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Abstract

In an effort to develop more holistic ecosystem approaches to resource assessment and management, landscapes
need to be stratified into homogeneous geographic regions. These regions can then be used in a monitoring
framework to develop reliable estimates of ecosystem productivity. A regional characterization of the woodland
biome has been developed for South Africa, delineated by satellite imagery and using environmental data and a
rigorous statistical methodology. Distribution maps of key environmental variables are analyzed by factor analysis,
an iterative clustering technique and maximum likelihood classification to quantify and identify homogeneous
physio-climatic units.

A spatial clustering technique was used to identify regions, which are statistically different with regard to
five physiographic, climatic and edaphic variables deemed important within southern African savanna woodlands.
The woodland biome of South Africa at 1km resolution was successively divided. Thirty year mean monthly
temperature, total plant-available water balance of soil, elevation, landscape topographic position, and landscape
soil fertility were used as input classification variables.

The map data were submitted to a factor analysis and varimax axis rotation. The factor analysis removes cor-
relations from the input variables, reduces the dimensionality, and normalizes the axis measurements. A cluster
analysis was performed on the three principal factor scores using a modified iterative optimization clustering
procedure to determine the finest level of classes statistically permitable. Twenty-seven identified unimodal cluster
signatures were then submitted to a maximum likelihood classification where the statistical probability of the GIS
cell assignment is carried out to determine class membership. The final map of custom physio-climatic regions is
described, and these custom regions are compared with a vegetation potential map of the woodland types identified
in the South African summer rainfall zone.

Introduction

Large-scale vegetation maps are a mainstay of nat-
ural resource planning, management and conservation,
where they are used to estimate trends in habitat ex-
tent, to formulate policy regarding sustainable harvest,
and to site new nature reserves (Zonneveld 1988).
Large-scale (i.e., finer than 1:50 000 scale) maps have
been used by vegetation ecologists to locate field sam-
ples, to generate hypotheses about controls over plant
distributions (Westman 1991), and most recently as

input to spatially explicit ecological models of distur-
bance propagation and species persistence in hetero-
geneous landscapes (Turner 1987). Although remote
sensing has reduced the cost of stand mapping, the
expense of producing and maintaining accurate, large-
scale maps limits their availability for most land sur-
faces, where information is only available at medium-
or small-scale maps of generalized vegetation types.

Until recently, medium- and small-scale vegetation
maps (e.g., 1:250 000–1:5000 000) have had much
less application in natural resource planning, manage-
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ment, and conservation or scientific research, aside
from initial exploration, reconnaissance, or phyto-
geographic research (Kuchler 1988). Such maps are
being used increasingly for rapid resource produc-
tion estimates and conservation assessments, and to
model the impacts of global climate change. At the
medium and small scale, vegetation pattern must be
greatly simplified both spatially and taxonomically,
and the resulting depiction of vegetation both masks
and distorts the true complexity of vegetation structure
and composition, as well as the associated functional
aspects. The crudeness of existing information at re-
gional scales has obstructed both policy formulation
and research addressing issues, such as sustainable
resource management and impacts of global climate
change.

Recent interest in the analysis and management
of landscapes has required the development of spatial
frameworks that stratify landscapes into relatively ho-
mogeneous regions. At the same time, geographic in-
formation systems (GIS) for spatial data management
and analysis make possible new ways to character-
ize functionality associated with vegetation patterns,
by allowing statistical analysis of important abiotic
factors mapped for a given ecosystem type (see Good-
child 1994; Franklin 1995). This does not obviate
the need to conduct field work. Instead, a rigorous
analysis can lead to optimal definitions of functional
regions within an ecosystem, which can then be used
to develop an appropriate monitoring framework for
measuring ecosystem productivity in the field. Map-
ping and identifying vegetation communities and their
floristic components is an important task for conserva-
tion (Scott et al. 1993), but current and future focus
will be on identifying and understanding the func-
tionality of biomes and ecosystems for sustainable
resource management (Lubchenco et al. 1991). GIS,
remote sensing, and statistical analysis makes it pos-
sible to study the inter-relationship of scale, pattern,
and process, and how they relate to the grain and ex-
tent of landscape measurement and observation within
hierarchically nested systems.

Development of ecoregions

The goals and objectives of environmental manage-
ment frequently require classification of distinct cat-
egories or regions based on measurable environmental
characteristics. The delineation of ecological land-
scapes is useful in a variety of contexts, for example,
for assessing or allocating the regional representation

of conservation (Franklin 1993), defining zones for
sustainable ecological management (Omi et al. 1979;
Forman 1995), and as a framework for assessing the
diversity of species within whole landscape ecosys-
tems and their processes (Lapin & Barnes 1995).
Sound environmental management is not only based
on the understanding of spatial patterns, processes,
and characteristics of ecosystems, but also an esti-
mate of the environmental sustainability realistically
attainable within a specific region.

Towards this end, the utility of multi-purpose
ecoregional frameworks, such as have been developed
for the United States (Omernik 1987; Bailey 1995) and
Canada (Wiken 1986), has been successfully demon-
strated in a variety of projects (e.g., U.S. Environ-
mental Protection Agency: Environmental Monitoring
and Assessment Program). Other ecoregional classifi-
cations, based on other criteria and for other purposes,
have been specified by Thornwaite (1933), Raunkaier
(1934), Holdridge (1947), and Walter & Box (1976).
Recently, attention has been directed towards building
a consensus in ecoregion development and distin-
guishing between the roles of watersheds and ecore-
gions (Omernik & Bailey 1997). They note that ecore-
gions can provide the spatial framework within which
the quality and quantity of environmental resources,
and ecosystems in general, can be expected to exhibit
a particular pattern. Where watersheds are relevant and
can be defined, they are necessary for studying the
relationships of natural and anthropogenic phenomena
with water quality, as well as for providing the spatial
unit for reference areas within ecoregions at all scales.

