

Journal of Organometallic Chemistry 495 (1995) 41-51

Solid angles III. The role of conformers in solid angle calculations

David White ^{a,1}, B. Craig Taverner ^a, Neil J. Coville ^{a,*}, Peter W. Wade ^b

^a Center for Applied Chemistry and Chemical Technology, Department of Chemistry, University of the Witwatersrand, Private Bag 3, Wits 2050,

South Africa

^b Division of Water Technology, Council for Scientific and Industrial Research, PO Box 395, Pretoria 0001, South Africa

Received 1 September 1994

Abstract

The values of the solid angles Ω for a range of commonly encountered ligands in organometallic chemistry (phosphines, phosphites, amines, arsines and cyclopentadienyl rings) have been determined. The solid angles were derived from a single energy conformer in a geometry constrained in a prototypical metal environment, i.e. with the ligand attached to Cr(CO)₅. This choice permits comparison with recent ligand repulsive energies E_R reported by Brown. Correlations between Ω , E_R and θ for the range of ligands studied typically gave correlation coefficients greater than 0.8. The values of the weighted average solid angle $\overline{\Omega}$, using an extension of the methodology by Brown and Mosbo, have also been determined. The minimum conformer solid angle values are correlated with the weighted average solid angle (r = 0.96), suggesting that the minimum-energy conformation is a good approximate measure of steric size.

Keywords: Phosphorus ligands; Arsenic ligands; Solid angles; Cone angles; Steric size; Molecular mechanics calculation

1. Introduction

The evaluation of steric effects in chemistry has been recognized as important in understanding chemical reactivity [1]. Although quantification of the size of ligands in inorganic chemistry and functional groups in organic chemistry should logically be assessed by the same procedures, historically this has not been the case [2]. Only in recent years have attempts been made to consider the common features of the two disciplines and to measure sizes using the same procedures.

For example, we and others have been evaluating steric size (ligands, and organic groups) by use of a solid angle Ω [3,4]. The solid angle of an object is the area of the "shadow" of the object projected onto a surface, the shadow area being a measure of the steric

* Corresponding author.

size of the object. More rigorously, the solid angle of an element of area dS, subtended at a point O is

$$\mathrm{d}\,\Omega = \frac{r \cdot \mathrm{d}S}{r^3} \tag{1}$$

where r is the vector from O to ds and r is its magnitude [5]. This equation has been solved numerically [4] and analytically [3]. When the object is a ligand, then the shadow of the sphere is brought about by atomic spheres using van der Waals and covalent radii where appropriate. If the ligand covers the entire unit sphere, then the solid angle is 4π sr. Steradians are often not the units of choice to express the solid angle; so a pure number Ω_s is defined Eq. 2 which gives the steric size of the ligand as the fraction of unit sphere occupied:

$$\Omega_{\rm s} = \frac{\Omega}{4\pi} \tag{2}$$

It is possible to derive a linear or cone angle from the solid angle measure. If the solid angle Ω is assumed to

¹ Present address: Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, IL 61801, USA.

