The pressure and velocity dependence of flow-type cavitation erosion

J.G. Auref, O.F.R.A. Damm, G.J. Wright and F.P.A. Robinson

*Division of Materials Science and Technology, CSIR, P.O. Box 395, Pretoria 0001 (South Africa)

bUniversity of the Witwatersrand, P.O. WITS 2050 (South Africa)

(Received January 6, 1993; accepted June 10, 1993)

Abstract

Previous results on the influence of water pressure and velocity on flow-type cavitation erosion, i.e. an increase in erosion rate with increasing velocity and peaking of erosion rate as a function of pressure, were confirmed by measurements with a rotating-disc test rig.

Owing to the importance of exercising control over the cavitation geometry in hydraulic equipment, the effect of pressure and velocity on the position and shape of the cavitation erosion zone was systematically studied. The observed geometry of the erosion zone, as well as the wear rate behaviour, was explained in terms of the change in the cavitation-inducing pressure gradient with pressure and velocity.

1. Introduction

Cavitation occurs when relative movement between a solid object immersed in a liquid and the liquid creates low pressure regions in the liquid, leading to localized rapid vaporization. The collapse of these vapour pockets or bubbles happens extremely quickly and may lead to damage to nearby solid objects. This form of damage is known as cavitation erosion. Flow-type cavitation erosion is caused by unidirectional relative movement between the liquid and the solid object (e.g. a ship’s screw), as opposed to vibratory cavitation erosion.

For flow-type cavitation erosion, well-defined relations exist between the flow velocity and liquid pressure, and the amount of cavitation and erosion damage. Experimental work using a variety of cavitation test rigs has been reported. The influence of pressure was investigated both in venturi-type [1-6] and vibratory [7-11] test rigs. Erosion rate as a function of pressure shows a maximum as illustrated in Fig. 1. The drop-off at the low pressure side is ascribed to a decrease in bubble collapse violence as a result of the smaller pressure differential. At pressures above the maximum damage rate, the minimum pressure rises and therefore fewer bubbles can nucleate.

Water tunnels [12-13], venturi-type [1-2,14] and rotating disc-type [15-17] test devices were used to evaluate the effect of velocity. Damage usually increases with a power of the velocity ranging between five and ten, although negative powers have been observed under well-developed cavitation conditions where the pressure becomes insensitive to velocity changes.

Although numerous investigators studied the nature of the cavitation field by in situ observation [18-19] and the damage mechanisms operating on eroding surfaces [20-21], little information has been published on the relation between cavitation and erosion geometries, and especially the influence of fluid and flow parameters on these. However, an understanding of this relationship is critical in hydraulic devices operating under cavitation-inducing conditions, as the design and
operating conditions of such devices can be tailored to minimize damage by displacing the cavitation zone to less critical areas [22].

The relation between velocity and pressure, and cavitation and damage characteristics has been the subject of the present study. It is shown that both the amount and location of the damage can be understood in terms of the pressure profile behaviour.

2. Experimental procedure

2.1. Cavitation erosion test rig

A rotating-disc test rig [15–16,23–25] was designed and built for the experimental work (Fig. 2). The rig facilitated the investigation of cavitation dynamics as well as erosion resistance under the conditions showed in Table 1.

The disc could contain three rectangular or three round samples on either side, as shown in Fig. 3. A maximum of three inducer holes were exposed at any time. The remaining holes were closed with an epoxy resin, whilst dummy stainless steel samples were fitted into the sample slots. The disc was positioned in a cylindrical pressure chamber between two stators which contained radial vanes to prevent excessive water rotation. The positions of the stators were adjustable to allow for the proper disc–stator distance to be selected. A transparent window was situated in the lid of the pressure chamber, in such a position that the cavitating regions on the disc could be viewed with the aid of a stroboscope. A 30 kW two-pole electric motor (natural frequency, 2910 rev min⁻¹) rotated the disc via a belt and pulley system. The disc speed was varied by using different pulley size ratios. Water was pumped through the test chamber by means of a 2 MPa, 30 l min⁻¹ screw-type pump. Pressure and flow rate were controlled by hand-operated butterfly valves. Water could be re-circulated through the test chamber — for this purpose the flow system included a 100 l reservoir — or passed through only once. In order to cater for chemically corrosive waters, the disc, test chamber, stators, drive shaft, valves, reservoir and all connections were made of stainless steel, while pump components were nickel plated. The flow system was completed by reinforced high-pressure rubber hose.

