, JJ) = SYA(I, JJ) + SYJ(K,I)*SYJ(K, JJ)
130 CONTINUE
} CONTINUE
}
CONTINUE
RETURN
END
END OF SUBROUTINE SYST_EQ

#include 'ELIMRUT.FOR'
FILE INCLUDING THE MATRIX INVERSION SUBROUTINE

SUBROUTINE STR_CALC(STA, STG, STB)

CALCULATE STRESS TENSOR COMPONENTS B(6) = [C][G] C ARRAY DOES NOT APPEAR EXPLICITLY. IT IS CONTAINED IN A(6,12)

INPUT ARGUMENTS
REAL*8 STA(6,12) ! A(6,12) ARRAY
REAL*8 STG(6) ! G(6) MATRIX

OUTPUT ARGUMENTS
REAL*8 STB(6) ! MATRIX OF STRESS COMPONENTS

FUNCTION BODY

CALL clearscreen($GCLEARSCREEN)
WRITE ('*', '*') ' STRESS CALCULATION FOLLOWS INSIDE STR_CALC'
DO 210 I=1,6
 DO 220 JJ=1,6
 STB(I) = STB(I) + STA(I, JJ+6)*STG(JJ)
220 CONTINUE
 WRITE ('*', '('(A,11,A, F9.3)') ' B(.,I,.)+', ' STB(I)
210 CONTINUE
PAUSE ' '
RETURN
END
END OF SUBROUTINE STR_CALC

SUBROUTINE STATS(SSBAI, SSA, SSB, SSG, SSV)

COMPUTE STATISTICAL PARAMETERS OF LEAST SQUARES FIT.
SUBROUTINE DIRCOS(SP,SN,IS,IS5)

THIS SUBROUTINE CALCULATES THE BEARING AND INCLINATION ANGLES OF
THE PRINCIPAL STRESS VECTORS

PARAMETER (R1=57.29578) I CONVERT TO RADIANS
INPUT ARGUMENTS

INTEGER SN
REAL*8 SP

DIMENSION SP(3,3) ! ARRAY OF DIRECTION COSINES, INPUT ARGUMENT
SP(1,SN) SP(2,SN) SP(3,SN): SN IS THE STRESS VECTOR LABEL I.e.
SP(1,3) IS THE DIRECTION COSINE WITH THE X AXIS OF THE THIRD
PRINCIPAL STRESS VECTOR.

OUTPUT ARGUMENTS

REAL*8 I5,B5 ! B5 BEARING, I5 INCLINATION ANGLES

FUNCTION BODY

I5 = 90 -ACOS(SP(3,SN))*R1
IF (SP(1,SN) .NE. 0.0) GOTO 3040
IF (SP(2,SN) .GT. 0.0) GOTO 3000
IF (SP(2,SN) .LT. 0.0) GOTO 3020
WRITE (*, *) ' IF THE TWO FIRST DIRECTION COSINES ARE ZERO '
WRITE (*, *) ' THEN TAN(BEARING OF PRINCIPAL STRESS)= 0/0. '
WRITE (*, *) ' SEE PAGE 22 IN PANEK FORMULA (58) '
GOTO 3150
00 B5 = 0
GO TO 3150
20 B5 = 180
GO TO 3150
140 B5 = ATAN(SP(1,SN)/SP(2,SN))*R1
IF (SP(2,SN) .LT. 0.0) GOTO 3090
IF (SP(1,SN) .GT. 0.0) GOTO 3100
B5 = 360 + B5
GOTO 3100
190 B5 = 180 + B5
INCLINATION OF PRINCIPAL STRESSES ARE NEGATIVE BY CONVENTION
AND BEARINGS ARE ADJUSTED ACCORDINGLY IF NECESSARY
00 IF (I5 .LT. 0.0) GOTO 3130
I5 = -I5
B5 = 180 +B5
130 IF (B5 .LT. 360) GOTO 3150
B5 = B5 -360
150 CONTINUE
RETURN
END
END OF ROUTINE DIRCOS

SUBROUTINE DC_IN_PS (0_C, PC, PR_D)
RECOMPUTE DIRECTION COSINES OF THREE BOREHOLE SETS WITH RESPECT
TO PRINCIPAL AXES TO COMPUTE STANDARD DEVIATIONS OF PRINCIPAL
STRESSES.