Table	1					
Steric	sizes	of	Group	15	donor	ligands

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Ligand	θ^{a}	θ^{b}	Ω°	Ω°	Ω _s °	$E_{\rm R}^{\rm d}$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		(°)	(°)	(sr)	(°)	5	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	РН.	87	91.2 °	1.26	74	0.100	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	PH_Ph	101	106.4 °	2.12	97	0.168	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	PH-Me	101	104.5 °	2.09	96	0.166	
$\begin{split} \begin{array}{cccccccccccccccccccccccccccccccccccc$	PE	104	104.5	2.09	97	0.160	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Me PCH CH PMe	107		2.12	21	0.109	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	PH Ft	107	111 0 °	2 21	00	0.176	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	PH (o-MePh)		111.0 113.3 °	2.21	104	0.170	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Ft PCH CH PEt	115	115.5	2.40	104	0.171	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	PC_{yH}	115		2.08	117	0.234	32
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	PH (ⁱ Pr)	115	115 7 °	2.50	106	0.204	52
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			115.7 1170 °	2.51	113	0.200	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\mathbf{PH} (^{\dagger}\mathbf{R}_{u})$		117.9 118 3 °	2.82	113	0.224	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\mathbf{DM}_{2}(\mathbf{Du})$	118	136 0 °	2.88	124	0.229	30
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DUMaDh	110	120.2 %	2.55	124	0.207	57
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		171	120.2	2.80	114	0.227	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		121	141 7 6	2.45	176	0.274	14
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	r Me ₂ r fi	122	141.7 112 118 f	2.45 2.70 3.06 f	120	0.274	44
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DMo Et	122	112-110	2.79-3.00	122	0.200	18
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		123		2.51	106	0.299	40
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	PM_{2} (CE)	124		2.51	126	0.133	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$P_{2}(CF_{3})$	124		5.92	150	0.312	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Ph P(CH) PPh	123					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\mathbf{P}_{12} = \mathbf{P}_{12} + \mathbf{P}$	127		4.04	129	0 322	57
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		127		4.04	130	0.322	29
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		128	120.0 %	2.75	112	0.219	56
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		121	129.9	2.93	110	0.233	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		151	121 8	2.00	110	0.212	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	PM_{2}	122	151 -	2.77	112	0.221	57
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P(CU, CUCH)	152	127 g	4.13	140	0.331	57
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$PCH_2CHCH_2/_3$	122	152 - 166 4 °	4.29	143	0.341	61
$\begin{array}{c c c c c c c c } & 1.05 & 0.12 \\ \hline P(n-Pr)_3 & 132 & 4.53 & 148 & 0.360 & 64 \\ P(n-Bu)_3 & 132 & 4.53 & 148 & 0.360 & 64 \\ P(CH_2CH_2CN)_3 & 132 & 4.69 & 151 & 0.373 & 2.99 & 166 & 57 & 2.99 & 3.44 & 124 & 0.266 & 57 & 2.99 & 3.44 & 124 & 0.266 & 57 & 2.99 & 3.44 & 124 & 0.266 & 57 & 2.99 & 3.44 & 124 & 0.266 & 57 & 2.99 & 3.44 & 124 & 0.266 & 57 & 137 & 3 & 3.24 & 122 & 0.258 & P(CF_3)_3 & 137 & 4.64 & 150 & 0.369 & PPh_2Cl & 138 & 137 & 2.99 & 117 & 0.238 & 48 & PMe_2(^1Bu) & 139 & 4.32 & 144 & 0.344 & 66 & PPh_2Et & 140 & 4.12 & 140 & 0.328 & 66 & PPh_2Et & 140 & 4.13 & 140 & 0.329 & 66 & PEh_2(^1Pr) & 141 & 4.64 & 150 & 0.369 & 75 & Cy_2PCH_2CH_2PCy_2 & 142 & & & & & & & & & & & & & & & & & & &$	r Et ₃	132	137 h	4.51 3.00 3.72 f	145	0.544	01
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			119_130 f	5.09-5.72			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$P(n_{-}Pr)$	132	119 150	4 53	148	0.360	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$P(n-R_{1})$	132		4.53	148	0.360	64
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P(CH, CH, CN)	152	132 ^g	4.69	151	0.373	01
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	PPh. Me	136	$117-126^{\text{f}}$	3 34	124	0.266	57
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11121000	150	117 120	2.99-3.44 f	121	0.200	57
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	PPhFt_	136		3.96	137	0.316	57
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	PPh(n-Bu)	136		4.85	154	0.386	77
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	PH(Ft)		137.3 °	3 24	122	0.258	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$P(CF_{a})_{a}$	137	10,10	4.64	150	0.369	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	PPh ₋ Cl	138	137 ^g	2 99	117	0.238	48
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$PMe_{a}(^{T}Bu)$	139	101	4.32	144	0.344	66
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	PPh _o Et	140		4.12	140	0.328	66
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$PPh_{o}(n-Bu)$	140		4.13	140	0.329	66
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	PEt _a (ⁱ Pr)	141		4.64	150	0.369	75
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cv ₂ PCH ₂ CH ₂ PCv ₂	142				0.000	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	PCv ₂ H	143		4.49	147	0.358	66
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$P(^{t}Bu)$	143		5 91	173	0.470	83
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$PPh_{-}(^{t}Bu)$	144		4 54	148	0 361	71
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$P(p-C Ph)_{a}$	145		3.58	129	0.285	74
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$P(p-FPh)_{2}$	145		3.59	129	0.286	74
PPh3145120 i3.601290.28675 $P(p-OMePh)3$ 145 3.60 1290.28676 $P(m-FPh)3$ 145 3.60 1290.28676 $P(m-CIPh)$ 145165 g 3.78 1330.301 $P(m-CIPh)$ 145165 g 3.91 1360.31178 $P(m-IBuPh)3$ 145 5.12 1590.40783 $P(^{1}Pr)_{2}Me$ 146 4.72 1510.37578 $P(I^{1}Pr)^{2}$ 147.5 c 3.93 1360.312	$P(p-MePh)_{2}$	145		3.60	129	0.286	74
$123-134$ f $3.31-3.82$ fP(p-OMePh)_3145 3.60 129 0.286 76P(m-FPh)_3145 3.78 133 0.301 P(m-ClPh)145165 g 3.91 136 0.311 78P(m-lBuPh)_3145 5.12 159 0.407 83P('Pr)_2 Me146 4.72 151 0.375 78PH('Pr)^2147.5 c 3.93 136 0.312	PPh ₂	145	120 ⁻ⁱ	3.60	129	0.286	75
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 3		123–134 ^f	3.31-3.82 f			
P(m-FPh)_3145 3.78 133 0.301 P(m-ClPh)145165 g 3.91 136 0.311 78P(m-lBuPh)_3145 5.12 159 0.407 83P(ⁱ Pr)_2Me146 4.72 151 0.375 78P(I ⁱ Pr) ² 147.5 c 3.93 136 0.312	P(p-OMePh)	145		3.60	129	0.286	76
P(m-ClPh)145165 g3.911360.31178P(m- ¹ BuPh)_31455.121590.40783P(ⁱ Pr)_2 Me1464.721510.37578PH(ⁱ Pr) ² 147.5 c3.931360.312	$P(m-FPh)_{2}$	145		3.78	133	0.301	
P(m- ¹ BuPh)31455.121590.40783P(ⁱ Pr)2 Me1464.721510.37578PH(ⁱ Pr) ² 147.5 °3.931360.312	P(m-ClPh)	145	165 ^g	3.91	136	0.311	78
$P({}^{i}Pr)_{2}Me$ 1464.721510.37578 $PH({}^{i}Pr)^{2}$ 147.5 °3.931360.312	$P(m^{-1}BuPh)_{2}$	145		5.12	159	0.407	83
PH(ⁱ Pr) ² 147.5 ^e 3.93 136 0.312	$P(^{i}Pr)_{2}Me$	146		4.72	151	0.375	78
	$PH(i\tilde{Pr})^2$		147.5 °	3.93	136	0.312	

Table 1 (continued)