Franklin (1995) reviewed the progress in predic-
tive vegetation mapping from a geographic modelling
perspective and noted that, to date, few studies have
employed models that explicitly account for or exploit
the spatial heterogeneity and dependence inherent in
biotic patterns on the physical landscape. To further
these aims, the objective of this study was to develop
an objective and repeatable technique to delineate
geographic physio-climatic regions within the wood-
land biome of South Africa based on environmental
variables that drive growth of woody vegetation, to
quantify the environmental factors associated with re-
gional gradients in the woodland system, and to map
and describe the geographic patterns. The physio-
climatic units are divided based on multivariate geo-
graphic clustering of five variables important to tree
growth in the savanna woodlands: mean monthly tem-
perature, total plant-available water balance of soil,
elevation, landscape topographic position, and land-
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scape soil fertility (Huntley 1982; Scholes & Walker
1993; Scholes 1997). The woodland environment of
South Africa serves as an opportunistic test of the
methods as it represents a large geographic, varied
topographic, and extremely varied climate zones (e.g.,
Indian Ocean coastal belt to the Kalahari plains). This
situation has derived an unique set of woody vegeta-
tion patterns and dynamics that includes representative
examples of many of the world’s savanna ecosystems
(Scholes 1997).

Factors associated with regional variation in savanna
woodland communities

It is hypothesized that macroclimate, an expression
of broad-scale temperature and moisture environment,
is the primary associate of regional-scale patterns of
community differences, and that substrate (geologic
parent material and soils) and local factors (topogra-
phy and site disturbance) are secondary. Macroclimate
indirectly influences communities by modifying or
regulating the importance of fine-scale factors and by
favoring certain species and growth forms in inter-
specific competition. It is almost axiomatic that, at
a regional scale, patterns of vegetation physiognomy
and community composition are associated primarily
with coarse-scale climate (Woodward 1987). Empiri-
cal studies that quantified environmental associations
of patterns of savanna and grassland vegetation in
southern Africa (Huntley 1982; Ellery et al. 1992)
have consistently demonstrated the importance of tem-
perature, moisture and parent geology.

The main functional distinction within southern
African savannas is between the broad- and fine-
leaved savannas (Huntley 1982). The underlying eco-
logical difference is nutrient-rich, arid environments
(fine-leaved) and savannas in nutrient-poor, moister
environments (broad-leaved) (Scholes 1997). Studies
have shown that soil chemistry differences are strongly
associated with savanna vegetation patterns, as the
savanna biome’s main spatial organizing process is
geomorphological (Scholes 1997). As a result, the
ridges support broad-leaved savannas, while the valley
bottoms support fine-leaved savannas. Landscape po-
sition has been found in other studies to significantly
influence ecosystem patterns, especially controlling
water movement (Kratz et al. 1991; Forman 1995).

Interactions among disturbance and successional
processes with other environmental factors in deter-
mining regional savanna patterns are well understood.
Although fire is a key disturbance in savannas, it is so

frequent that it has become an ‘included’ disturbance,
i.e. one which is so intimately part of the system
that all organisms must be adapted to it. A signifi-
cant part of the landscape structure and diversity in
the ‘undisturbed’ savannas is a consequence of human
disturbance over the ages (Blackmore et al. 1990), and
‘Megaherbivores’ such as elephants (Owen-Smith &
Danckwerts 1997).

Abiotic controls of South African woodlands

The principal control in savanna woodland production
is the soil water balance. The productivity of grasses,
shrubs, and trees is strongly correlated with the quan-
tity of water they transpire relative to the quantity that
they could potentially transpire if the soil moisture
supply was unlimited (Scholes & Walker 1993). This
could be because the processes by which key nutrients
such as nitrogen are made available to the plant are
strongly controlled by the presence of moisture in the
soil (Scholes 1993; Scholes & Walker 1993).

The nutrient-supplying capacity of the soil has a
powerful effect on the production of woodlands per
unit of rainfall transpired (Scholes 1993). The ecology
and distribution of savanna in South Africa is largely
determined by soil fertility (Scholes & Walker 1993),
which effects the species composition pattern, produc-
tion, and stability. Geological material from which the
soil was formed is typically used as an indicator of the
soil landscape fertility (Bell 1982). This works well
in southern Africa because there is generally a good
match between geology, soil, and vegetation, since
the soils typically form from the geology immediately
beneath them. These landscapes have not generally
been subject to massive recent disturbances such as
glaciation (i.e., 350 million years; Partridge 1997),
which disrupts the soil-geology match in the Northern
Hemisphere.

Methods

Study area

The study area is located between 22◦ and 32◦ S lati-
tude and between 26◦ and 31◦ E longitude (Figure 1).
Range of climate, physiography, geology, and soils
are varied and complex (Table 1). In this study the
woodland biome comprises the savanna biome and the
unformally recognized ’thicket biome’ (Low & Rebelo
1996).
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Figure 1. South African study area showing the woodland biome and its component vegetation types (Low & Rebelo 1996) that are the subject
of this study, neighboring settlements, and major physiographic features.

Table 1. Minimum, maximum, mean and standard deviation (stdv) of
continuous explanatory variables for the mapped woodland biome of
South Africa. See Table 2 for explanation of codes for variables.

Variable Minimum Maximum Mean Stdev

DEM Land_slp 0 2857 929 398.8

Grow_dln 0 1 0.9 0.24

Grow_temp 4 303 83 40.6

Geol_fert 0 1.12 0.77 0.416

The important feature common to tropical savan-
nas world-wide is a climate with a hot wet season of
four- to eight-month duration and a warm dry sea-
son for the rest of the year (Nix 1983). In southern
African savannas the wet season is unimodal, and falls
in summer, between October and April.

Subtropical thicket is a transitional type between
indigenous forest and savanna. It does not generally
have a conspicuous grassy ground layer. The rain-
fall is too low and the lack of multiple strata in the
canopy does not warrant its inclusion with the forest

type (Everard 1987). Subtropical thicket is a closed
shrubland to low forest dominated by evergreen, scle-
rophyllous or succulent trees, and shrubs. Because
the vegetation types within the ‘thicket biome’ share
floristic components with many other phytochoria
which lie within almost all the formal biomes, thicket
types have been referred to as ‘transitional’ (Everard
1987).