Heating of the water was required to reach the test temperature, which was mostly above ambient; this was facilitated by a 3 kW heating element in the reservoir. To control temperature rises caused by disc operation, cooling was also necessary. This was supplied by two facilities: a stainless steel cooling coil running around the inside perimeter of the test chamber and a shell-and-tube heat exchanger situated in the flow loop.

2.2. Sample preparation

The test samples were made of AA type 1200 aluminium alloy (known as BS 1C in the UK and Al99.0 in Germany) in the A4 annealed condition, of which

![Fig. 2. Schematic of cavitation test rig.](image-url)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static water pressure</td>
<td>0.1–2 MPa</td>
<td>Based on disc velocity, i.e. assuming test fluid to be stationary</td>
</tr>
<tr>
<td>Water temperature</td>
<td>Ambient to 100 °C</td>
<td></td>
</tr>
<tr>
<td>Sample velocity</td>
<td>40–60 m s⁻¹</td>
<td>Measured as dissolved oxygen content</td>
</tr>
<tr>
<td>Air content of water</td>
<td>Deaerated to supersaturated</td>
<td></td>
</tr>
<tr>
<td>Water flow rate</td>
<td>0–30 l min⁻¹</td>
<td>To simulate typical mine waters</td>
</tr>
<tr>
<td>Water quality</td>
<td>neutral to corrosive and containing abrasive solids</td>
<td></td>
</tr>
</tbody>
</table>
the composition and mechanical properties are listed in Table 2.

Rectangular samples, 65 mm × 24 mm and 4 mm thick, were machined to fit tightly into the disc. The surfaces exposed to cavitation were ground and polished to $R_a \sim 0.1 \mu m$. The samples were stored in a dry desiccator when not being tested.

2.3. Procedure for erosion testing

The three rectangular sample positions on the front (window) side of the disc were used. The samples were eroded for 1 h in tap water at sample velocities of 48 and 51 m s$^{-1}$ and static water pressures of 0.10, 0.12, 0.135, 0.15 and 0.25 MPa. (Not all combinations of velocity and pressure were tested.) The other test parameters were kept constant at the following values: water temperature, 53 °C; dissolved oxygen content of the water (used as an indication of the air content behaviour), 6.7 mg l$^{-1}$; water flow rate, 30 l min$^{-1}$.

Before and after each test the samples were cleaned in ethanol, dried and weighed to the nearest 0.1 mg. The mass loss from each sample was converted to volume loss. Wear rates were calculated from the average volume loss for the three samples.

3. Results and discussion

3.1. Erosion results

The volume loss data as a function of pressure and velocity are detailed in Table 3. The volume losses are plotted in Fig. 4, showing that the volume loss was larger at the higher sample velocity of 51 m s$^{-1}$ compared to a velocity of 48 m s$^{-1}$. A peak volume loss occurred at approximately 0.12 MPa for both velocities. Thus the general trends reported in the literature were confirmed.

3.2. Cavitation dynamics

The cavitation cloud was studied in situ with the aid of a stroboscope (Fig. 5(a)) for various velocity and pressure conditions, and compared with the erosion zone formed on the type 1200 Al alloy samples (Fig. 5(b)).

Fig. 3. Disc design for three rectangular and three round samples.

Fig. 4. Volume loss data as a function of pressure and velocity.

Fig. 5(a). Cavitation cloud studied in situ with the aid of a stroboscope.

Fig. 5(b). Erosion zone formed on type 1200 Al alloy samples.