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c cccc} 1&10&1&10&0&0&0\\ PPh_2(C_6F_5)&158&&3.93&136&0.312\\ P(^1Pr)_3&160&135-137 & 5.34&163&0.425&109\\ &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
P(¹ Bu) ₃ 160 155 155 165 165 165 P(¹ Bu) ₂ Me 161 5.83 172 0.464 P(¹ Bu) ₂ Me 161 5.83 172 0.464 P(¹ Bu) ₂ Me 161 5.33 163 0.424 113 PhCy ₂ 162 5.51 166 0.439 105 P(¹ Bu) ₂ Et 165 5.25 161 0.418 125 PBz ₃ 165 5.71 170 0.454 123 P(¹ P ₁) ₂ (¹ Bu) 167 5.71 170 0.454 123 PPh(¹ Bu) ₂ 170 147–155 5.61 168 0.447 124 PCy ₃ 170 163–181 ^k 6.33 181 0.504 116	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
P(¹ Bu) ₂ Me 161 5.85 172 0.404 P(¹ Bu) ₂ Me 161 5.33 163 0.424 113 PPhCy ₂ 162 5.51 166 0.439 105 P(¹ Bu) ₂ Et 165 5.25 161 0.418 125 PBz ₃ 165 5.25 161 0.428 82 P(¹ Pt) ₂ (¹ Bu) 167 5.71 170 0.454 123 PPh(¹ Bu) ₂ 170 147–155 f 5.61 168 0.447 124 PCy ₂ 170 163–181 k 6.33 181 0.504 116	
Perform 101 5.53 105 0.424 115 PPhCy2 162 5.51 166 0.439 105 P(¹ Bu)2Et 165 5.25 161 0.418 125 PBz3 165 5.38 163 0.428 82 P(¹ P12(¹ Bu) 167 5.71 170 0.454 123 PPh(¹ Bu)2 170 147–155 f 5.61 168 0.447 124 PCy3 170 163–181 k 6.33 181 0.504 116	
P(¹ Bu)_2 Et 162 5.31 160 0.439 103 P(¹ Bu)_2 Et 165 5.25 161 0.418 125 PBz_3 165 5.38 163 0.428 82 P(¹ P)_2(¹ Bu) 167 5.71 170 0.454 123 PPh(¹ Bu)_2 170 147–155 f 5.61 168 0.447 124 PCv_3 170 163–181 k 6.33 181 0.504 116	
P($Bu)_2$ El 165 5.25 161 0.418 125 PBz ₃ 165 5.38 163 0.428 82 P($^{1}Pr)_2(^{1}Bu)$ 167 5.71 170 0.454 123 Pph($^{1}Bu)_2$ 170 147–155 f 5.61 168 0.447 124 PCv ₃ 170 163–181 k 6.33 181 0.504 116	
PD_{2_3} 165 5.38 165 0.428 82 $P(^iPr)_2(^iBu)$ 167 5.71 170 0.454 123 $Ph(^iBu)_2$ 170 147–155 f 5.61 168 0.447 124 $4.50-4.94 f$ PCv ₂ 170 163–181 k 6.33 181 0.504 116	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
PCv ₂ 170 $163-181^{k}$ 6.33 181 0.504 116	
1/0 $1/0 = 101$ 0.00 101 0.04 110	
138–149 ^f 4.02–4.61 ^f	
PPh ₂ (<i>o</i> -OMePh) 171 ^g 3.63 130 0.289	
P(¹ Fu) ₂ (¹ Pr) 175 6.18 178 0.492 127	
$P(neopenty)_{3} \approx 180$ 5.91 173 0.470	
$P(^{t}Bu)_{2}$ 182 176-189 k 6.37 182 0.507 154	
$P(C_c E_c)_2$ 184 4.87 154 0.388	
$(a-MePh)_{2}$ 194 4.22 142 0.336 113	
$P(menthy)_{2}({}^{f}Pr) = 209 f = 1765 f = 7.12 = 195 = 0.566$	
609 f	
$P(mesity)_{2}$ 212 203-208 ¹ 6.01 175 0.479	
$P(QCH_{2})_{2}CMe$ 101 155 82 0124 25	
P(OMe)-Et 106 330 123 0.262 69	
$P(QM_{c}) = 107$ 283 113 0.225 52	
128 h	
P(QEt). 109 301 117 0.239 59	
134 ^h	
P(QCH_CH_CL)_ 110 318 121 0.253	
$(O_{12}O_{12}O_{13})$ 110 110 110 110 110 110 110 110 110 11	
(OMe), Ph 115 295 116 0.235 69	
COEt)_Ph 116 343 126 0.273	
P(OPb)Me. 121 349 127 0.278 57	
$P(O_{-n}MePh)$ 128 315 120 0.251	
P(OPh) 128 3.85 125 0.207 65	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
ICOM 1/3 150 4.01 155 0.519 /4 P(OM-)Ph 132 2.30 155 0.370 42	
10000 m_2^2 102 0.270 02 0.270 02 0.270 02 0.270 0.27	
$P(O_{-a}MePh)$ 141 440 147 0.257	
$1(0-b-Me1 m)_3$ 141 4.49 147 0.357 70 70 70 70	
$P(O_{a}^{i} P - P h)$ 148 4.52 147 0.559 /8	
P(O = 0 - F(F)) = 152 5.20 101 0.418	
$\frac{1}{100} - \frac{1}{100} - \frac{1}$	
$\Gamma(0 - \Gamma(0 - Du)_2)$ 158 4.69 151 0.3/3 90	
$r(0 - BU_3) = 1/2$ 5.10 158 0.406 99	
$r(0-0-buru)_3$ 1/5 5.43 164 0.432	

be that of a cone, then the solid cone angle Ω° is obtained from the relationship [6]

$$\Omega^{\circ} = 2 \arccos\left(1 - \frac{\Omega}{2\pi}\right) \tag{3}$$

There are significant similarities and differences associated with the solid angle measure when compared with the more common steric measure of size in inorganic chemistry, namely the Tolman [7] cone angle θ . These similarities or differences have been highlighted elsewhere and will not be discussed here [2]. This

Notes to Table 1

^c The solid angle Ω is measured in steradians. The measure in degrees refers to a right circular cone with that solid angle which hence corresponds to a linear vertex cone angle. Ω_s is $\Omega/4\pi$ and gives the fraction of a sphere occupied. Σ_{total} , the total strain energy measured in kilocalories per mole with the MM2 force field is as follows:

 $PH_{3} = -2.54; PMe_{2}Ph, -1.54; PEt_{3}, -2.56; PPh_{3}, 3.58; PBz_{3}, -6.38; P(^{t}Bu)_{3}, 33.6; P(OEt)_{3}, 1.870; P(OPh)_{3}, 1.89; P(O^{t}Pr)_{3}, 1.54.$

- From [9].
- From [6]; based on crystal structure data for a wide variety of metals.