In South Africa the importance of these two woody
biome types combined lies in their large contribu-
tion to the formal and subsistence economies. First,
they supply fertile grazing lands, fuelwood, timber,
medicines, and other resources (Brigham et al. 1996).
Second, they contribute to the formal economy as the
main location of the ecotourism industries (Grossman
& Gandar 1989). Third, their global impact through
the emissions of trace gases from fires, soils, vegeta-
tion, and animals (Justice et al. 1994) is significant.
Fourth, they provide significant regional sequestration
of carbon in their soils and biomass (Scholes & Hall
1996). Fifth, they provide important habitats for, and
are made up of, large amounts of biological diversity
(Cowling et al. 1997).
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Distribution of woodland biome

The current distribution of the woodland biome was
obtained from a satellite derived land-cover classifica-
tion of South Africa, Swaziland, and Lesotho (Fair-
banks & Thompson 1996; Fairbanks et al. 2000). The
digital data from the South African National Land-
Cover (NLC) Database project was used to delineate
the current (Figure 2) rather than potential (Figure 1)
distribution of the woodland biome. Before the NLC
there were two potential vegetation maps available for
South Africa: Acocks (1953) vegetation types of South
Africa, which is largely based on the agricultural po-
tential of the vegetation; and Low & Rebelo’s (1996)
vegetation of South Africa, Swaziland and Lesotho,
which is based on a structural and floristic re-working
of Acocks (1953). These works, while having been
well received in the ecological and botanical commu-
nities, are somewhat lacking in portraying the realities
of the land-cover in South Africa.

Explanatory variables

Data were compiled on the physical environment from
interpolated field-records of weather stations, topo-
graphic contours and geology (Table 2). The mapped
data was set in a geographic information system (GIS)
(Arc/Info Grid, a raster based GIS; Environmental
Systems Research Institute [ESRI] 1998) at a 1 km
× 1 km grid cell resolution. The analysis cell size
was partly determined by the largest cell size of the
already rasterised data sets and a logical cell size for
future integrative work. All data sets were converted
to Albers Equal-Area projection for analysis.

Topography

A national digital elevation model (DEM; South
African Surveyor General 1993) having an original
cell resolution of 400 m and derived from 20 m con-
tour intervals was used to derive the elevation and
the topographic steepness of the land, which is cal-
culated using standard routines in the GIS. A percent
slope surface was transformed to a surface represent-
ing flat/undulating (< 4%) and ridge landscapes (>
35%) and then a linear function (−0.0322∗slope%
+1.1234), based on a mid-slope of 19%, scaled the
slope data between the two extremes.

Water availability and temperature

The mean number of days per annum on which suf-
ficient water is available to permit plant growth was
considered a biologically meaningful index of water
availability. Ellery et al. (1992) developed such a water
balance index, which calculates the water budget from
available climatology data. The index, called ‘growth
days’ (GD), is defined as the sum of the monthly ra-
tios of precipitation to potential evaporation, where the
ratio is not permitted to exceed 1 in any given month
(i.e., if rainfall is larger than evaporation, it is not car-
ried over into subsequent months, but is assumed to
have been lost as runoff). It is expressed as days just
to be intuitively understandable. This is achieved by
multiplying the monthly ratios by the number of days
in the month and summing over the year.

GD = 612(P/E
∗d);P/E = 1,

where P is the long-term mean monthly rainfall,
E is the monthly open water potential evaporation
(‘lake evaporation’, using Lineacres’ equation (Lin-
eacre 1989) which uses maximum and minimum tem-
perature, altitude, and latitude), andd is the number of
days in the month. Intuitively it can be thought of as
the number of days per year when soil moisture does
not limit plant growth, though it is less than the ac-
tual growing period, since plant growth continues, at a
reduced rate, even when soil moisture is not optimal.
Daily maximum evaporation in South African wood-
lands is close to 3 mm d−1, whereas lake evaporation
is typically around 6 mm d−1. Therefore, the actual
growing season is close to twice the growth day in-
dex, but it is nevertheless highly correlated with plant
production (Scholes & Hall 1996).

The GD index was calculated from the 1 km×
1 km monthly mean rainfall (1960–1990) grid cov-
ering the entire country and the monthly means of
maximum and minimum daily temperatures (Dent
et al. 1989). The index was log-transformed, because
vegetation does not respond linearly to the amount of
precipitation. A one day difference in available wa-
ter is more important at a low number than at high
numbers of days.

The annual mean of the monthly mean temperature
weighted by the monthly growth days was recorded
as ‘growth temperature’ (GT), giving an indication
of energy supply during the growing season (Ellery
et al. 1992). GT was calculated on the available mean
monthly temperature surfaces (Schulze 1998). The
estimated standard error is about 10% for the precip-
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Figure 2. Extent of woodland biome derived from satellite imagery (1995) used in the analysis.

Table 2. Codes and definitions of explanatory variables used in factor analysis, by
variable subset.

Code Definition

Topography

LAND_SLP Slope (%) and transformed to identify flat, sloping, and ridges

Climate

DEM Elevation (m)

GROW_DLN Positive soil water balance (natural logarithm, days per year)

GROW_TEMP Mean temperature during positve soil water balance

Geology

GEOL_FERT Landscape fertility based on primary lithology

itation surface, 0.3–0.5◦C for minimum temperature,
and 0.2–0.4◦C for maximum temperature.

Soil fertility

A comprehensive definition of the mineral nutrient
regime requires detailed soil/substrate data. While
these data were not available for the region, the parent
material rock type had been recorded. An alternative
is to use these geological data as surrogates for soil
attributes. For a given region, classes of lithology can
be ranked according to their potential mineral nutri-
ent supply. The nutrient levels of soils can then be
assumed to be related to these rankings.

The 1:1 000 000 geological map of South Africa
(Visser 1989) was reclassified into three ranked classes
(high, medium, low) on the basis of the primary lithol-
ogy (Table 3). The information used for classification
was the clay-forming potential of the material, its

weathering rate and nutrient content. The author was
aided in this task by a geologist (T. McCarthy) and
guided by the work cited earlier.

Cluster modeling methodology

A principal component analysis (PCA) was used for
data simplification and reduction of the effective di-
mensionality of the environmental variables (PRIN-
COMP, ESRI 1998). The goal of PCA is not to predict
one variable with others, but rather to reveal how
different variables change in relation to each other,
or how they are associated. This is done by trans-
forming correlated original variables into a new set of
uncorrelated underlying variables using the standard-
ized form of the correlation matrix. Each new variable
accounts for as much of the remaining total variance
of the original data as possible. The expectation from
conducting a PCA is that correlations among original
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Table 3. Classification of primary lithologies in the legend of the 1:1 M geological map of
South Africa in terms of the capacity of the landscapes which they form to supply nutrients to
plants. Classification performed by T. S. McCarthy.