TABLE 2. Composition and typical mechanical properties of AA 1200 Al alloy, H4' annealed condition*

<table>
<thead>
<tr>
<th>Chemical composition</th>
<th>Mechanical properties</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.2% Proof stress (MPa)</td>
</tr>
<tr>
<td>Al</td>
<td>Cu</td>
</tr>
<tr>
<td><99.0</td>
<td>0.05</td>
</tr>
</tbody>
</table>

*Strain hardened. Material subjected to the application of cold work after annealing (or hot forming), or to a combination of cold work and partial annealing/stabilising in order to secure the specified mechanical properties. H2, H4, H6 etc. indicates ascending order of tensile strength.
TABLE 3. Volume loss as a function of pressure and velocity

<table>
<thead>
<tr>
<th>Test Code</th>
<th>Velocity (m s⁻¹)</th>
<th>Static pressure (MPa)</th>
<th>Average 1 h cumulative volume loss (mm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean value</td>
<td>Mean value</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD²</td>
<td>SD</td>
<td></td>
</tr>
<tr>
<td>SP6</td>
<td>48.5</td>
<td>0.10</td>
<td>0</td>
</tr>
<tr>
<td>SP7</td>
<td>48.5</td>
<td>0.12</td>
<td>0</td>
</tr>
<tr>
<td>SP8</td>
<td>48.6</td>
<td>0.20</td>
<td>0.007</td>
</tr>
<tr>
<td>SP5</td>
<td>50.9</td>
<td>0.10</td>
<td>0.007</td>
</tr>
<tr>
<td>SP1</td>
<td>50.8</td>
<td>0.12</td>
<td>0.001</td>
</tr>
<tr>
<td>SP4</td>
<td>50.8</td>
<td>0.137</td>
<td>0.001</td>
</tr>
<tr>
<td>SP2</td>
<td>50.9</td>
<td>0.15</td>
<td>0.001</td>
</tr>
</tbody>
</table>

*SD² = standard deviation.

Fig. 4. Curves for volume loss as a function of pressure at 48 and 51 m s⁻¹ sample velocity.

Fig. 5. (a) In situ observation of the cavitation cloud and (b) erosion zone formed on the samples (A1 to A3). Velocity is 51 m s⁻¹ and pressure 0.15 MPa.

Fig. 6. Cavitation cloud and associated erosion zone for the following sample velocities and static pressures, respectively: (a) 48 m s⁻¹ and 0.10 MPa; (b) 48 m s⁻¹ and 0.12 MPa; (c) 48 m s⁻¹ and 0.135 MPa; (d) 51 m s⁻¹ and 0.12 MPa; (e) 51 m s⁻¹ and 0.135 MPa; (f) 51 m s⁻¹ and 0.15 MPa; (g) 51 m s⁻¹ and 0.25 MPa. Fixed and travelling cavities are respectively indicated by solid and dashed lines. The erosion zones are indicated by the dotted areas.
Fig. 7. The distance between the downstream edge of the inducer hole and the centre of the primary erosion zone, plotted as a function of velocity and pressure.

Fig. 8. The distance between the downstream end of the fixed part of the cavitation cloud and the centre of the primary erosion zone, plotted as a function of velocity and pressure.

P_{o2} is displaced to lower pressures. As a result, the region of underpressure (hatched area) increases. Thus the cavitation cloud expands in the downstream direction and the erosion zone moves farther downstream.

The number of cavitating bubbles increases at the same time as a result of the larger underpressure region, while the pressure gradient for collapse, i.e. ΔP_2, will decrease. These two opposing factors lead to the existence of a peak damage rate as reported in the literature [1–11].

In the case of two different velocities (Fig. 9(b)), the region of underpressure expands for the higher velocity vOz. Thus cavitation bubbles leave this region farther downstream and the erosion zone shifts downstream. At the same time, cavitation damage will increase because of the larger number of cavitating bubbles, as found in previous studies [12–17].

4. Conclusions

The existence of a peak erosion rate as a function of pressure was confirmed by the present results. The erosion rate increased with increasing velocity over the range tested (48 to 51 m s⁻¹).
The pressure and velocity dependence of the erosion rate, and of the geometry of the cavitation cloud and erosion zone, can be explained in terms of the cavitation-inducing, dynamically-created, pressure differential. This relation can be used, for example, to decrease cavitation damage in hydraulic machinery by relocating the erosion zone.

References