INPUT ARGUMENTS

REAL*8 D_C(3,9) ! ARRAY OF DIRECTION COSINES OF THREE BOREHOLES
! WITH RESPECT TO XYZ COORDINATE SYSTEM; D_COS IN MAIN
REAL*8 PC(3,3) ! ARRAY OF DIRECTION COSINES OF PRINCIPAL STRESSES
! WITH RESPECT TO XYZ COORDINATE SYSTEM; P IN MAIN

OUTPUT ARGUMENTS

REAL*8 PR_D(3,9) ! ARRAY OF DIRECTION COSINES OF THREE
! BOREHOLES WITH RESPECT TO 123 COORDINATE SYSTEM; PR_D_COS IN MAIN
SUBROUTINE ELIM(AB, N, NP, NDIM)
DIMENSION AB(6,12) !NP
REAL*8 AB
INTEGER N,NP,NDIM
WRITE (*,*) ' ENTERED SUBROUTINE ELIM NOW'
WRITE (*,23) ((AB(I,J), J=1,NP), I=1, NDIM)
23 FORMAT ((12(F8.2), ,)}/
PAUSE ' MATRICE INVERSION STARTS'

THIS SUBROUTINE SOLVES A SET OF LINEAR EQUATIONS.
THE GAUSS ELIMINATION METHOD IS USED, WITH PARTIAL PIVOTING.
mULTIPLE RIGHT HAND SIDES ARE PERMITTED, THEY SHOULD BE SUPPLIED
AS COLUMNS THAT AUGMENT THE COEFFICIENT MATRIX.
PARAMETERS ARE
AB COEFFICIENT MATRIX AUGMENTED WITH R.M.S VECTORS
N NUMBER OF EQUATIONS
NP TOTAL NUMBER OF COLUMNS IN THE AUGMENTED MATRIX.
NDIM FIRST DIMENSION OF MATRIX AB IN THE CALLING PROGRAM.
The SOLUTION VECTOR(S) ARE RETURNED IN THE AUGMENTATION
COLUMNS OF AB.
BEGIN THE REDUCTION
NM1 = N-1
DO 35 I = 1,NM1
FIND THE ROW NUMBER OF THE PIVOT ROW. WE WILL THEN
INTERCHANGE ROWS TO PUT THE PIVOT ELEMENT ON THE DIAGONAL.
IPVT = I
IP1 = I+1
DO 10 J = IP1, N
IF (ABS(AB(IPVT,J)) .LT. ABS(AB(J,I))) IPVT = J
CONTINUE
CHECK TO BE SURE THE PIVOT ELEMENT IS NOT TOO SMALL, IF SO
PRINT A MESSAGE AND RETURN.
IF ((ABS(AB(IPVT,J)) .LT. 1.E-5)) GO TO 99
NOW INTERCHANGE, EXCEPT IF THE PIVOT ELEMENT IS ALREADY ON
THE DIAGONAL, DON'T NEED TO.
IF (IPVT .EQ. I) GO TO 25
DO 20 JCOL = 1, NP
SAVE = AB(I,JCOL)
AB(I,JCOL) = AB(IPVT,JCOL)
AB(IPVT,JCOL) = SAVE
CONTINUE
NOW REDUCE ALL ELEMENTS BELOW THE DIAGONAL IN THE I-TH ROW. CHECK
FIRST TO SEE IF A ZERO ALREADY PRESENT. IF SO,
CAN SKIP REDUCTION FOR THAT ROW.
DO 32 JROW = 1P1,N
IF (AB(JROW,I) .EQ. 0) GO TO 32
RATIO = AB(JROW,I)/AB(I,I)
DO 30 KCOL = IP1, NP
AB(JROW,KCOL) = AB(JROW,KCOL) - RATIO*AB(I,KCOL)
CONTINUE
CONTINUE
CONTINUE
WE STILL NEED TO CHECK A(N,N) FOR SIZE.
IF (ABS(AB(N,N)) .LT. 1.E-5) GO TO 99
NOW WE BACK SUBSTITUTE
NP1 = N+1
DO 50 KCOL = NP1, NP
AB(N,KCOL) = AB(N,KCOL)/AB(N,N)
DO 45 J=2,N
NVBL = NP1 - J
L = NVBL + 1
VALUE = AB(NVBL,KCOL)
DO 40 K = L,N
VALUE = VALUE - AB(NVBL,K)*AB(K,KCOL)
CONTINUE
AB(NVBL,KCOL) = VALUE/AB(NVBL,NVBL)
CONTINUE
CONTINUE
CONTINUE
RETURN
MESSAGE FOR A NEAR SINGULAR MATRIX
WRITE (*, 100)
O FORMAT(1NO, 'SOLUTION NOT FEASIBLE. A NEAR ZERO PIVOT WAS ENCOUN
+TERED.')
RETURN
END