Low fertility landscapes Medium fertility landscapes High fertility landscapes

Arenite Limestone Pyroclastic breccia

Lutaceous arenite Dolomite Siltstone

Silcrete Tuff Mudstone

Sand Marble Dolerite

Conglomerate Andesite Basalt

Rhyolite diamictite Shale

Granophyre Peridotite

Serpentenite Pyroxenite

Schist Gabbro

Greenstone Norite

Quartzite Phyllite

Syenite Sedimentary

Tonalite Epidiorite

Granite Lava

Gneiss Charnocktite

Granitoid Metamorphic

Granodiorite Volcanic rocks

Harzburgite Pyroclastic

Iron formation Diorite

Quartz porphyry Clinopyroxinite

Hornfels Amphibolite

Siliciclastic Dunite

Quartz monzanite Anthothosite

Migmatite

Ultramafic rocks

Granite-gneiss, gneiss/granite

Calc-silicate rock

Chert

variables are large enough so that the first few new
variables or principal components account for most of
the variance. If this holds, no essential insight is lost
by applying the first few principal components for fur-
ther analysis or decision making, and parsimony and
clarity in the structure of the relationships is achieved.
The correlation matrix, rather than the covariance ma-
trix, is adopted for the PCA, which implies that all the
five indicators included in the analysis are assigned
equal weights in forming the principal components
(Legendre & Legendre 1998).

The five raster maps of variables at 1 km× 1 km
resolution are submitted to a PCA analysis with a vari-
max rotation. Usually the initial factor extraction does
not give interpretable factors. One of the purposes of
rotation is to obtain factors that can be named and in-

terpreted. The varimax method minimizes the number
of variables that have high loadings on each factor,
thus simplifying the interpretation of the factors. The
PCA performed on the raw data associated with each
pixel, removes correlations among the input variables,
standardizes the mean and variance, and reduces the
dimensionality of the data set.

Unsupervised image classification methods within
the remote sensing community are a form of user
defined (i.e., custom) iterative clustering algorithms,
based on landsurface reflectance characteristics, which
results in the delineation of similar spectral areas
within an image. These methods have rarely been
applied to primary (i.e., non-spectral) environmental
parameters (e.g., climate, topography, etc.) outside
traditional image classification (but see Omi et al.
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1979). These partitioning type of clustering methods
are commonly used in the remote sensing community
because of their ability to handle large, heterogeneous
data amounts, but are not known to have been used
among ecologists for environmental analysis. Clus-
tering methods in ecology commonly use measures
of similarity between sites (Q mode) or variables (R
mode). Techniques commonly available to ecologists
include hierarchical agglomerative, hierarchical divi-
sive, andK-means partitioning, all of which while
used extensively are problematic when working with
very large data sets (see Legendre & Legendre 1998
for extensive discussion). The PCA results were inputs
to a modified iterative optimization (migrating means)
clustering algorithm (Richards 1986). This method
assigns a cluster for each cell based on minimum para-
meter distance then iteratively recalculates the means
of each cluster until the means no longer shift (Tou &
Gonzalez 1974). The algorithm separates all cells into
a user specified number of distinct unimodal signa-
ture groups in the multidimensional space of variables,
then iteratively goes through the data matrix, modify-
ing cluster characteristics until results converge on a
stable result (ISOCLUSTER, ESRI 1998). The final
classified surface created with this approach is based
on a maximum likelihood decision rule with prior
probabilities proportional to the number of cells in
each class in the signature, and since the final clusters
are required to be unimodal variable non-normality
is not violated. This clustering method has several
advantages over the others mentioned:

(1) it is designed to work with very large data sets;
(2) it is not scale dependent;
(3) it does not impose a ’spherical’ or ’similar

shape’ structure on the clusters found, rather it retains
the ’natural’ clusters in the data when of other shapes;
(4) it uses a common clustering criterion in the sum
of squared error measure by which the ’quality’ of
clustering can be measured.

This measure insures that the final cluster assign-
ment of the data is the optimal one over all others
(Richards 1986).

The method requires the optimal number of classes
be specified beforehand, but subjectively assigning
what one would think is the number of physio-climatic
units in the woodland biome would defeat the pur-
pose of objective data-driven and empirical clustering.
However, the clustering method used here can be used
in a multistage strategy that exploits the data matrix
variance. By initially specifying a conservatively high
number of classes, which over-divides the samples

into many small clusters, one can test for the stability
of the clusters over many iterations. When the spec-
ified number of classes is set too high relative to the
available data variance, it will result in singular co-
variance matrices for classes (the restriction that each
cluster contains at leastp + 1 individuals is necessary
to avoid singular within group dispersion matrices, the
determinants of which would be zero). Clusters merge
with neighboring clusters when the statistical values
are very similar after the clusters become stable. Some
clusters may be so close to each other and have such
similar statistics that keeping them apart would be an
unnecessary division of the data. The unsupervised
classification then fails. Exploiting this feature allows
for a multistage approach to clustering, first by speci-
fying an unrealizable high number of classes that will
fail, and second stepping down from the high number
in an iterative fashion until a stable optimal result with
statistical significance in cluster differences is met.
The optimal solution is then run through a maximum-
likelihood classifier that considers both the variances
and covariance’s of the cluster signatures when as-
signing each cell to one of the classes represented in
the signature file to produce the final map. The major
steps in the analytical procedure used by this study are
described as a flow chart in Figure 3.

Finally, as with most environmental data collected
in the field or developed through extrapolation, spatial
autocorrelation plays a role affecting the independence
of the data. This in turn may affect one’s understand-
ing of the environment understudy. In this case the
use of PCA or the clustering methodology does not re-
quire data independence and may instead with respect
to the clustering method, benefit from environmental
autocorrelation in defining the clusters.