- ^h From [17].
- ⁱ From [13]; based on Mo systems.
- ^j From [14].
- ^k From [15]; measurement based on Hg, Pt, Ni and Ir systems.
- ¹ From [16]; measurement based on the Ag system.

publication does, however, address an issue common to both measures of steric size, i.e. the matter of ligand or group conformation.

This problem has been considered previously for both solid and cone angle measurements, and a solution to the problem has been made possible by the advent of recent developments in molecular mechanics. Further, the recent approach to measurements of ligands when attached to prototypical metal fragments provides a more realistic steric measurement of the steric size of ligands as found in inorganic (organometallic) complexes [8]. It is these issues that are addressed in the present paper.

It appears that the first attempt to evaluate conformer-independent cone angles was made by Mosbo and coworkers [9a]. This initial study was restricted to phosphorus donor ligands which had limited conformational degrees of freedom about the P-C bond, the ligand not being attached to a metal fragment. The ligand with the largest conformational space considered was PEt_3 (27 different conformers). In the methodology the ligand was placed in a series of pseudo-staggered conformations relative to an apex (a metal atom). Heats of formation for each conformer were calculated using MINDO/3, and a Boltzmann-type analysis was used to define a weighted mean cone angle. Importantly, both P and the metal size were ignored in the calculation of the weighted mean cone angles.

More recently Mosbo and coworkers [9b] have calculated conformer-independent cone angles for a series of phosphine ligands using molecular mechanics (MM2) calculations. From the above two related studies the above authors suggest that weighted mean cone angles are superior to single conformer cone angles as a method of evaluation of steric size.

2. Results and discussion

2.1. Measurement of solid angles: single conformers

The recent solutions to Eq. (1) (numerical and analytical) have permitted the generation of Ω for a wide range of ligands and organic groups. The methodology does require that atoms be placed in specific positions, i.e. a specific conformer, relative to some apex. Solid

Table 2

Correlations between steric, electronic and physical parameters for a series of literature reported reactions or data ^a

Reaction data	Reference	$\Omega_{\rm s}^{\rm b}$		θ ^b	
		$\overline{R^2}$	MSE	$\overline{e^2}$	MSE
$\overline{\operatorname{Ru}(\operatorname{CO})_4 L + L' \to \operatorname{Ru}(\operatorname{CO})_3(L)(L')}^{c}$	19	0.995	0.601	0.998	0.209
$(\eta^5 - C_5 H_5) M_0(CO)_2(L) Hg X^d$	20	0.972	2.561	0.995	460
trans-W(CO) ₄ (L)(L') \rightarrow cis-W(CO) ₄ (L)(L') ^e	21a	0.652	8.59	0.760	5.94
$Ru(CO)_{3}(L)(\tilde{SiCl}_{3})_{2} + L' \rightarrow Ru(CO)_{2}(L)(L')(SiCl_{3})_{2}^{f}$	21b	0.988	4.45	0.999	0.524

^a The electronic measure for L and L' was taken from the work of Tolman [7]. The steric data were taken from the work of Tolman [7] (θ values) or Table 1 (Ω_{c}).

Non-intercept model used. Intercept model gives poor R^2 and MSE values, particularly for Ω .

^f log k used, where k is the rate constant.

^a From [7].

^b Modifications to the Tolman cone angle.

From [8a]; E_R is measured in kilocalories per mole.

^g From [18d].

^c log k used, where k is the rate constant. See Figs. 3(a) and 3(b). ^{d 199}Hg NMR spectral resonance recorded. See Figs. 4(a) and 4(b).

^e The equilibrium constant k was used in the correlation.

angle data generated are available in the literature [3a,4] and correspond to the maximum, minimum [10] and "Tolman equivalent" conformers.

Recent work by Brown [8a] on steric measurements using ligand repulsive energies suggests a more appropriate approach to using energy-minimized conformers. In this method the size of the ligand is evaluated in an energy-minimized conformation after being placed in a more realistic organometallic environment. The metal– ligand fragment chosen was $Cr(CO)_5$, a fragment for which the molecular mechanics force field has been thoroughly paramatized.

Using Brown's approach we have generated singleconformer (energy-minimum) solid angles for a range of typical organometallic ligands (phosphines, phosphites, amines, arsines and cyclopentadienyl groups). For comparative purposes both the generic SYBVL [11] and MMP2 [12] force fields were used, but the results were identical. The solid angles (Ω , Ω° and Ω_{s}) for a range of phosphines and phosphites are given in Table 1 [2]. A set of values for other types of ligand (amines, cyclopentadienyl ligands, and arsines) can be found elsewhere [2]. Also included in Table 1 are some comparative cone angles, ligand repulsive energies, and total molecular mechanics energies (ΣE_{total}) measured with the MMP2 force field.

Correlations have been made between the various steric measurements available, namely θ , $E_{\rm R}$, Ω° and $\Omega_{\rm s}$. Initially relationships between the above measures were examined by an interactive outlier process. In the preliminary correlations all data falling outside two standard deviations were rejected (see Table 3 for the statistical analysis). The correlation coefficient r was monitored as each outlier was rejected.

2.1.1. Combined correlations with phosphines, phosphites, amines and arsines

As an overall test as to the utility of Ω_s as a general steric parameter the relationships between Ω_s and E_R or θ were investigated. The graphs of Ω_s vs. θ and E_R for all the ligands studied (140 data points) are shown in Figs. 1 and 2. In general, the correlations are both good (r > 0.8 in all cases), although Ω_s correlates better with θ than with E_R . To explore the correlation in greater detail the analysis was broken down further.

2.1.2. Individual correlations with phosphines, phosphites, amines and arsines

In the relationship between Ω_s and E_R or θ only three of the 85 phosphines investigated appeared problematic: $P(^iBu)_3$, $P(o-MePh)_3$ and $PPh_2(o-MePh)$. In all cases the correlation coefficient improved significantly after rejection of these points (e.g. Ω vs. θ changed from r = 0.831 to r = 0.862). One general feature appears to arise from the P- and N-donor data, namely Ω_s correlates better with E_R than with θ . This

Fig. 1. Plot of Ω_s against the Tolman cone angle θ , for phosphines, phosphites, amines and arsines.

is not unexpected as both $E_{\rm R}$ and $\Omega_{\rm s}$ were measured relative to the $Cr(CO)_5$ fragment in the molecular mechanics minimization procedures. Surprisingly, for AsR₃ and As(OR)₃ ligands, the opposite is true; Ω_s correlates better with θ for arsines than with $E_{\rm R}$. Brown [8a] has also noted anomalous behavior with AsPh₃. The only anomalous data points in the relationship between Ω_s and θ are for As(*n*-Pr)₃ and As(*n*-Bu)₃. Owing to the small sample set (nine data points) these data affect the correlation significantly and could explain why this effect is not seen for the equivalent phosphine data. This anomalous behaviour can be associated with the repulsion between the long arms of the butyl (and to a lesser extent to the propyl) chains, which may be nontrivial. Thus the ligand opens up from its minimum conformer to relieve this unfavorable interaction. This feature is not seen for the Tolman cone angle but is generally seen for the Brown data.

The relationships between the steric parameters for the phosphites is generally better than for the phosphines. This is probably because of the limited phos-

Fig. 2. Plot of Ω_s against E_R for phosphines, phosphites, amines and arsines.

phite data set (only 20 data points). Only the behavior of P(OEt)₃ appeared anomalous. The general trend for better correlations between Ω_s and E_R than between Ω_s and θ is again observed. This trend is also observed for the amine data. 2.2. Correlations with experimental reaction rates

A number of reaction rates and equilibrium constants involving organometallic reagents containing ligands such as phosphines and phosphites have been suggested

Fig. 3. Three-dimensional correlation plots for the reaction between Ru(CO)₄L and L' [19]: (a) plot of Ω_s , ν (CO) and log k; (b) plot of θ , ν (CO) and log k (k is the rate constant).

Fig. 4. Three-dimensional correlation plots for the complexes $(\eta^5 - C_5 H_5)Mo(CO)_2(L)HgX$: (a) plot of Ω_s , $\nu(CO)$ and ¹¹⁹Hg resonance; (b) plot of θ , $\nu(CO)$ and ¹¹⁹Hg resonance.

to be under steric control. Correlations of the rates and constants, with for instance Tolman cone angles, have been successfully performed [18]. We thus attempted to correlate solid angles with similar reported literature data.

2.2.1. Correlations of Ω and θ with rate constants

The reaction between Ru(CO)₄L and L' to give Ru(CO)₃(L)(L') has been investigated by Chen and Poë [19]. We have attempted to correlate the kinetic data with steric, electronic and sterio-electronic factors. The latter gave the most significant correlations. A three-dimensional plot showing the correlations between Ω_s , ν (CO) [7] and log k as well as θ , ν (CO) and log k are shown in Figs. 3(a) and 3(b) respectively (k is the rate constant for the reaction). It is interesting to note the different slopes obtained on changing the steric parameter (Ω_s vs. θ). The R² and MSE data are given in Table 2 where it can be noted that the Tolman cone angle gives a better correlation than the solid angle data.

2.2.2. Correlation of Ω and θ with NMR parameters

The position of the ¹¹⁹Hg resonance for a series of $(\eta^5 - C_5 H_5)Mo(CO)_2(L)HgX$ complexes has been reported by Cotton and Miles [20]. Correlated data for Ω_s and θ (and $\nu(CO)$) vs. the ¹¹⁹Hg resonance are shown in Figs. 4(a) and 4(b) respectively. Again remarkable changes in slopes with the change in the steric factor (Ω_s vs. θ) are seen. Values for R^2 and MSE are given in Table 2 and again θ proves to a superior steric measure in the correlation.

2.2.3. Correlations for two other sets of experimental data [21]

Other correlations were also performed using θ and Ω (and ν (CO)), and the data are shown in Table 2. Again it appears that θ is a better steric measure than Ω_s for the data.

2.2.4. General comments

The four analyses suggest that the values obtained for the solid angles give an underestimate of the steric size of phosphines and phosphites. Conversion of Ω_s to Ω° (i.e. solid angle expressed in degrees) reveals that the Ω° values are smaller than the θ values. The reason for the smaller size relates to the method of measurement as well as to the sizes of the van der Waals and covalent radii used in the two methods [3]. This issue will need to be explored further in future extensions of the solid angle methodology.

2.3. Measurement of solid angles: multiple conformers

We now turn our attention to the case of the existence of a ligand with many conformers of similar energy corresponding to many different solid angles. Since the solid angle is additive [3a], it is possible to obtain a weighted average solid angle which represents the entire conformation space of the ligand. Mosbo and coworkers [9] have attempted an equivalent weighted average analysis of cone angle and $E_{\rm R}$ methodologies using a small conformation space. In this approach a weighted average obtained from a Boltzmann-type analysis, as described below, was used.

If g_A is the number of conformers with conformation A, and ΔE_{Ai} is the change in enthalpy of formation between conformers A and i, then the mole fraction n_A of conformer is given by

$$n_{\rm A} = \frac{5\Lambda}{g_{\rm A} + g_{\rm B} \exp(-\Delta E_{\rm AB}/RT) + \dots + g_{\rm i} \exp(-\Delta E_{\rm Ai}/RT)}$$
(4)

a

The mole fraction n_A of the ligand in conformation A, n_A , is then multiplied by the steric measure, e.g. the cone angle θ_A of that conformer, and summed over all conformers to give the total cone angle θ for the ligand [9]:

$$\theta = n_{\rm A}\theta_{\rm A} + n_{\rm B}\theta_{\rm B} + \ldots + n_{\rm i}\theta_{\rm i} \tag{5}$$

In this analysis, metal and phosphorus atoms were ignored (the radii were set to zero) and hence only ligand effects in free space were considered.