Mapping of dominant gradients and classification
results

PCA factor scores were kriged (Burrough 1986) in the
Arc/Info GIS (ESRI 1998) to help visualize the factor
analysis results through interpolation. Kriging is a lin-
ear, weighted-average interpolation method that con-
siders spatial autocorrelation in the data and does not
require that the data be normally distributed or uncor-
related. The linear model and exponential models were
selected as having the best fit between actual and pre-
dicted semivariograms for principal component (PC)
axes 1 and 2, and 3 respectfully at the biome scale. The
factor scores were interpolated to a lattice with 5 km
spacing and then contoured (LATTICECONTOUR,
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Figure 3. Flow chart of the major steps in the analytical procedure used in this study.

Table 4. Pearson correlation coefficients of the randomly sampled
environmental variables.

Variables DEM Land_slp Grow_dln Grow_temp Geol_fert

DEM 1.00

Land_slp −0.006 1.00

Grow_dln −0.193 −0.368 1.00

Grow_temp−0.435 0.377 −0.228 1.00

Geol_fert 0.029 0.095 −0.173 0.253 1.00

ESRI 1998). Sizes of the sampling windows and con-
tour intervals were subjectively selected to achieve
comparable appearances among contour maps.

Results

Principal component analysis

Table 4 provides the correlation matrix of the vari-
ables. The eigenvalues and eigenvectors of the corre-
lation matrix are given in Table 5.

Table 5. PCA eigenvalues with a varimax rotation of the randomly
sampled environmental variables.

Variable Axis 1 Axis 2 Axis 3

DEM 0.1834 − 0.9011 0.0835

Land_slp 0.8264 0.1992 −0.0596

Grow_dln −0.7957 0.1833 −0.1879

Grow_temp 0.4223 0.7468 0.2625

Geol_fert 0.0658 0.0468 0.9784

Variance explained 1.53 1.44 1.07

% Explained 30.65 28.91 21.45

The first three principal components (eigenvalue
> 1.0), which account for 81% of the total variation
(Table 5), can be approximately classified according
to three major environmental categories. The first axis
represents water balance-topographic roughness, the
second axis represents available energy budget, and
the third axis represents landscape fertility. PC axis
results show that the environmental parameters are
generally colinear and independently significant on
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Figure 4. Plot scores (linear combinations) from principal components analysis of environmental parameters, woodland biome: (a) axis 1
(contour interval 0.181); (b) axis 2 (contour interval 0.377); (c) axis 3 (contour interval 0.293).

each axis in their contribution to the defining of the
woodland biome.

Table 5 shows that the first PC has high posi-
tive coefficients (loadings) with: Land_slp, landscape
topographic position (0.826) and Grow_dln, posi-
tive soil water balance (−0.795). Axis 1 reflected a
gradient from the moister mountainous areas to the
more continental climate of interior western- north-
western South Africa (Figure 4a). Samples with the
lowest scores on axis 1 were landscapes of heteroge-
neous topographic roughness and experienced longer
positive soil water balance durations. These areas
were concentrated with the Waterberg Mtns., Drakens-
berg escarpment, and KwaZulu-Natal midlands (Fig-
ure 4a) which comprises the various vegetation types
of sour lowveld bushveld, Natal central bushveld,
coast-hinterland bushveld and eastern thorn bushveld
zones (Low & Rebelo 1996). Samples with high scores

on axis 1 were on flatter landscape areas and were
characterized by a lower amount of positive soil wa-
ter balance durations. The highest sample scores were
concentrated in the areas below the Drakensberg es-
carpment, along the Limpopo river valley and in the
far western end of the range representing the start of
the Kalahari desert (Figure 4a). High-scoring sam-
ples fell largely within the Soutpansberg arid mountain
bushveld, mopane bushveld, Kalahari plains thorn
bushveld, shrubby Kalahari dune bushveld, and kar-
roid Kalahari bushveld (Low & Rebelo 1996).

The second PC axis has high loadings with DEM,
the elevation (−0.901) and Grow_temp, the mean tem-
perature during positive soil water balance (0.747).
Axis 2 reflected a gradient from the hotter lower el-
evation interior and coastal areas to the cooler regions
on the high South African interior plateau (Figure 4b).
The second axis was a gradient in growing season



81

energy supply, from areas of hot growing seasons
at lower elevations to areas of warm- cool growing
seasons at higher elevations (Figure 4b). Lowest sam-
ple scores representing lower available energy during
times of positive soil water balance were concentrated
in areas above the Drakensberg escarpment, on the
high interior plateau and in the higher elevation moun-
tainous regions (Figure 4b), within the subarid thorn
bushveld, Waterberg moist mountain bushveld, and
sourish mixed bushveld (Acocks 1953; Low & Rebelo
1996). Highest sample scores on axis 2 were in the
lower lying coastal and interior plains of Maputaland,
eastern Swaziland, Kruger National Park, and along
the Limpopo river valley (Figure 4b).

The third PC axis has high loadings with Geol_fert,
landscape fertility based on primary lithology (0.978).
Axis 3 was most strongly correlated with the trans-
formed geologic variable. Low-scoring samples were
on geologic landscapes of high fertility (Figure 4c)
within the subarid thorn bushveld, eastern thorn
bushveld, Natal lowveld bushveld, sweet lowveld
bushveld, mopane shrubveld, and Kimberley thorn
bushveld (Low & Rebelo 1996). High scoring sam-
ples were on geologic landscapes of lower fertility
(Figure 4c) within the coast-hinterland bushveld, sour
lowveld bushveld, mopane bushveld, mixed bushveld,
Waterberg moist mountain bushveld, and Kalahari
plains thorn bushveld (Low & Rebelo 1996).

Cluster analysis

The three PC axes were clustered with the multistage
approach starting with 200 clusters using 200 itera-
tions and complete data sampling in a batch step-down
model. As expected a stable result is not met, with the
algorithm failing with a singularity covariance matrix
until reaching 27 cluster classes, which are accepted
as stable and statistically significant by the algorithm.
This represents the finest level of classification or op-
timal ‘natural’ number of clusters that can be obtained
from the environmental data space. The 27 unimodal
cluster classes were processed through a maximum
likelihood classifier to yield a final classification map
(Figure 5), and then a descriptive table was derived
of the environmental variable limits for each class
(Table 6).