We have modified the approach of Mosbo and coworkers to obtain an energy-weighted conformer averaged solid angle. This has been achieved by the following modifications.

(1) As discussed above, the point apex in the approach of Mosbo and coworkers has been replaced by a $Cr(CO)_5$ fragment apex.

(2) In the approach of Mosbo and coworkers, only a small number of conformers of low energy were considered. As a ligand changes conformation, the ligand will spend time in a conformation between the two lower energy conformations. In our calculations these conformers have been included.

(3) A large conformational space (between 500 and 1000 conformers per ligand) was sampled using the Monte Carlo method with random variation in key dihedral angles.

The weighted average solid angles, $\overline{\Omega}$ and $\overline{\Omega}_s$, were calculated by an approach similar to those used by Mosbo and coworkers but incorporating the above added features (Table 3):

$$\overline{\Omega} = n_{\rm A} \Omega_{\rm A} + n_{\rm B} \Omega_{\rm B} + \ldots + n_{\rm i} \Omega_{\rm i}$$
(6)

$$\overline{\Omega}_{\rm s} = \frac{\Omega}{4\pi}.\tag{7}$$

Comparison of solid angle data in Tables 3 and 4 for values measured relative to the $Cr(CO)_5$ fragment in the minimum-energy conformation and as a weighted average solid angle reveals small differences in the solid

Table 3 Statistical data for correlations between solid angle and θ or $E_{\rm R}^{\ a}$

Relationship	Data Set	$r^{\overline{b}}$	MSE	Significance
				level
$\Omega_{\rm c}$ vs. $E_{\rm P}$	Phosphine	0.890	0.00149	0.0000
Ω° vs. E_{v}	Phosphine	0.887	86.3	0.0000
$\Omega_{\rm c}$ vs. θ	Phosphine	0.878	0.00301	0.0003
Ω vs. θ	Phosphine	0.862	197	0.0307
$\Omega_{\rm s}$ vs. Ω°	Phosphine	0.998	0.000225	0.0000
$\hat{\boldsymbol{\Omega}_{s}}$ vs. \boldsymbol{E}_{R}	Phosphite	0.895	0.00157	0.0000
Ω° vs. $E_{\rm R}$	Phosphite	0.901	77.4	0.0000
$\Omega_{\rm s}$ vs. θ	Phosphite	0.896	0.00216	0.134
Ω° vs. θ	Phosphite	0.863	151.6	0.0896
$\Omega_{\rm s}$ vs. Ω°	Phosphite	0.998	0.0000341	0.0000
$\hat{\Omega}$ vs. $E_{\rm R}$	Amine	0.840	0.00159	0.0000
Ω° vs. $E_{\rm R}$	Amine	0.839	104.5	0.0000
$\Omega_{\rm s}$ vs. $\hat{\theta}$	Amine	0.873	0.00168	0.0000
Ω° vs. θ	Amine	0.862	115.3	0.0000
Ω vs. Ω°	Amine	0.9986	0.0000207	0.0000
$\Omega_{\rm s}$ vs. $E_{\rm R}$	Arsine	0.558	0.00169	0.167
Ω° vs. $E_{\rm R}$	Arsine	0.558	104	0.152
$\Omega_{\rm s}$ vs. θ	Arsine	0.751	0.00111	0.422
$\hat{\Omega}^{\circ}$ vs. θ	Arsine	0.761	65.5	0.461
$\Omega_{\rm s}$ vs. Ω°	Arsine	0.9997	0	0.0000
$\hat{\Omega}_{\rm s}$ vs. $E_{\rm R}$	P donors	0.876	0.00174	0.0000
Ω° vs. $E_{\rm R}$	P donors	0.859	111.4	0.0000
$\Omega_{\rm s}$ vs. θ	P donors	0.880	0.002809	0.0001
Ω° vs. θ	P donors	0.862	189.1	0.0024
$\Omega_{\rm s}$ vs. Ω°	P donors	0.998	0.000204	0.0000
$\Omega_{\rm s}$ vs. $E_{\rm R}$	P and N donors	0.867	0.002184	0.0000
Ω° vs. $E_{\rm R}$	P and N donors	0.860	137.1	0.0000
$\Omega_{\rm s}$ vs. θ	P and N donors	0.878	0.002627	0.0007
Ω° vs. θ	P and N donors	0.864	173.4	0.0000
$\Omega_{\rm s}$ vs. Ω°	P and N donors	0.998	0.0001384	0.0000
$\Omega_{\rm s}$ vs. $E_{\rm R}$	All ligands	0.828	0.00225	0.0000
Ω° vs. $E_{\rm R}$	All ligands	0.822	142.07	0.0000
$\Omega_{\rm s}$ vs. θ	All ligands	0.870	0.00257	0.0011
Ω° vs. θ	All ligands	0.858	169.3	0.0000
$\Omega_{\rm s}$ vs. Ω°	All ligands	0.998	0.000130	0.0000

^a Bold type indicates the relationships with the most chemical significance. ^b The correlation coofficient *n* is more than the most in *f*

^b The correlation coefficient r is measured after data outside of two standard deviations have been deleted.

angle data. Indeed, the two sets of data are well correlated with regression equation $\Omega_s = \overline{\Omega}_s + 5.34 \times 10^{-3}$ (r = 0.96) (Fig. 5). The weighted average solid angles correlate significantly better with the Tolman [7] cone angle (r = 0.881) and weighted mean cone angles of Mosbo and coworkers [9] (r = 0.993) than with the solid angles in the minimum generated conformation (r = 0.858). This trend is also seen with Brown's [8a] $E_{\rm R}$ values (r = 0.846 vs. 0.828). The weighted average solid angle is thus better related to other steric measures than the solid angle of a single low energy conformer. This result is not unexpected since the weighted mean solid angle takes into account possible ligand rotations. It is finally to be noted that, unlike the cone angle measure, the weighted mean solid angle also provides shape information.

3. Methods section

The required ligand was built using ALCHEMY III [22] and submitted to SYBYL for energy minimization [11]. The SYBYL program was parametrized using the data obtained from the literature [8,23]. Low energy structures were found by a method similar to that employed by Brown [8a] with the solid angle calculated from the perspective of the Cr atom ignoring the carbonyl group.

Table 4

Conformer ave	eraged solid	angles for	or phosphines	and phosphites
---------------	--------------	------------	---------------	----------------

Ligand	Confor-	$\overline{\Omega}^{\mathrm{a}}$	$\overline{\Omega}_{s}^{a}$	Ω^{b}	Ω_s^{b}
0	mers	(sr)		(sr)	
PH,Et	500	2.08	0.166	2.21	0.176
$PH_{2}(Pr)$	500	2.30	0.183	2.51	0.200
PHJPh	500	2.12	0.169	2.12	0.168
PH ₂ (o-tol)	500	2.37	0.189	2.40	0.191
PHĒt,	1000	3.17	0.252	3.24	0.258
$PH(i\tilde{Pr})_{2}$	1000	3.63	0.289	3.93	0.312
PHPh ₂	1000	2.73	0.217	2.75	0.219
$PH(o-tol)_2$	1000	3.12	0.249		
PHMePh	500	2.46	0.196	2.86	0.227
PHEtPh	1000	2.85	0.227	2.93	0.233
PHMe(o-tol)	500	3.07	0.244	-	
PMe ₂ Et	1000	3.49	0.277	3.76	0.299
$PMe_2(^iPr)$	1000	3.61	0.287	4.15	0.331
PMe ₂ Ph	1000	3.36	0.268	3.45	0.274
$PMe_2(o-tol)$	1000	3.49	0.278		
PMeEt ₂	1000	3.62	0.288	4.04	0.322
$PMe(^{i}Pr)_{2}$	1000	4.40	0.350	4.72	0.375
PMePh ₂	1000	3.24	0.258	3.34	0.266
$PMe(o-tol)_2$	1000	3.85	0.307	-	-
PEtPh ₂	1000	3.64	0.289		
$P(^{t}Bu)Ph_{2}$	1000	4.11	0.327		
P(ⁱ Pr)Ph ₂	1000	3.78	0.301		
PEt ₂ Ph	1000	3.98	0.317		
PEt ₃	1000	4.13	0.329	4.31	0.344
$P(^{i}Pr)_{3}$	1000	4.89	0.389	5.34	0.425
$P(^{n}Bu)_{3}$	1000	4.88	0.388		
$P(^{i}Bu)_{3}$	1000	5.28	0.420		
$P(Cy)_3$	1000	5.69	0.453		
PPh ₃ ^c	1000	3.42	0.272	3.60	0.286
$P(m-tol)_3$	1000	3.74	0.297		0.336
$P(m-ClPh)_3$	1000	3.54	0.282		0.225
$P(CH_2CH_2CN)_3$	1000	4.21	0.335		0.239
$P(CH_2CH=CH_2)_3$	1000	3.76	0.299		0.319
$P(Bz)_3$	1000	4.57	0.364		0.307
$P(^{t}Bu)_{3}$	200	5.69	0.453		0.357
$P(o-tol)_3$	1000	4.42	0.352	4.22	
$P(OMe)_3$	1000	2.69	0.214	2.83	
$P(OEt)_3$	1000	3.31	0.264	3.01	
$P(O^{-1}Pr)_3$	1000	4.35	0.346	4.01	
P(OPh) ₃	1000	3.22	0.256	3.85	
$P(O-o-tol)_3$	1000	4.27	0.340	4.49	
$P(O-nBu)_3$	1000	3.98	0.317		
$P(O-p-ClPh)_3$	1000	3.38	0.269		

 $\overline{\Omega}, \overline{\Omega}_{s}$; weighted solid angles (see text).

^b Ω , Ω_s ; solid angles measured in minimum conformation.

^c Identical values calculated for $P(p-RC_6H_4)$ (R=OMe, F, Cl, or CH₃).

Fig. 5. Plot of Ω against $\overline{\Omega}_s$ for a selected range of phosphines and phosphites.

The energy minimized structure was also submitted to MMP2 to verify the minimum and to calculate an accurate energy for the structure. The solid angles for this conformer were also calculated and are presented in Table 1. For the energy-weighted conformer averaged solid angles, the conformers were generated using BI-OGRAF 3.2.1S, a comprehensive molecular mechanics package distributed by Molecular Simulations Inc. [24], with parameters obtained from the literature [8,23]. Energy minimization was carried out using the conjugate gradient 200 minimizer with a step size of 2.00 Å and a termination criterion of 0.100 kcal mol⁻¹ $Å^{-2}$. Once the complexes were energy minimized, they were submitted to a stochastic conformational search. Between 500 and 1000 conformers were generated by Monte Carlo variation of several designated torsion angles and each conformer was fully energy minimized. All torsion angles except those governing rotation about the C=O axis were considered. The range of conformers sampled in the calculation include those predominantly in an energy 'minimum' as well as those on the hypersurface connecting minima, as required.

4. Conclusions

Two sets of data have been provided: the solid angle of a ligand in a representation of the global minimum energy conformation and a weighted average solid angle taken over a large conformational space. Both measures correlate well with standard measures of steric size (Tolman [7] cone angle and Brown's [8a] ligand repulsive energy). Problems recognized by Mosbo and coworkers [9a] in the definition of weighted mean cone angles have been overcome with the solid angle methodology. The method proposed is sufficiently general to be applied to any system which can be modelled by molecular mechanics methods.