The following provides descriptions of each iden-
tified unit, and representative species identified for
each unit to be used for productivity measurements
are provided in Appendix 1. Unit one represents ar-

eas along the southern Eastern Cape coast extending
inland up hot, dry valley basins on fertile soils. Two
is along a humid coastal strip covering the Tongoland
and Pondoland areas with flat to undulating terrain and
medium fertility soils. Three is found in the relatively
low-lying, dry-warm valleys of the White and Black
Kei rivers in the Eastern Cape on fertile soils. Four
occurs in moist tropical lower eastern slopes of the
Drakensberg and lower Tugela river valley on infertile
soils. Five occurs in lower Zululand and Maputaland
plain, being flat low-lying subtropical with moder-
ately fertile soils. Six represents the hot semi-moist
tropical bottom eastern slopes of the Drakensberg,
lowveld Swaziland and interior Zululand on infertile
soils. Seven occurs in the hot-dry flat lower north-
ern slopes of the Soutpansberg Mtns. to the Limpopo
river valley on infertile soils. Eight represents the
reasonably flat hot sub-tropical plains of the Kruger
National Park with reasonably infertile soils. Nine de-
scribes the moist tropical steep, deeply dissected river
valleys of southern KwaZulu-Natal on moderate fer-
tility soils. Ten occurs in the dry and hot Limpopo
river valley and associated tributary valleys from the
eastern end of the Soutpansberg Mtns. on infertile
soils. Eleven represents mid-lying hot-dry flat plains
of moderate soil fertility in the Northern province.
Twelve is along the warm-dry midslopes of the eastern
Eastern Cape mountains on fertile soils. Thirteen rep-
resents the flat, arid-hot plains surrounding the Orange
river drainage basin on highly infertile soils. Four-
teen occurs in the mid-lying, flat arid-hot Kalahari
plains on highly infertile soils. Fifteen occurs in the
mid-lying flat, dry-hot areas of the Kimberley and
Pietersburg Plateaus of moderate fertility soils. Six-
teen occurs in the mid-lying, flat dry-hot Kalahari
plains on highly infertile soils. Seventeen represents
the high-lying, dry-hot Kuruman Hills are with soils
of moderate fertility. Eighteen occurs in the mid-lying,
flat dry-hot sandy Kalahari plains on highly infer-
tile soils. Nineteen represents the flat, dry-hot plains
surrounding the upper Limpopo river drainage basin
on moderately fertile soils. Twenty represents mid-
lying, hot sub-tropical plains in the Northern province
on moderate fertility soils. Twenty-one describes the
mid-lying KwaZulu-Natal hilly midlands and river
valleys with a warm moist tropical clime and soils
of moderate fertility. Twenty-two represents the dry-
hot, flat high-lying Kalahari Plateau on moderately
fertile soils. Twenty-three occurs in the dry-warm, flat
high-lying Kuruman Hills and southern Pietersburg
Plateau on moderately fertile soils. Twenty-four rep-
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Figure 5. South African woodland biome clustered into 27 physio-climatic regions.

resents the cool-dry, high-lying undulating and hilly
interior of the Eastern Cape with very highly fertile
soils. Twenty-five represents high-lying undulating to
flat plains of the lower inland plateau of hot subtropi-
cal clime and low fertility soils. Twenty-six represents
the moist temperate higher-lying ridges along the in-
land plateau and the Waterberg Mtns. on moderately
fertile soils. Twenty-seven represents the highest-lying
areas of woody plant growth with a cool moist tem-
perate clime occurring in ridges and steep slopes on
moderate fertility soils.

Discussion

The integrated index of growth days and landscape
topographic position contributed to total variation ex-
plained on the first PCA axis. Elevation and growth
temperature ‘productive energy supply’ contributed to

the total variation explained on the second PCA axis.
Landscape fertility contributed to the total variation
explained on the third PCA axis. The order of emer-
gence of each variable on the axes is related to the
amount of variation in the data set in respect to other
variables. This can be shown in Table 1 by dividing the
standard deviation by the mean (i.e., normalizing) for
each variable. Grow_dln has the highest normalized
variance followed by Land_slp, Grow_temp, DEM,
and Geol_fert. The fact that each axis explains almost
exactly the same fraction of the total variation means
they are all essential, and equally important to the
classification outcome.

The analytical model used proved efficient in ob-
jectively deriving a fine level of woodland physio-
climatic detail within a statistically rigorous proce-
dure. As such, the technique developed here is a very
useful way of understanding the patterns of abiotic
determinants in any ecosystem. This is an important
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Table 6. Climatic and topographic limits of the 27 derived physio-climatic units.

Unit DEM Grow_day Grow_temp Land_slp Geol_fert

Min Max Mean Min Max Mean Min Max Mean Mean Mean

1 4 663.2 343.2 42.6 184.6 91.7 16.4 20.5 18.6 0.81 0.42

2 0.5 412.5 190.3 106 303.3 201.1 18.4 23 20.8 0.71 0.66

3 547.2 1196.8 836.9 50.7 221.2 99.2 15.4 20 17.7 0.66 0.29

4 444 1003.6 735.4 72.9 225.8 148.4 19.7 26.3 22 0.60 0.85

5 0.5 333.9 148.9 64.2 183.1 114.8 21.6 24.7 23.4 0.95 0.64

6 82.6 699.3 425 72.3 200.8 128 21.3 25.2 23.1 0.84 0.89

7 195.5 834.9 569.9 24.8 64.5 41.9 23.3 26.5 24.8 0.99 0.85

8 134.3 709.4 383 47.9 122.9 81.6 23 26.1 24.5 0.99 0.87

9 291 885.6 576.8 86.2 237.8 160.2 17.2 21.7 19.8 0.55 0.56

10 588.3 1013.6 830.8 39 85.7 58.1 22.2 26.5 23.7 0.99 0.88

11 692.6 1166.1 957.6 52.8 128.9 83.5 20.6 23.5 22.2 0.92 0.71

12 65.3 1329.3 671.2 13.3 90 40.6 14.2 20.1 17.8 0.73 0.47

13 423.8 1147.8 764.1 3.6 16.2 9.2 15.9 25.5 21.6 0.98 0.90

14 793.3 1349.5 1025.2 10 33.3 20.8 17.9 28.3 21.6 0.98 0.95

15 923.2 1305 1132.4 33.7 94.8 53 19.8 23 21.4 0.99 0.64

16 875 1185.1 1025.2 19.3 51.1 33.8 21.7 24.9 23 0.99 1.11

17 1004.3 1537.4 1301.8 29.1 64.5 44.6 18.3 22.3 20.5 0.98 0.73

18 941.6 1268 1107.3 25.3 63.1 45.3 21.9 27.6 23.6 0.99 1.10

19 739.7 1131.3 956.5 55.5 112 80.6 22.6 25.8 23.5 0.98 0.64

20 886.5 1268.4 1089.6 66.7 157.7 102.8 20.7 23.9 22.2 0.91 0.62

21 821.4 1358.8 1090.3 72 233.7 152.1 16.2 22.6 19.8 0.54 0.56

22 1107.7 1458.4 1290.5 47.4 92.4 66.3 20.7 23.3 21.9 0.99 0.77

23 1178 1781 1429.1 46.2 107.6 67.4 18.2 21.5 20.4 0.98 0.78

24 856.3 2248.6 1418 28.2 241.6 78.8 6.7 29 16.2 0.53 0.26

25 1096.3 1537.8 1304.3 72.3 172.3 109.4 19.5 22.9 21 0.83 0.79

26 1271.2 1831.3 1483.6 81.9 216.7 130.8 17.2 21.6 19.3 0.67 0.73

27 1291.6 2857 1814.4 85.2 260 162.6 6.1 19.4 16.3 0.42 0.54

finding as other classification methods may be data
driven, but they tend to be over generous in defining
clusters, which then allows any ‘expert’ the ability
to subjectively ask the system for any number of
classes (i.e.,K-means). The value of a classification
system breaks down for monitoring and management
purposes when it is overly burdened with superflu-
ous classes, thus a more parsimonious approach is
required.

To be sure, we can recognize all natural ecosys-
tems by differences in climatic regime. Climate, as
a source of energy and moisture, and its component
timing acts as the primary control for ecosystems
(Stephenson 1990). More importantly from a manage-
ment point of view, as this component changes, the
other components change in response. Landforms (i.e.,
geologic substrate, surface shape, and relief) are an
important criterion for recognizing smaller divisions

within macroecosystems. Landform modifies climatic
regimes at all scales within macroclimatic zones. It
causes the modification of macroclimate to local cli-
mate. At the mesoscale, the landform and landform
pattern form a natural ecological unit. The primary el-
ements of defining functional ecosystem units, or what
I have termed physio-climatic units, are in contrast to
using present or potential vegetation type which are
useful to describe the status of ecosystem in terms of
age and disturbance, but only part of the picture when
delineating the boundary of an ecosystem.

In this study the physio-climatic units were also
conceived as ecosystems of hierarchical spatial sizes
(O’Neill et al. 1986). It is recognized that manage-
ment objectives and proposed uses determine which
sizes are judged important, but that these sizes should
be logically collapseable within the given hierarchy
so that researchers can use data from several levels



84

of a hierarchy. One could take the results here and
subject them to an hierarchical classification analysis
to identify the relationship among the clusters and to
aggregate hierarchically similar clusters. An hierarchi-
cal system becomes advantageous because the finer
spatial units can be lumped to a relatively few units
to which all ecological land managers can relate. The
number of levels required all depends on the kind of
question being asked and the scale of the study.

The results of this study pose some interesting
questions and issues. Many of the woodland vegeta-
tion types in the vegetation potential map (Figure 1)
have several physio-climatic units as their functional
base (Table 7). Most of the vegetation types are domi-
nated by 2–3 physio-climatic types (> 10% coverage),
but the total variety of types (i.e.,< 10% cover-
age) collectively defining their distribution could be
as much as 18 physio-climatic units (i.e., sour lowveld
bushveld, which is considered to be a poorly defined
unit anyway; R.J. Scholes pers. comm.). Some of the
physio-climatic units covered such small portions of
vegetation types that it is probably error represented
in the database by spurious units surrounded by a
dominant homogenous unit, or GIS overlay error. Not
surprisingly, the vegetation types with the most vari-
ability either occur over large geographic gradients
(O’Brien 1993; O’Brien et al. 1998) and are gener-
ally noted as being diverse (i.e., mixed bushveld and
coast-hinterland bushveld; Low & Rebelo 1996), or
are topographically complex (i.e., Waterberg moist
mountain bushveld and valley thicket). This is not an
issue as the vegetation map is based on physiognomic
and floristic characteristics, whereas the classifica-
tion is environmentally based. The issue for manage-
ment rests in the need to recognize and validate the
woody productivity of the potential vegetation types
in conjunction with the physio-climatic classification.
Though not a concern, having fewer physio-climatic
zones being elucidated than the number of vegetation
types can be explained four ways: first, the distribution
data used to define the woodland biome was based
on actual satellite interpretation, not the vegetation
potential map; second, potential error in vegetation
potential boundaries drawn by ‘experts’; third, the
environmental data used had a moderate coarse resolu-
tion versus the broad thematic definition of vegetation
potential classes, thus the detailed physio-climatic het-
erogeneity found within these ‘homogeneous’ class
boundaries can be identified; and fourth the role of
another important abiotic factor could have been over-
looked. Therefore, by nature of the potential vegeta-

tion mapping it is possible that one floristic unit can
span more than one physio-climatic unit. The other
important question to raise is, what other biologically
meaningful environmental variables could be used to
further split the homogeneous physio-climatic units
into zones that define some of the more complex veg-
etation units (i.e., mopane bushveld, mixed bushveld,
sour lowveld bushveld). This analysis suffers from the
lack of a good soil database, which defines soil at-
tributes (i.e., clay content, nitrogen availability, etc.).
Information on the intrinsic fertility of the soil is an
important consideration in plant functioning and also
for assessing the rate at which nitrogen is mineralised
in the soil. The availability of a good soil database
could also have led to a refinement of the soil water
availability map, here defined strictly climatically by
growth days, into a map of plant available water of
a soil profile. The role of existing species in com-
munity structure and dynamics, especially tree-grass
(Scholes & Walker 1993) and tree-tree interactions
(Smith & Goodman 1986), could have been addressed,
which are the result of disturbances (i.e., fire). The
co-occurrence of different vegetation types under the
same macroclimate, and often on similar soils, has
long been noted as the importance of disturbance in
determining vegetation patterns (e.g., Phillips 1930)
in southern Africa.