Acknowledgments

One of us (D.W.) thanks Molecular Simulations Inc. for supplying BIOGRAF 3.2.1S, Cerius 3.2 and Cerius² 1.0 through an academic collaborators grant. We also thank the FRD, and the University of the Witwatersrand for financial assistance and Mr. J. Smith for assisting with plots shown in Figs. 3 and 4.

References

- [1] M.S. Newman (ed.), Steric Effects in Organic Chemistry, Wiley, New York, 1956.
- [2] D. White and N.J. Coville, Adv. Organomet. Chem., 36 (1994) 95.
- [3] (a) D. White, B.C. Taverner, P.G.L. Leach and N.J. Coville, J. Comput. Chem., 14 (1993) 1042; (b) D. White, B.C. Taverner, P.G.L. Leach and N.J. Coville, J. Organomet. Chem., 478 (1994) 205.
- [4] (a) R. Chauvin and H.B. Kagan, *Chirality, 3* (1991) 242; (b) T. Komatsuzaki, K. Sakakibar and M. Hirota, *Tetrahedron Lett., 30* (1989) 3309; (c) T. Komatsuzaki, K. Sakakibara and M. Hirota, *Chemistry Lett.,* (1990) 1913; (d) M. Hirota, K. Sakakibara and T. Komatsuzaki, *Comput. Chem., 15* (1991) 241; (e) I. Akai, K. Sakakibara and M. Hirota, *Chem. Lett.,* (1992) 1317; (f) T. Komatsuzaki, I. Akai, K. Sakakibara and M. Hirota, *Tetrahedron, 48* (1992) 1539.
- [5] K.F. Riley, Mathematical Methods for Physical Sciences, Cambridge University Press, Cambridge, Cambs., 1974, p. 91.
- [6] A. Immirzi and A. Musco, Inorg. Chim. Acta, 25 (1977) L41.
- [7] C.A. Tolman, Chem. Rev., 77 (1977) 313.
- [8] (a) T.L. Brown, *Inorg. Chem.*, 31 (1992) 1286; (b) M.-G. Choi and T.L. Brown, *Inorg. Chem.*, 32 (1993) 5603; (c) M.-G. Choi and T.L. Brown, *Inorg. Chem.*, 32 (1993) 1548; (d) M.-G. Choi, D. White and T.L. Brown, *Inorg. Chem.*, 33 (1993) 5591.
- [9] (a) J.T. de Santo, J.A. Mosbo, B.N. Storhoff, P.L. Block and R.E. Bloss, *Inorg. Chem.*, 19 (1980) 3086; (b) M. Cin, G.L. Durst, S.R. Head, P.L. Bock and J.A. Mosbo, *J. Organomet. Chem.*, 470 (1994) 73.
- [10] (a) A. Di Nola, H.J.C. Berendsen and O. Edholm, Macromolecules, 17 (1984) 2044; (b) A.E. Howard and P.A. Kollman, J. Med. Chem., 31 (1988) 1669; (c) M. Saunders, K.N. Houk, Y.-D. Wu, W.C. Still, M. Lipton, G. Chang and W.C. Guida, J. Am. Chem. Soc. 112 (1990) 1419; (d) H. Goto and E. Osawa, J. Chem. Soc., Perkin Trans. II (1993) 187; (e) D. Wild and P. Willett, J. Chem. Inf. Comput. Sci., 34 (1994) 224; (f) F. Villamagna and M.A. Whitehead, J. Chem. Soc., Faraday Trans., 90 (1994) 47.
- [11] SYBYL V 5.4, Tripos Associates Inc., St. Louis, MO, 1991.
- [12] J.T. Sprague, J.C. Tai, Y. Yuh and N.L. Allinger, J. Comput. Chem., 8 (1987) 581.
- [13] D.F. Mullica, S.L. Gipson, E.L. Sappenfield, C.C. Liu and D.H. Leschnitzer, *Inorg. Chim. Acta*, 177 (1990) 89.
- [14] D. White, L. Carlton and N.J. Coville, J. Organomet. Chem., 440 (1992) 15.
- [15] G. Ferguson, P.J. Roberts, E.C. Alyea and M. Kheen, *Inorg. Chem.*, 17 (1978) 2965.
- [16] E.C. Alyea, G. Ferguson and A. Somogyvani, *Inorg. Chem.*, 21 (1982) 1369.
- [17] L. Stahl and R.D. Ernst, J. Am. Chem. Soc., 109 (1987) 5673.
- [18] (a) M.N. Golovin, M.M. Rahman, J.E. Belmonte and W.P. Giering, *Organometallics*, *4* (1981) 1981; (b) A.A. Tracy, K. Eriks, A. Prock and W.P. Giering, *Organometallics*, *9* (1990) 1399; (c) L. Chen and A.J. Poe, *Inorg. Chem.*, *28* (1989) 3641;

(d) M.M. Rahman, H.Y. Liu, A. Prock and W.P. Giering, Organometallics, 6 (1987) 650.

- [19] L. Chen and A.J. Poë, Inorg. Chem., 28 (1989) 3641.
- [20] J.D. Cotton and E.A. Miles, Inorg. Chim. Acta, 173 (1990) 129.
- [21] (a) M.L. Boyles, D.V. Brown, D.A. Drake, C.K. Hostetler, C.K. Maves and J.A. Mosbo, *Inorg. Chem.*, 24 (1985) 3126; (b) R.K. Pomeroy and K.L. Chalk, *Inorg. Chem.*, 23 (1984) 444.
- [22] ALCHEMY III, Tripos Associates, St. Louis, MO, 1992.
- [23] (a) M.L. Caffery and T.L. Brown, *Inorg. Chem.*, 30 (1991) 3907; (b) K.J. Lee and T.L. Brown, *Inorg. Chem.*, 31 (1992) 289.
- [24] BIOGRAF 3.2.1S, Molecular Simulations, Inc., Burlington, MA.