As a first approximation of the physio-climatic
heterogeneity of the woodland biome the variables
used in this analysis provide a well defined baseline,
but refinements with better databases will lead to im-
provements. Nevertheless, the information provided
in Table 7 shows the danger in only using vegetation
potential classes for resource management planning,
the landscape variability is under sampled and thus
weakly characterized.

Ecologically defined maps represent hypotheses
about factors that control ecosystem structure and
function (Rowe & Sheard 1981). The testing or vali-
dation of this physio-climatic map is thus an important
prerequisite to its application. The units express a
sense of what is theorized to be important in the land-
scape. If actual data on productivity are assembled for
the regions, this hypothesis can be tested statistically
and the validity of the regional structure (map) can be
evaluated objectively. In this case the testing of this
map was confounded by the difficulty of obtaining in-
dependent data and sufficient numbers of samples to
characterize the regional areas. In this respect this map
will first be used to delineate a woodland productivity
monitoring network with full regional coverage.
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A final issue that must be addressed is the ro-
bustness of the derived physio-climatic classification
system over time and space. The physio-climatic clas-
sification system developed was based on both struc-
tural and climatic components. The structural data
layers are expected to be robust over time and space
due to their slow geological evolution, but climate
may present resiliency problems for the current clas-
sification. Under a predicted climate change scenario
for precipitation and temperature in southern Africa
(Joubert & Hewitson 1997) the growth days index and
growth temperature can both be expected to change
over space and in magnitude. The relevance of the
physio-climatic classification system can therefore be
retained by re-defining the classification when newer
climatic data sets become available. This is not in
conflict with the objective of providing a classification
system for afunctional region, which is also expected
to undergo evolutionary change over time. However,
there is a trade-off between too much data resolu-
tion versus the expected resilience of the classifica-
tion system, which can be tested through sensitivity
analysis.

Conclusions

The multivariate geographic clustering methodology
used for this study has several advantages: (1) it is
an empirical technique that defines relatively homo-
geneous areas with respect to the input variables; (2)
it is repeatable, not subjective ‘expert’ opinion; (3)
the methods are statistically significant and ‘naturally’
recognizable results can be revealed without defining
the number of classes. Clustering is data-driven and
empirical. This is in contrast to expert consensus to
derive ecoregions or potential vegetation maps. Users
control what data are included for consideration in the
multistage clustering process based on what is appro-

priate for their purposes. Users are also able to select
how many classes to start with in the iteration process
based on knowledge of their data’s variance space and
to reach a stable and statistically significant solution.

While chosen data layers and analytical methods
are relatively objective, there are a number of deci-
sions that require some understanding of the region
under study. It is unrealistic to expect that the process
of ecoregional classification can be accomplished en-
tirely by spatial and numeric analysis; human under-
standing is also an important component (Host et al.
1996).

Regional ecosystem classification is important for
understanding the spatial pattern and productivity of
the landscape. Land management deals with pro-
ductivity systems (i.e., ecosystems) from which it
attempts to efficiently, and continuously, extract re-
newable products, such as wood or water. Adaptive en-
vironmental management of land ensures that all land
uses consistently sustain resource productivity and
maintain ecosystem processes and function (Holling
1976). The development of regional ecosystem func-
tional maps for continuously utilised disequilibrium
systems, like the woodland biome in South Africa,
allows for the adjustment of strategic resource pol-
icy, tactical landscape management, and operational
site monitoring within an ecologically meaningful
partioning of the ecosystem.
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Appendix. List of representative trees and shrubs associated with each
physio-climatic zone to be used for productivity measurements in the field.
Nomenclature follows Palgrave (1988).

Physio-climatic

zones Representative species

1 Grewia robusta, Brachylaena ilicifolia

2 Drypetes gerrardii, Millettia grandis, Acacia karroo, Rhus lancea, Ehretia
rigida, Dalbergia obovata

3 Acacia karroo

4 Dombeya cymosa, Euphorbia tirucalli, Acacia robusta

5 Albizia adianthifolia, Acacia nigrescens

6 Acacia tortilis, Terminalia sericea

7 Colophospermum mopane, Androstachys johnsonii, Adansonia digitata

8 Combretum collinum, Combretum imberbe, Sclerocarya birrea, Acacia
nigrescens, Acacia nilotica, Albizia harveyi, Combretum apiculatum

9 Cassine aethiopica, Diospyros dichrophylla

10 Croton gratissimus, Burkea africana, Terminalia sericea, Grewia flava,
Commiphora pyracanthoides

11 Terminalia sericea, Ochna pulchra, Peltophorum africanum

12 Lycium austrinum, Crassula aborescens, Crassula ovata, Portulacaria afra

13 Acacia mellifera, Rhigozum obovatum, Boscia foetida

14 Salsola tuberculata, Rhigozum trichotomum, Acacia erioloba, Acacia
luederritzii

15 Acacia tortilis, Acacia erioloba, Acacia Rehmanniana(Pietersburg plateau
region)

16 Acacia haematoxylon, Grewia retineruis

17 Tarchonanthus camphoratus, Rhus undulata, Rhus dregeana

18 Acacia erioloba, Acacia mellifera, Acacia hebeclada

19 Acacia nilotica, Acacia gerrardii, Acacia Robusta, Grewia flava

20 Acacia tortilis, Acacia nilotica, Acacia karroo, Acacia tenuispina, Acacia
caffra, Combretum apiculatum

21 Acacia sieberianna

22 Tarchonanthus camphoratus, Ehretia rigida, Rhigozum trichotomum, Aca-
cia tortilis

23 Tarchonanthus camphoratus, Rhus undulata, Rhus dregeana, Acacia per-
mixta (Pietersburg plateau region)

24 Portulacaria afra, Pappea capensis, Euclea undulata, Acacia karroo,
Pentzia incana, Eriocephalus ericoides

25 Faurea saligna, Burkea africana, Terminalia sericea, Combretum apicula-
tum, Dichrostachys cinerea, Lannea discolor

26 Kirkia wilmsii, Bequaertio dendron, Magalis montanum, Protea caffra

27 Leucosidea sericea, Grewia occidentalis, Protea caffra
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